
Theresa L. Benyo
Glenn Research Center, Cleveland, Ohio

Project Integration Architecture (PIA) and
Computational Analysis Programming
Interface (CAPRI) for Accessing Geometry
Data From CAD Files

NASA/TM—2002-211358

March 2002

AIAA–2002–0750

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at 301–621–0134

• Telephone the NASA Access Help Desk at
301–621–0390

• Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076

Theresa L. Benyo
Glenn Research Center, Cleveland, Ohio

Project Integration Architecture (PIA) and
Computational Analysis Programming
Interface (CAPRI) for Accessing Geometry
Data From CAD Files

NASA/TM—2002-211358

March 2002

National Aeronautics and
Space Administration

Glenn Research Center

Prepared for the
40th Aerospace Sciences Meeting and Exhibit
sponsored by the American Institute of Aeronautics and Astronautics
Reno, Nevada, January 14–17, 2002

AIAA–2002–0750

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Trade names or manufacturers’ names are used in this report for
identification only. This usage does not constitute an official
endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

Available electronically at http://gltrs.grc.nasa.gov/GLTRS

NASA/TM—2002-211358 1

PROJECT INTEGRATION ARCHITECTURE (PIA) AND COMPUTATIONAL

ANALYSIS PROGRAMMING INTERFACE (CAPRI) FOR ACCESSING
GEOMETRY DATA FROM CAD FILES

Theresa L. Benyo*
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

* Computer Engineer, AIAA Member. E-mail: Theresa.Benyo@grc.nasa.gov

ABSTRACT

Integration of a supersonic inlet simulation with a
computer aided design (CAD) system is demonstrated.
The integration is performed using the Project
Integration Architecture (PIA). PIA provides a common
environment for wrapping many types of applications.
Accessing geometry data from CAD files is
accomplished by incorporating appropriate function
calls from the Computational Analysis Programming
Interface (CAPRI). CAPRI is a CAD vendor neutral
programming interface that aids in acquiring geometry
data directly from CAD files. The benefits of wrapping
a supersonic inlet simulation into PIA using CAPRI are;
direct access of geometry data, accurate capture of
geometry data, automatic conversion of data units, CAD
vendor neutral operation, and on-line interactive history
capture. This paper describes the PIA and the CAPRI
wrapper, and details the supersonic inlet simulation
demonstration.

INTRODUCTION

Acquiring geometry input data for computational fluid
dynamics (CFD) simulations consumes valuable time
and often results in incomplete or inaccurate data. The
Project Integration Architecture (PIA) along with the
Computational Analysis Programming Interface
(CAPRI) provides an environment for accessing
geometry directly from CAD files and making the data
available to CFD simulations. The PIA is an object-
oriented, wrapping architecture for capturing,
encapsulating, presenting, and integrating all elements
of day-to-day technical aerospace research activity.

The benefits of PIA are:
• Direct access to data of many formats
• Accurate capture and presentation of information
• Convenient data archiving in a single environment

CAPRI is a programming interface for acquiring
geometry data directly from CAD files in a vendor-
neutral manner. The wrapping of CAD information by
PIA through the use of CAPRI provides geometry
objects that hold and organize the data.

PIA1 provides a common, self-revealing application
architecture that eliminates the need to repeatedly adapt
graphical user interfaces (GUIs), browsers, search
engines, and other applications to various experimental
and analytical information sources. This architecture
uses object-oriented technology to implement
application wrappers that encapsulate, present, and
integrate all elements of day-to-day technical
information. This information includes data pertaining
to experiments, designs, analyses, and simulations.
Further, this information can form the foundation upon
which statistical characterizations and optimizations are
based. The self-revealing architecture of PIA allows
consumers of application information to use a particular
application without pre-existing knowledge of the
application contents.

An application presented through a PIA-conformant
wrapper begins with a central application object,
labeled PacAppl in the upper center of Figure 1. This
object is the root structure from which all further
components emanate. The PacAppl object currently
presents four principal structures:

NASA/TM—2002-211358 2

1. A set of operations that the application is willing to
perform (PacOp),

2. A mass of data, which the application currently
contains (PacCfg),

3. A structure by which the contained data is
identified (PacPid), and

4. An ecdysiastical (from the Greek ekdysis, ekdyein,
to get out of, strip off) sorting of the information-
bearing objects in the application (not shown in the
figure).

The PacOp structure, as illustrated in Figure 1, could
contain operations such as Initialize, Run, and Stop.
The implementer of the particular application wrapper
has complete freedom to attach any kind or number of
operations needed. As will be discussed later, the
PIA/CAD/CAPRI wrapper implements only an
AcquireData operation.

The PacCfg structure organizes the parameter objects
(the blocks beginning with the label Par: in the figure)
that hold the data of the application. For a
computational fluid dynamics (CFD) application, these
objects could hold boundary layer information, grid
coordinates, or geometry describing the modeled
environment. Parameters within a given PacCfg are
sorted by a unique, fully qualified name, which is to be
discussed shortly. The PacCfg objects themselves are
arranged into an n-ary tree in which offspring are
considered to be variants of their ancestors.
A parameter missing in a descendant configuration is
considered to be inherited from the most recent

ancestor containing that parameter. In this way, needless
repetition of invariant information is avoided.

The parameter objects as mentioned above, hold the
actual data of applications. A wide variety of parameter
forms; Booleans, strings, integers, floating point
numbers, scalars, arrays, matrices, organizations of
other parameters, and so on, are defined. After the
generic forms are defined, the semantics of a particular
form are infused by means of further class derivation.
Of most interest in this way are the floating-point
number forms, which form the basis of a vast array of
technical parameters. First, the floating point numbers
are infused with a concept of their own dimensionality,
both in terms of their dimensional characteristics
(length, mass, velocity, non-dimensional, etc.) and of
the measurement system in which their encapsulated
value is given (English feet, English inches, metric
meters, metric centimeters, etc.). This allows
applications to proceed without concern for the
measurement systems in which they operate; values are
simply requested in the desired measurement system
(a CFD application may work in feet, pounds, and
seconds) and the parameters convert themselves as
necessary. After this, further class derivation gives the
number a usage, for example a non-dimensional
floating-point number is further derived into a Mach
number and then to a far-field Mach number. An
application encountering such a derived object thus has
the capability of determining what it is (a far-field Mach
number) and deciding whether or not that is the sort of
information it wishes to find.

Figure 1: The PIA object classes

NASA/TM—2002-211358 3

The PacPid structure exists to reveal the structure of
parameters within the application. Again, the structure
is arranged into an n-ary tree in which offspring are
considered grouped under the parent. The fully
qualified name of a parameter (used to identify the
parameter in the PacCfg configuration discussed above)
is developed by concatenating the names of the
corresponding path in the PacPid tree. In the example
shown in Figure 1, the root of the identification tree is
Cfd, which in turn has three direct offspring, Duc, Inl,
and Noz (presumably, an inlet, duct, and nozzle).
Duc, in turn, has two direct offspring, D and E. The
fully-qualified name of the D parameter would then be
D/Duc/Cfd, as it appears in the PacCfg portion of the
figure.

The fourth component, the ecdysiastical sorting (which
is not shown in the figure), serves to provide quick
access for entities such as browsers and search engines
to well-known types of information within the particular
application wrapper instance, even though that
information may not exist exactly in its well-known
from. PIA allows application wrappers to employ the
derivative capacities of object-oriented technology to
specialize parameters beyond their well-known
character (as is, in fact, the case in the PIA/CAD/
CAPRI/ProEngineer wrapper). As a consequence, a
parameter may not be well-known on its face, but
through the ecdysiastical sorting, it still may be quickly
located based on its underlying character.

Together, this application structure enables researchers
to maintain and manage experimental data, simulations,
analyses, documentation, logs, change histories, and
many other forms of information in a common
repository that is easily accessed and extended. As a
result, the entire engineering process can be captured.
The well-known nature of the many objects of which
this architecture is comprised enables the integration of
these many technical components into a logical whole.

 PIA enables a common user interface and allows
browsers and search engines to deal with the myriad of
technical information applications in a common manner.
PIA also eliminates the numerous manual steps in
exchanging data between different disciplines and levels
of fidelity, resulting in a framework for the automation
of routine tasks.

CAPRI

In order to achieve the goal of gathering geometry data
from Computer Aided Design (CAD) files into the PIA
environment, it is necessary to wrap this application in a
PIA-compliant wrapper. The technology provided by
CAPRI2 to provide a vendor-neutral interface to this
information was utilized to avoid having to provide a
wrapper specific to each CAD vendor.

CAPRI provides a library specific to each CAD vendor.
Each library implements the common CAPRI Application
Programming Interface (API) using services specific to
the supported vendor. By programming to the CAPRI
API and linking to the appropriate vendor-specific
library, a consuming application may be made
independent of the particular CAD vendor from which
geometry information is to be obtained. Currently,
CAPRI provides libraries to support Unigraphics,
ProEngineer, CATIA, FELISA, Computervision’s
CADDS, and SDRC’s I-DEAS products.

CAPRI provides geometry information in a data
hierarchy of nodes, edges, faces, boundaries, and
volumes. Figure 2 illustrates this hierarchy. Nodes are
the simplest entities and are just points in 3-space.
Edges are open curves. Edges begin and end at distinct
nodes and, thus, a closed curve must be formed by two
or more edges. Faces are bounded by closed sets of
edges organized into loops and may join other faces at
shared edges. Boundaries then collect faces together
into sets. Volumes are closed regions of 3-space
bounded by the sum of all the faces found in the
boundaries of the volume.

CAPRI also provides tessellations of edges and faces.
Edges are tessellated as an ordered stream of points in
3-space. Faces are tessellated as points in 3-space
arranged into triangles. Information on the connectivity
of the triangles within a face is provided. The points
used to tessellate an edge are identically those used to
tessellate the edge of the faces, which that edge
terminates so that a complete triangulation of the
volume as a whole is obtained.

An additional object called a bounding box is also
provided. Bounding boxes are items that indicate the
3-space that a particular CAPRI data object such as a
face is in.

NASA/TM—2002-211358 4

PIA has defined well-known parameter objects that
follow the structuralization of geometry information
provided by the CAPRI technology. The PIA/CAD/
CAPRI/ProEngineer wrapper uses the services of
CAPRI to obtain geometry information from a
ProEngineer CAD file, create and populate
corresponding PIA parameter objects, and place those
parameter objects in a parameter configuration, and
create the corresponding parameter identification
structure. The PacAppl-based object of this wrapper
contains a module, which reads an identified CAD file
through CAPRI facilities, interprets the data found, and
performs all the appropriate object creation and
organization.

PIA/CAD/CAPRI WRAPPER
IMPLEMENTATION

This section describes the implementation of the
PIA/CAD/CAPRI wrapper that captures and presents
geometry information from CAD files using the CAPRI
technology. Figure 3 shows three of the four

application structures defined by the PIA; the
operations available (in this case, only the AcquireData
operation), the single parameter configuration created,
and the parameter identification structure.

The root of the application, CpeAppl (Capri-
Pro/Engineer Application) is a derivative of the generic
application class, PacAppl, defined by the PIA
architecture. This derivative class provides the specifics
to convert the generic application shell into a real
application wrapper, in this case of CAD data
obtained from ProEngineer through CAPRI
technology. One significant and well-known function,
CreateApplication, must be overridden by this
derivative class. In this case, this function acquires
geometry information and creates the well-known
geometric parameter objects that are the ultimate goal
of the implementation. Additionally, a number of
operations and facilities are implemented in this
derivative application class that are not well-known, but
cooperate to implement and achieve the well-known

Figure 3: Architecture of the PIA/CAD/CAPRI application wrapper

C p e O p
A c q u ire D a ta

C p e C fg
C o n fig u ra t ion

P id : N o de

P id : R a n ge P id : T e s se la tion

P id : E d ge P id : B o u n d ing B ox

P id : R a n ge P id : L o op

P id : T e s se la tion

P id : F a ce P id : A sse m b lyo fT h eV o lu m e

P id : B ou n d a ryo fT h eW h o le

P id : B o un d a ries

P id : V o lu m e P id : A ssem b ly o fTh e W h o le

C p e P id
Id e n tifica tion

C p e A p p l

Figure 2: A simple volume with a cylinder cutout—Edges marked with arrows for front face

Node
Face

Edge

NASA/TM—2002-211358 5

result of a PIA-compliant application wrapper. Included in
this application-specific area is the ability to communicate
with a backend, geometry server that is necessitated by the
exigencies of CAPRI/ProEngineer operation.

The single operation provided, AcquireData, prompts
the user through PIA-defined facilities, to identify a
CAD file from which geometry information is to be
obtained. Once this file is selected, the operation starts
the backend, geometry server mentioned above,
transmits the file selection to it, and receives from the
backend server the object-encapsulated geometry data
and identification information acquired from that file.

The parameter objects acquired by the AcquireData
operation are placed in the single parameter
configuration object implemented by the wrapper.
While the PIA defines a configuration hierarchy with
descendent parameter configurations, parameter
inheritance, and so on, this concept does not presently
exist within the CAPRI technology; within CAPRI,
there is only the geometry data. Thus, while descendent
parameter configurations may be created within a
PIA/CAD/CAPRI wrapper, no provision presently
exists for populating them with any additional
geometric parameter objects and all geometric
information in such a descendent configuration will be,
in fact, inherited from the root of the parameter
configuration tree.

The parameter-identification structure, illustrated in Figure
3, is built by the AcquireData operation based upon the
information it receives from the backend, geometric server.
The structuralization of geometric parameters closely
follows that defined by CAPRI with volumes containing
nodes, edges, faces, boundaries, and a bounding box, edges
containing parameterization ranges and edge tessellations,
and faces containing parameterization ranges, loops, and
face tessellations. Three additional parameters called
AssemblyofTheWhole. AssemblyofTheVolume, and
BoundaryofTheWhole are created in the wrapper.
AssemblyofTheWhole creates an application-wide
assembly of every boundary that the wrapper encounters.
As a result, the whole geometry can be visualized.
AssemblyofTheVolume creates an assembly for a volume
if there is more than one boundary. BoundaryofTheWhole
creates a boundary if there are no boundaries provided by
CAPRI and groups all the faces into one. Names for the
various geometric components are numerically based. For
example, the fourth face of a given boundary becomes,
simply, Face4.

Figure 4 shows how the concatenation of names from
the identification tree is used to identify particular
parameters in the parameter configuration. For example,
the first loop of the second face of the first volume
would be Loop1/Face2/Volume1, as shown in the
figure. The figure only shows a partial representation of
the parameter configuration.

C p e O p
A c q u ire D a ta

P a r: B o u n d ary1 /V o lu m e1 P a r: Bo u n din g B ox1 /V o lu m e1

P a r: R an g e 3 /Fa c e 5 /Vo lu m e1 P a r: P o in t2 /T e sse la tio n 4 /F a c e 3 /V o lu m e1

P a r: R an g e 4 /Fa c e 2 /V o lu m e1 P a r: L oo p 1 /F ac e 2 /V o lu m e1

P a r: P o in t1 /T e sse la tio n 1 /F a c e 2 /V o lu m e1

P a r: F ace 2 /V o lu m e1

C p e C fg
C o n fig u ra tion

C p e P id
Id e n tifica tion

C p e A p p l

Figure 4: Example configuration of PIA/CAD/CAPRI application wrapper

NASA/TM—2002-211358 6

IMPLEMENTATION OF THE BACKEND,
GEOMETRY SERVER

Acquisition of geometry information is, for the user,
quite simple: the appropriate CAD file is identified and
magic happens. The efforts to which the wrapper goes
to make this magic happen are somewhat more
extensive.

While CAPRI has achieved apparent vendor-neutrality
at the API level, this neutrality and consequent ease
does not extend to the actual making of an executable
program. One does not merely link the correct CAPRI
library into a main program and go from there. The
mechanisms necessary to obtain a working program
from the selection of the correct CAPRI library can vary
and the results are, at times, not convenient. Much, if
not all, of this is attributable not to some failure of the
CAPRI research effort, but simply to the different forms
and modalities in which the various CAD vendor
products offer access to the raw geometric information
with which CAPRI works.

In the case of ProEngineer, an optional software
component, ProToolkit, executes the vendor’s geometry
kernel and then links to and executes a dynamic link
library identified to it when ProToolkit is started. The
CAPRI library, and the “main program” invoking it are,
in fact, subprograms of the ProToolkit execution, which
is, itself, a spawned process of a batch file, which
establishes the appropriate environment for its
operation. Since the graphical user interface through
which the PIA is exercised regards itself as a patriarchal
process, this process structure of ProToolkit and its
CAPRI access library presents a certain difficulty that is
dealt with as described in the following paragraphs.

The CpeAppl specialization of the application object
implements a client characteristic which, when TRUE,
indicates that it is operating as the apparent, PIA-
compliant, frontend application wrapper. When
AcquireData operates, it locates its containing
CpeAppl application object and interrogates it for the
state of this characteristic. Finding itself to be a part of a
client, AcquireData starts up the batch file (in which it
has placed the name of the desired CAD file, as well as
some socket communication information) to start the
ProToolkit execution. When ProToolkit connects to the
identified dynamic link library and calls its entry point,
the “main program” does the following. It receives the
transmitted file and communication information. It
creates another CpeAppl object and informs that object
that it is not a client (that is, the client characteristic is

made FALSE). It calls the CpeAppl object’s
CreateApplication member function (which extracts
through CAPRI all the geometric information and
encapsulates it in objects), and then informs the
frontend client that the backend, geometric server is
ready for operations. When AcquireData receives this
ready signal, it sends a message requesting the
transmission of the object-encapsulated, geometric data,
which it then receives and places in the structures of its
containing CpeAppl client object.

The operation of the CreateApplication member
function, while long and tedious, is not particularly
complicated. CAPRI functions are called to obtain
geometric data and create objects to encapsulate and
identify it as it is found to exist. For example, one
CAPRI function is called to determine how many
volumes exist. A loop is then executed to create a
volume identification structure and obtain the specific
information for each volume in turn. Each volume
indicates how many nodes, edges, faces, and boundaries
exist in it and internal loops are executed to identify and
obtain information for each of these in their turn.
Because of the close correlation between the geometric
structuralizations used by CAPRI and PIA, this process
is very natural and relatively easy to implement.

WRAPPER-SPECIFIC PARAMETER CLASSES

Some of the geometric parameter classes defined by
PIA provide geometric services beyond that of simple
data presentation. For example, the boundary class
provides the ability to obtain a cross section of its
geometric shape. The implementation of this function
provided by the well-known PIA parameter class is
based solely upon the information contained in the face
tessellations associated with the faces of the boundary.
Unfortunately, such cross sections, when based simply
upon triangular tessellations introduce noise into the
geometric information when the tessellated face exhibits
some finite curvature. The sides of the triangles
represent chords relative to the face curvatures they
attempt to describe and, thus, some deviation between
the practical and the ideal exists.

CAPRI offers a potential cure to this difficulty in the
form of a snap-to-face functionality. The cross-sectional
position computed from the tessellating triangle’s side
may then be improved by snapping it back onto the
geometric face, thus reducing introduced error to some
acceptable value. Unfortunately, this snap-to-face
functionality is only available with a live, operating
CAPRI and is, thus, unavailable to the CpeAppl client
frontend wrapper.

NASA/TM—2002-211358 7

To alleviate this difficulty, the PIA/CAD/CAPRI
wrapper derives several of these geometric parameter
objects beyond their well-known level and adjusts the
functionality in these particular cases. Continuing the
example above, the boundary parameter object now
knows that it might be a member of a client CpeAppl
wrapper. It locates its containing CpeAppl application
and determines if this is the case. In this event, it does
not do the cross-sectioning operation itself (which it
inherits from its well-known base class), but instead
transmits a message (through CpeAppl-specific
facilities) to its counterpart in the backend server. That
counterpart first invokes the inherited functionality to
obtain a basic cross-section result and then utilizes the
snap-to-face functionality provided by CAPRI to
improve that result and, to a specified level, remove the
induced geometric noise. The final result is then
transmitted back to the frontend client that returns it to
its caller as its own work.

RBCC HYPERSONIC VEHICLE EXAMPLE
The acquisition and presentation of geometric data
through the PIA/CAD/CAPRI wrapper in the manner
described above has been demonstrated with the
geometry of a Rocket-Based Combined Cycle (RBCC)
hypersonic vehicle propulsion system under study at the
Glenn Research Center. This information was then
examined by a PIA wrapper of the Large Perturbation
Inlet (LAPIN) simulation code. That second wrapper
used the facilities of the presented geometric parameters
(in particular, the cross-sectioning facilities) and its own
heuristics to generate the LAPIN-specific flowpath
information needed for LAPIN operation. LAPIN was
then executed and its results encapsulated in parameter
objects presented by that second, PIA/LAPIN wrapper.
All of this proceeded on an automated basis.

Figure 5: RBCC propulsion system as displayed by CAPRI

NASA/TM—2002-211358 8

Figure 5 shows a CAPRI/ProEngineer rendering of the
RBCC propulsion system assembly. Figure 6 shows a
rendering by the research graphics user interface (GUI)
of the geometric information of the RBCC propulsion
system as presented by the PIA/CAD/CAPRI wrapper.
(Note that the research GUI to PIA is a research tool
only and not a project product; thus, less than
completely sophisticated renderings and displays are
considered entirely adequate performance for the GUI
component.) Also illustrated toward the upper left
corner of Figure 6 is a partially expanded portion of the
identification structure resulting from the geometric
information obtained by the PIA/CAD/CAPRI wrapper
through the CAPRI interface to the original
ProEngineer data.

Using the implemented PIA/CAD/CAPRI/ProEngineer
wrapper, the RBCC propulsion system information
contained in the original ProEngineer CAD file can be
read and the data encapsulated in geometric objects as
described above. Once this geometric information is

presented in this manner, another consumer of
information (in the case of the present demonstration,
the PIA/LAPIN wrapper) can access and consume this
data as it deems appropriate. Note that the information,
by the design of PIA, is accessed by its kind, that is as
being a geometric boundary or a geometric face, and
not by the application presenting it. Thus, the
PIA/LAPIN wrapper is not dependent upon finding a
PIA/CAD/CAPRI wrapper for its information, but only
upon finding some wrapper containing geometric
boundary information.

The PIA/LAPIN wrapper is programmed, having found
a source of geometric-boundary information, to convert
that information into the unique flowpath description
form required for LAPIN operation. LAPIN-specific
processes and rules are encapsulated in the PIA/LAPIN
wrapper to effect this result. These processes utilize
parameter-provided services, in particular the ability to
provide cross sections of geometric boundaries and the
ability to manipulate, sort, and characterize the curves

Figure 6: RBCC propulsion system information in PIA

NASA/TM—2002-211358 9

that result. Processing and rules that are LAPIN-specific
(i.e., the discrimination between an inlet with no
centerbody and a two-dimensional inlet with no second
cowl cross-section) are encapsulated in the interior of
the PIA/LAPIN wrapper and are not presented to the
outside PIA environment.

A complication presented in the RBCC propulsion
system example is that the flowpath of this system is
neither axisymmetric nor two-dimensional. Instead, the
flowpath has a cross section akin to the shape of an
orange segment extending around one third of the
circumference of a round fuselage. Since LAPIN works
internally in terms of cross-sectional area, presenting
the simple XY cross section of the flowpath to LAPIN
produced erroneous analyses under LAPIN’s default
axisymmetric assumption. Similarly, adjusting either
XY profile to produce appropriate cross-sectional areas
led to incorrect calculation of oblique shock points. The
accepted solution was to describe the inlet under
LAPIN’s two-dimensional geometry option with width
factors adjusted to produce correct cross-sectional
areas. The difficulty with both these later approaches
was that the development of the flowpath cross
sectional areas was a laborious process that was,
apparently, not particularly facilitated by the CAD
system. Since the PIA geometry parameters are not
particularly programmed for XY cross section
generation only, it was a small matter for the
PIA/LAPIN wrapper, upon determining that a two-
dimensional inlet form was required, to request and
obtain YZ cross sections that it then had processed and
sorted to determine the correct cross-sectional area of
the flowpath at each desired station.

PROCESS SPEED

It is tacitly assumed that anything computerized will,
necessarily, happen in the blink of an eye. With regard
to the acquisition, presentation, transfer, and
consumption of geometric information reported above,
this is not exactly the case. The PIA/CAD/CAPRI to
PIA/LAPIN geometric information transfer took on the
order of two days on a 1.5 GHtz, Pentium IV,
workstation class machine. In contrast, the hand process
that this technology could replace, took several weeks
per case. This time reduction, while certainly a
significant saving at one level, does not seem to match
the expectations one might have of complete
automation.

Two factors may serve to ameliorate this
disappointment of expectation.

1. The considerable gain in reliability (that is, the

elimination of mistakes that occur in a by-hand
process) must be considered. It is not entirely
appropriate that an iteration by automation be
directly compared to an iteration by hand since a
single iteration by hand has a much larger
probability of being wrong. Perhaps it is more
appropriate to compare a single iteration by
automation to at least three iterations by hand so as
to have at least a 2-out-of-3 confirmation that the
right answer has been obtained by hand methods.

2. The present effort is a research effort only. The

goal of the demonstration was to prove that the
concepts of PIA did, in fact, work, not that they
worked efficiently. In point of fact, many execution
improvements could be implemented that would
speed up execution in the event that the technology
were to be applied as a day-to-day, working,
production tool.

CONCLUSIONS

A wrapper conforming to the standards of the Project
Integration Architecture has been developed. The
wrapper provides a means for accessing geometry
information from CAD files. Other PIA-conformant
consumers of information (in the reported
demonstration, another PIA-wrapped CFD analysis
code, LAPIN) may then examine and consume that
geometric information as appropriate. A demonstration
of this transport of information has been successfully
completed for the RBCC propulsion system.

To achieve a measure of CAD-vendor neutrality, the
CAPRI geometric information access technology has
been used. This allows the PIA/CAD wrapper to be
easily reused when the supply of CAD information
switches between vendors. Unfortunately, the present
effort has not extended so far as to incorporate all
CAPRI-supported CAD vendors in a single rendering of
the PIA/CAD/CAPRI wrapper.

Finally, by using the reported technology, the need for
transferring geometric information by hand from a CAD
encapsulation to a consumer of that information, for
example a CFD code, is eliminated. This hand process

NASA/TM—2002-211358 10

can take several weeks for technologically advanced
propulsion systems and is, regrettably, prone to
undetected errors. By choosing the automated
techniques enabled by the PIA technology, this process
can be reduced to a matter of days (or less) and its
reliability is distinctly increased.

The Project Integration Architecture provides a central
system for accessing geometry data from CAD files and
using that data for CFD simulations. To achieve the
geometry data accessing functionality, CAPRI has been
integrated into PIA. The benefits of wrapping CAPRI
into PIA is that it offers direct access to data of many
formats, provides accurate capture of information, and
allows convenient data archiving in a single
environment. All these benefits have been shown with
this supersonic inlet simulation demonstration.

REFERENCES
1. Jones, William Henry. “Project Integration Architecture:

Architectural Overview.” NASA Glenn Research Center,
2001, PIA Web Site:
http://www.grc.nasa.gov/WWW/price000/pub/tm07.pdf

2. Haimes, Robert. “Computational Analysis PRogramming
Interface (CAPRI): A Solid Modeling Based
Infrastructure for Engineering Analysis and Design.”
Cambridge, MA. November 1999. Web Site:
http://raphael.mit.edu/capri/

3. Trefney, Charles. “An Air-Breathing Launch Vehicle
Concept for Single-Stage-to-Orbit.” NASA/TM—1999-
209089, May 1999.

4. Cole, Gary and Richard, Jacques. “Supersonic
Propulsion Simulation by Incorporating Component
Models in the Large Perturbation Inlet (LAPIN)
Computer Code.” NASA TM–105193, December 1991.

This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546–0001

Available electronically at http://gltrs.grc.nasa.gov/GLTRS

March 2002

NASA TM—2002-211358
AIAA–2002–0750

E–13178

WU–704–01–13–00

16

Project Integration Architecture (PIA) and Computational Analysis Programming
Interface (CAPRI) for Accessing Geometry Data From CAD Files

Theresa L. Benyo

Computer programs; Object-oriented programming; Systems integration;
Supersonic inlets; Flow geometry; Computer aided design

Unclassified -Unlimited
Subject Category: 61 Distribution: Nonstandard

Prepared for the 40th Aerospace Sciences Meeting and Exhibit sponsored by the American Institute of Aeronautics and
Astronautics, Reno, Nevada, January 14–17, 2002. Responsible person, Theresa L. Benyo, organization code 5880,
216–433–8723.

Integration of a supersonic inlet simulation with a computer aided design (CAD) system is demonstrated. The integration
is performed using the Project Integration Architecture (PIA). PIA provides a common environment for wrapping many
types of applications. Accessing geometry data from CAD files is accomplished by incorporating appropriate function
calls from the Computational Analysis Programming Interface (CAPRI). CAPRI is a CAD vendor neutral programming
interface that aids in acquiring geometry data directly from CAD files. The benefits of wrapping a supersonic inlet
simulation into PIA using CAPRI are; direct access of geometry data, accurate capture of geometry data, automatic
conversion of data units, CAD vendor neutral operation, and on-line interactive history capture. This paper describes the
PIA and the CAPRI wrapper and details the supersonic inlet simulation demonstration.

