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ABSTRACT 

Integration of a supersonic inlet simulation with a 
computer aided design (CAD) system is demonstrated. 
The integration is performed using the Project 
Integration Architecture (PIA). PIA provides a common 
environment for wrapping many types of applications. 
Accessing geometry data from CAD files is 
accomplished by incorporating appropriate function 
calls from the Computational Analysis Programming 
Interface (CAPRI). CAPRI is a CAD vendor neutral 
programming interface that aids in acquiring geometry 
data directly from CAD files. The benefits of wrapping 
a supersonic inlet simulation into PIA using CAPRI are; 
direct access of geometry data, accurate capture of 
geometry data, automatic conversion of data units, CAD 
vendor neutral operation, and on-line interactive history 
capture. This paper describes the PIA and the CAPRI 
wrapper, and details the supersonic inlet simulation 
demonstration. 
 

INTRODUCTION 

Acquiring geometry input data for computational fluid 
dynamics (CFD) simulations consumes valuable time 
and often results in incomplete or inaccurate data. The 
Project Integration Architecture (PIA) along with the 
Computational Analysis Programming Interface 
(CAPRI) provides an environment for accessing 
geometry directly from CAD files and making the data 
available to CFD simulations. The PIA is an object-
oriented, wrapping architecture for capturing, 
encapsulating, presenting, and integrating all elements 
of day-to-day technical aerospace research activity. 
 

The benefits of PIA are: 
• Direct access to data of many formats 
• Accurate capture and presentation of information 
• Convenient data archiving in a single environment 
 
CAPRI is a programming interface for acquiring 
geometry data directly from CAD files in a vendor-
neutral manner. The wrapping of CAD information by 
PIA through the use of CAPRI provides geometry 
objects that hold and organize the data. 
 
PIA1 provides a common, self-revealing application 
architecture that eliminates the need to repeatedly adapt 
graphical user interfaces (GUIs), browsers, search 
engines, and other applications to various experimental 
and analytical information sources. This architecture 
uses object-oriented technology to implement 
application wrappers that encapsulate, present, and 
integrate all elements of day-to-day technical 
information. This information includes data pertaining 
to experiments, designs, analyses, and simulations. 
Further, this information can form the foundation upon 
which statistical characterizations and optimizations are 
based. The self-revealing architecture of PIA allows 
consumers of application information to use a particular 
application without pre-existing knowledge of the 
application contents. 
 
An application presented through a PIA-conformant 
wrapper begins with a central application object, 
labeled PacAppl in the upper center of Figure 1. This 
object is the root structure from which all further 
components emanate. The PacAppl object currently 
presents four principal structures: 
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1. A set of operations that the application is willing to 
perform (PacOp), 

2. A mass of data, which the application currently 
contains (PacCfg), 

3. A structure by which the contained data is 
identified (PacPid), and 

4. An ecdysiastical (from the Greek ekdysis, ekdyein, 
to get out of, strip off) sorting of the information-
bearing objects in the application (not shown in the 
figure). 

 
The PacOp structure, as illustrated in Figure 1, could 
contain operations such as Initialize, Run, and Stop. 
The implementer of the particular application wrapper 
has complete freedom to attach any kind or number of 
operations needed. As will be discussed later, the 
PIA/CAD/CAPRI wrapper implements only an 
AcquireData operation. 
 
The PacCfg structure organizes the parameter objects 
(the blocks beginning with the label Par: in the figure) 
that hold the data of the application. For a 
computational fluid dynamics (CFD) application, these 
objects could hold boundary layer information, grid 
coordinates, or geometry describing the modeled 
environment. Parameters within a given PacCfg are 
sorted by a unique, fully qualified name, which is to be 
discussed shortly. The PacCfg objects themselves are 
arranged into an n-ary tree in which offspring are 
considered to be variants of their ancestors.  
A parameter missing in a descendant configuration is 
considered to be inherited from the most recent

ancestor containing that parameter. In this way, needless 
repetition of invariant information is avoided. 
 
The parameter objects as mentioned above, hold the 
actual data of applications. A wide variety of parameter 
forms; Booleans, strings, integers, floating point 
numbers, scalars, arrays, matrices, organizations of 
other parameters, and so on, are defined. After the 
generic forms are defined, the semantics of a particular 
form are infused by means of further class derivation. 
Of most interest in this way are the floating-point 
number forms, which form the basis of a vast array of 
technical parameters. First, the floating point numbers 
are infused with a concept of their own dimensionality, 
both in terms of their dimensional characteristics 
(length, mass, velocity, non-dimensional, etc.) and of 
the measurement system in which their encapsulated 
value is given (English feet, English inches, metric 
meters, metric centimeters, etc.). This allows 
applications to proceed without concern for the 
measurement systems in which they operate; values are 
simply requested in the desired measurement system  
(a CFD application may work in feet, pounds, and 
seconds) and the parameters convert themselves as 
necessary. After this, further class derivation gives the 
number a usage, for example a non-dimensional 
floating-point number is further derived into a Mach 
number and then to a far-field Mach number. An 
application encountering such a derived object thus has 
the capability of determining what it is (a far-field Mach 
number) and deciding whether or not that is the sort of 
information it wishes to find. 
 

Figure 1: The PIA object classes 
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The PacPid structure exists to reveal the structure of 
parameters within the application. Again, the structure 
is arranged into an n-ary tree in which offspring are 
considered grouped under the parent. The fully 
qualified name of a parameter (used to identify the 
parameter in the PacCfg configuration discussed above) 
is developed by concatenating the names of the 
corresponding path in the PacPid tree. In the example 
shown in Figure 1, the root of the identification tree is 
Cfd, which in turn has three direct offspring, Duc, Inl, 
and Noz (presumably, an inlet, duct, and nozzle).  
Duc, in turn, has two direct offspring, D and E. The 
fully-qualified name of the D parameter would then be 
D/Duc/Cfd, as it appears in the PacCfg portion of the 
figure. 
 
The fourth component, the ecdysiastical sorting (which 
is not shown in the figure), serves to provide quick 
access for entities such as browsers and search engines 
to well-known types of information within the particular 
application wrapper instance, even though that 
information may not exist exactly in its well-known 
from. PIA allows application wrappers to employ the 
derivative capacities of object-oriented technology to 
specialize parameters beyond their well-known 
character (as is, in fact, the case in the PIA/CAD/ 
CAPRI/ProEngineer wrapper). As a consequence, a 
parameter may not be well-known on its face, but 
through the ecdysiastical sorting, it still may be quickly 
located based on its underlying character. 
 
Together, this application structure enables researchers 
to maintain and manage experimental data, simulations, 
analyses, documentation, logs, change histories, and 
many other forms of information in a common 
repository that is easily accessed and extended. As a 
result, the entire engineering process can be captured. 
The well-known nature of the many objects of which 
this architecture is comprised enables the integration of 
these many technical components into a logical whole. 
 
 PIA enables a common user interface and allows 
browsers and search engines to deal with the myriad of 
technical information applications in a common manner. 
PIA also eliminates the numerous manual steps in 
exchanging data between different disciplines and levels 
of fidelity, resulting in a framework for the automation 
of routine tasks. 
 

CAPRI 

In order to achieve the goal of gathering geometry data 
from Computer Aided Design (CAD) files into the PIA 
environment, it is necessary to wrap this application in a 
PIA-compliant wrapper. The technology provided by 
CAPRI2 to provide a vendor-neutral interface to this 
information was utilized to avoid having to provide a 
wrapper specific to each CAD vendor. 
 
CAPRI provides a library specific to each CAD vendor. 
Each library implements the common CAPRI Application 
Programming Interface (API) using services specific to 
the supported vendor. By programming to the CAPRI 
API and linking to the appropriate vendor-specific 
library, a consuming application may be made 
independent of the particular CAD vendor from which 
geometry information is to be obtained. Currently, 
CAPRI provides libraries to support Unigraphics, 
ProEngineer, CATIA, FELISA, Computervision’s 
CADDS, and SDRC’s I-DEAS products. 
 
CAPRI provides geometry information in a data 
hierarchy of nodes, edges, faces, boundaries, and 
volumes. Figure 2 illustrates this hierarchy. Nodes are 
the simplest entities and are just points in 3-space. 
Edges are open curves. Edges begin and end at distinct 
nodes and, thus, a closed curve must be formed by two 
or more edges. Faces are bounded by closed sets of 
edges organized into loops and may join other faces at 
shared edges. Boundaries then collect faces together 
into sets. Volumes are closed regions of 3-space 
bounded by the sum of all the faces found in the 
boundaries of the volume. 
 
CAPRI also provides tessellations of edges and faces. 
Edges are tessellated as an ordered stream of points in 
3-space. Faces are tessellated as points in 3-space 
arranged into triangles. Information on the connectivity 
of the triangles within a face is provided. The points 
used to tessellate an edge are identically those used to 
tessellate the edge of the faces, which that edge 
terminates so that a complete triangulation of the 
volume as a whole is obtained. 
 
An additional object called a bounding box is also 
provided. Bounding boxes are items that indicate the  
3-space that a particular CAPRI data object such as a 
face is in. 
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PIA has defined well-known parameter objects that 
follow the structuralization of geometry information 
provided by the CAPRI technology. The PIA/CAD/ 
CAPRI/ProEngineer wrapper uses the services of 
CAPRI to obtain geometry information from a 
ProEngineer CAD file, create and populate 
corresponding PIA parameter objects, and place those 
parameter objects in a parameter configuration, and 
create the corresponding parameter identification 
structure. The PacAppl-based object of this wrapper 
contains a module, which reads an identified CAD file 
through CAPRI facilities, interprets the data found, and 
performs all the appropriate object creation and 
organization. 
 

PIA/CAD/CAPRI WRAPPER 
IMPLEMENTATION 

This section describes the implementation of the 
PIA/CAD/CAPRI wrapper that captures and presents 
geometry information from CAD files using the CAPRI 
technology. Figure 3 shows three of the four

application structures defined by the PIA; the 
operations available (in this case, only the AcquireData 
operation), the single parameter configuration created, 
and the parameter identification structure. 
 
The root of the application, CpeAppl (Capri-
Pro/Engineer Application) is a derivative of the generic 
application class, PacAppl, defined by the PIA 
architecture. This derivative class provides the specifics 
to convert the generic application shell into a real 
application wrapper, in this case of CAD data  
obtained from ProEngineer through CAPRI  
technology. One significant and well-known function, 
CreateApplication, must be overridden by this 
derivative class. In this case, this function acquires 
geometry information and creates the well-known 
geometric parameter objects that are the ultimate goal 
of the implementation. Additionally, a number of 
operations and facilities are implemented in this 
derivative application class that are not well-known, but 
cooperate to implement and achieve the well-known 
 

Figure 3: Architecture of the PIA/CAD/CAPRI application wrapper 
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Figure 2: A simple volume with a cylinder cutout—Edges marked with arrows for front face 
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result of a PIA-compliant application wrapper. Included in 
this application-specific area is the ability to communicate 
with a backend, geometry server that is necessitated by the 
exigencies of CAPRI/ProEngineer operation. 
 
The single operation provided, AcquireData, prompts 
the user through PIA-defined facilities, to identify a 
CAD file from which geometry information is to be 
obtained. Once this file is selected, the operation starts 
the backend, geometry server mentioned above, 
transmits the file selection to it, and receives from the 
backend server the object-encapsulated geometry data 
and identification information acquired from that file. 
 
The parameter objects acquired by the AcquireData 
operation are placed in the single parameter 
configuration object implemented by the wrapper. 
While the PIA defines a configuration hierarchy with 
descendent parameter configurations, parameter 
inheritance, and so on, this concept does not presently 
exist within the CAPRI technology; within CAPRI, 
there is only the geometry data. Thus, while descendent 
parameter configurations may be created within a 
PIA/CAD/CAPRI wrapper, no provision presently 
exists for populating them with any additional 
geometric parameter objects and all geometric 
information in such a descendent configuration will be, 
in fact, inherited from the root of the parameter 
configuration tree. 

The parameter-identification structure, illustrated in Figure 
3, is built by the AcquireData operation based upon the 
information it receives from the backend, geometric server. 
The structuralization of geometric parameters closely 
follows that defined by CAPRI with volumes containing 
nodes, edges, faces, boundaries, and a bounding box, edges 
containing parameterization ranges and edge tessellations, 
and faces containing parameterization ranges, loops, and 
face tessellations. Three additional parameters called 
AssemblyofTheWhole. AssemblyofTheVolume, and 
BoundaryofTheWhole are created in the wrapper. 
AssemblyofTheWhole creates an application-wide 
assembly of every boundary that the wrapper encounters. 
As a result, the whole geometry can be visualized. 
AssemblyofTheVolume creates an assembly for a volume 
if there is more than one boundary. BoundaryofTheWhole 
creates a boundary if there are no boundaries provided by 
CAPRI and groups all the faces into one. Names for the 
various geometric components are numerically based. For 
example, the fourth face of a given boundary becomes, 
simply, Face4. 
 
Figure 4 shows how the concatenation of names from 
the identification tree is used to identify particular 
parameters in the parameter configuration. For example, 
the first loop of the second face of the first volume 
would be Loop1/Face2/Volume1, as shown in the 
figure. The figure only shows a partial representation of 
the parameter configuration. 

C p e O p
A c q u ire D a ta

P a r: B o u n d ary1 /V o lu m e1 P a r: Bo u n din g B ox1 /V o lu m e1

P a r: R an g e 3 /Fa c e 5 /Vo lu m e1 P a r: P o in t2 /T e sse la tio n 4 /F a c e 3 /V o lu m e1

P a r: R an g e 4 /Fa c e 2 /V o lu m e1 P a r: L oo p 1 /F ac e 2 /V o lu m e1

P a r: P o in t1 /T e sse la tio n 1 /F a c e 2 /V o lu m e1

P a r: F ace 2 /V o lu m e1

C p e C fg
C o n fig u ra tion

C p e P id
Id e n tifica tion

C p e A p p l

Figure 4: Example configuration of PIA/CAD/CAPRI application wrapper 
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IMPLEMENTATION OF THE BACKEND, 
GEOMETRY SERVER 

Acquisition of geometry information is, for the user, 
quite simple: the appropriate CAD file is identified and 
magic happens. The efforts to which the wrapper goes 
to make this magic happen are somewhat more 
extensive. 
 
While CAPRI has achieved apparent vendor-neutrality 
at the API level, this neutrality and consequent ease 
does not extend to the actual making of an executable 
program. One does not merely link the correct CAPRI 
library into a main program and go from there. The 
mechanisms necessary to obtain a working program 
from the selection of the correct CAPRI library can vary 
and the results are, at times, not convenient. Much, if 
not all, of this is attributable not to some failure of the 
CAPRI research effort, but simply to the different forms 
and modalities in which the various CAD vendor 
products offer access to the raw geometric information 
with which CAPRI works. 
 
In the case of ProEngineer, an optional software 
component, ProToolkit, executes the vendor’s geometry 
kernel and then links to and executes a dynamic link 
library identified to it when ProToolkit is started. The 
CAPRI library, and the “main program” invoking it are, 
in fact, subprograms of the ProToolkit execution, which 
is, itself, a spawned process of a batch file, which 
establishes the appropriate environment for its 
operation. Since the graphical user interface through 
which the PIA is exercised regards itself as a patriarchal 
process, this process structure of ProToolkit and its 
CAPRI access library presents a certain difficulty that is 
dealt with as described in the following paragraphs. 
 
The CpeAppl specialization of the application object 
implements a client characteristic which, when TRUE, 
indicates that it is operating as the apparent, PIA-
compliant, frontend application wrapper. When 
AcquireData operates, it locates its containing 
CpeAppl application object and interrogates it for the 
state of this characteristic. Finding itself to be a part of a 
client, AcquireData starts up the batch file (in which it 
has placed the name of the desired CAD file, as well as 
some socket communication information) to start the 
ProToolkit execution. When ProToolkit connects to the 
identified dynamic link library and calls its entry point, 
the “main program” does the following. It receives the 
transmitted file and communication information. It 
creates another CpeAppl object and informs that object 
that it is not a client (that is, the client characteristic is 
 

made FALSE). It calls the CpeAppl object’s 
CreateApplication member function (which extracts 
through CAPRI all the geometric information and 
encapsulates it in objects), and then informs the 
frontend client that the backend, geometric server is 
ready for operations. When AcquireData receives this 
ready signal, it sends a message requesting the 
transmission of the object-encapsulated, geometric data, 
which it then receives and places in the structures of its 
containing CpeAppl client object. 
 
The operation of the CreateApplication member 
function, while long and tedious, is not particularly 
complicated. CAPRI functions are called to obtain 
geometric data and create objects to encapsulate and 
identify it as it is found to exist. For example, one 
CAPRI function is called to determine how many 
volumes exist. A loop is then executed to create a 
volume identification structure and obtain the specific 
information for each volume in turn. Each volume 
indicates how many nodes, edges, faces, and boundaries 
exist in it and internal loops are executed to identify and 
obtain information for each of these in their turn. 
Because of the close correlation between the geometric 
structuralizations used by CAPRI and PIA, this process 
is very natural and relatively easy to implement. 
 

WRAPPER-SPECIFIC PARAMETER CLASSES 

Some of the geometric parameter classes defined by 
PIA provide geometric services beyond that of simple 
data presentation. For example, the boundary class 
provides the ability to obtain a cross section of its 
geometric shape. The implementation of this function 
provided by the well-known PIA parameter class is 
based solely upon the information contained in the face 
tessellations associated with the faces of the boundary. 
Unfortunately, such cross sections, when based simply 
upon triangular tessellations introduce noise into the 
geometric information when the tessellated face exhibits 
some finite curvature. The sides of the triangles 
represent chords relative to the face curvatures they 
attempt to describe and, thus, some deviation between 
the practical and the ideal exists. 
 
CAPRI offers a potential cure to this difficulty in the 
form of a snap-to-face functionality. The cross-sectional 
position computed from the tessellating triangle’s side 
may then be improved by snapping it back onto the 
geometric face, thus reducing introduced error to some 
acceptable value. Unfortunately, this snap-to-face 
functionality is only available with a live, operating 
CAPRI and is, thus, unavailable to the CpeAppl client 
frontend wrapper. 
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To alleviate this difficulty, the PIA/CAD/CAPRI 
wrapper derives several of these geometric parameter 
objects beyond their well-known level and adjusts the 
functionality in these particular cases. Continuing the 
example above, the boundary parameter object now 
knows that it might be a member of a client CpeAppl 
wrapper. It locates its containing CpeAppl application 
and determines if this is the case. In this event, it does 
not do the cross-sectioning operation itself (which it 
inherits from its well-known base class), but instead 
transmits a message (through CpeAppl-specific 
facilities) to its counterpart in the backend server. That 
counterpart first invokes the inherited functionality to 
obtain a basic cross-section result and then utilizes the 
snap-to-face functionality provided by CAPRI to 
improve that result and, to a specified level, remove the 
induced geometric noise. The final result is then 
transmitted back to the frontend client that returns it to 
its caller as its own work. 

RBCC HYPERSONIC VEHICLE EXAMPLE 
The acquisition and presentation of geometric data 
through the PIA/CAD/CAPRI wrapper in the manner 
described above has been demonstrated with the 
geometry of a Rocket-Based Combined Cycle (RBCC) 
hypersonic vehicle propulsion system under study at the 
Glenn Research Center. This information was then 
examined by a PIA wrapper of the Large Perturbation 
Inlet (LAPIN) simulation code. That second wrapper 
used the facilities of the presented geometric parameters 
(in particular, the cross-sectioning facilities) and its own 
heuristics to generate the LAPIN-specific flowpath 
information needed for LAPIN operation. LAPIN was 
then executed and its results encapsulated in parameter 
objects presented by that second, PIA/LAPIN wrapper. 
All of this proceeded on an automated basis. 
 

Figure 5: RBCC propulsion system as displayed by CAPRI  
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Figure 5 shows a CAPRI/ProEngineer rendering of the 
RBCC propulsion system assembly. Figure 6 shows a 
rendering by the research graphics user interface (GUI) 
of the geometric information of the RBCC propulsion 
system as presented by the PIA/CAD/CAPRI wrapper. 
(Note that the research GUI to PIA is a research tool 
only and not a project product; thus, less than 
completely sophisticated renderings and displays are 
considered entirely adequate performance for the GUI 
component.) Also illustrated toward the upper left 
corner of Figure 6 is a partially expanded portion of the 
identification structure resulting from the geometric 
information obtained by the PIA/CAD/CAPRI wrapper 
through the CAPRI interface to the original 
ProEngineer data. 
 
Using the implemented PIA/CAD/CAPRI/ProEngineer 
wrapper, the RBCC propulsion system information 
contained in the original ProEngineer CAD file can be 
read and the data encapsulated in geometric objects as 
described above. Once this geometric information is 

presented in this manner, another consumer of 
information (in the case of the present demonstration, 
the PIA/LAPIN wrapper) can access and consume this 
data as it deems appropriate. Note that the information, 
by the design of PIA, is accessed by its kind, that is as 
being a geometric boundary or a geometric face, and 
not by the application presenting it. Thus, the 
PIA/LAPIN wrapper is not dependent upon finding a 
PIA/CAD/CAPRI wrapper for its information, but only 
upon finding some wrapper containing geometric 
boundary information. 
 
The PIA/LAPIN wrapper is programmed, having found 
a source of geometric-boundary information, to convert 
that information into the unique flowpath description 
form required for LAPIN operation. LAPIN-specific 
processes and rules are encapsulated in the PIA/LAPIN 
wrapper to effect this result. These processes utilize 
parameter-provided services, in particular the ability to 
provide cross sections of geometric boundaries and the 
ability to manipulate, sort, and characterize the curves 

Figure 6: RBCC propulsion system information in PIA 
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that result. Processing and rules that are LAPIN-specific 
(i.e., the discrimination between an inlet with no 
centerbody and a two-dimensional inlet with no second 
cowl cross-section) are encapsulated in the interior of 
the PIA/LAPIN wrapper and are not presented to the 
outside PIA environment. 
 
A complication presented in the RBCC propulsion 
system example is that the flowpath of this system is 
neither axisymmetric nor two-dimensional. Instead, the 
flowpath has a cross section akin to the shape of an 
orange segment extending around one third of the 
circumference of a round fuselage. Since LAPIN works 
internally in terms of cross-sectional area, presenting 
the simple XY cross section of the flowpath to LAPIN 
produced erroneous analyses under LAPIN’s default 
axisymmetric assumption. Similarly, adjusting either 
XY profile to produce appropriate cross-sectional areas 
led to incorrect calculation of oblique shock points. The 
accepted solution was to describe the inlet under 
LAPIN’s two-dimensional geometry option with width 
factors adjusted to produce correct cross-sectional 
areas. The difficulty with both these later approaches 
was that the development of the flowpath cross 
sectional areas was a laborious process that was, 
apparently, not particularly facilitated by the CAD 
system. Since the PIA geometry parameters are not 
particularly programmed for XY cross section 
generation only, it was a small matter for the 
PIA/LAPIN wrapper, upon determining that a two-
dimensional inlet form was required, to request and 
obtain YZ cross sections that it then had processed and 
sorted to determine the correct cross-sectional area of 
the flowpath at each desired station. 
 

PROCESS SPEED 

It is tacitly assumed that anything computerized will, 
necessarily, happen in the blink of an eye. With regard 
to the acquisition, presentation, transfer, and 
consumption of geometric information reported above, 
this is not exactly the case. The PIA/CAD/CAPRI to 
PIA/LAPIN geometric information transfer took on the 
order of two days on a 1.5 GHtz, Pentium IV, 
workstation class machine. In contrast, the hand process 
that this technology could replace, took several weeks 
per case. This time reduction, while certainly a 
significant saving at one level, does not seem to match 
the expectations one might have of complete 
automation. 
 

Two factors may serve to ameliorate this 
disappointment of expectation. 
 
1. The considerable gain in reliability (that is, the 

elimination of mistakes that occur in a by-hand 
process) must be considered. It is not entirely 
appropriate that an iteration by automation be 
directly compared to an iteration by hand since a 
single iteration by hand has a much larger 
probability of being wrong. Perhaps it is more 
appropriate to compare a single iteration by 
automation to at least three iterations by hand so as 
to have at least a 2-out-of-3 confirmation that the 
right answer has been obtained by hand methods. 

 
2. The present effort is a research effort only. The 

goal of the demonstration was to prove that the 
concepts of PIA did, in fact, work, not that they 
worked efficiently. In point of fact, many execution 
improvements could be implemented that would 
speed up execution in the event that the technology 
were to be applied as a day-to-day, working, 
production tool. 

 
CONCLUSIONS 

A wrapper conforming to the standards of the Project 
Integration Architecture has been developed. The 
wrapper provides a means for accessing geometry 
information from CAD files. Other PIA-conformant 
consumers of information (in the reported 
demonstration, another PIA-wrapped CFD analysis 
code, LAPIN) may then examine and consume that 
geometric information as appropriate. A demonstration 
of this transport of information has been successfully 
completed for the RBCC propulsion system. 
 
To achieve a measure of CAD-vendor neutrality, the 
CAPRI geometric information access technology has 
been used. This allows the PIA/CAD wrapper to be 
easily reused when the supply of CAD information 
switches between vendors. Unfortunately, the present 
effort has not extended so far as to incorporate all 
CAPRI-supported CAD vendors in a single rendering of 
the PIA/CAD/CAPRI wrapper. 
 
Finally, by using the reported technology, the need for 
transferring geometric information by hand from a CAD 
encapsulation to a consumer of that information, for 
example a CFD code, is eliminated. This hand process  
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can take several weeks for technologically advanced 
propulsion systems and is, regrettably, prone to 
undetected errors. By choosing the automated 
techniques enabled by the PIA technology, this process 
can be reduced to a matter of days (or less) and its 
reliability is distinctly increased. 
 
The Project Integration Architecture provides a central 
system for accessing geometry data from CAD files and 
using that data for CFD simulations. To achieve the 
geometry data accessing functionality, CAPRI has been 
integrated into PIA. The benefits of wrapping CAPRI 
into PIA is that it offers direct access to data of many 
formats, provides accurate capture of information, and 
allows convenient data archiving in a single 
environment. All these benefits have been shown with 
this supersonic inlet simulation demonstration. 
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