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Introduction

There is no doubt that chromium has been the most extensively investigated
metal with respect to the assessment of long-term effects and to the evaluation of
the underlying mechanisms. Notwithstanding the huge data-base available in the
literature, many aspects, bearing both scientific and practical interest, are still
unclear ar controversial. This paper will briefly discuss some relevant problems,
including carcinogenicity and genotoxicity of chromium compounds as related
to their valency and solubility, interactions with other compounds, bioavailabil-
ity to target cells and molecules, interconversion processes betwsen difTerent OXi-
dation states in various body areas and cell compartments, mechanisms oOf
chromium metabolism and carcinogenicity, and existence of thresholds in
chromium carcinogenesis.

Carcinogenicity of chromium in humans and experimental animals

The epidemiological evidence for chromium carcinogenicity results from studies
in occupationally exposed individuals, mainly among workers in the bichro-
mate-producing industry and in chromate-pigment manufacturing. Conversely,
the epidemiologic evidence is not conclusive for other occupational groups, in-
cluding workers in the ferrichromiurn industry or in the plating indus:ry, pain-
ters and welders (IARC 1950 and 1987; Norseth 1986; Bidstrup and Davies
1986). It should be considered that the above occupational activities involve a
combined exposure to mixtures not only of different chromium compounds but
also of other toxic metals, such as lead in the pigment production industry or
nickel in welding fumes. It is also noteworthy that the statistical analysis of data
concerning workers of the bichromate producing industry in Germany, England

Abbreviations: Ci(0), Cr(11), Cr(1i), Cr(1V), CaY), Cr(VD), chromium With oxidation state 0,
42, +3, +4, +5, +6: ELF, ep :helial-lining fluid; GSH. reduced glutathione; PAM, pulmon-
ary alveolar macrophages



Mechanisms of chromium carcinogenicity 29

and USA has shown a significant decline in lung cancer incidence since 1969,
thanks to the improved measures of industrial hygiene (Bidstrup and Davies
1986).

Thl general view on chromium valency is that no epidemiological studies so
far have documented increased cancer risk in populations exposed to Cr(I11)
alone (IARC 1987; Langard 1988). Also, the evidence for chromium carcinoge-
nicity IS limited to lung cancer, whereas excess ratios for cancer at other sites arc
an unusual finding and the small numbers reponed never did reach statistical
significance (IARC 1987).

The carcinogenicity assays of chromium in experimental animals would have
been expected to clarify the relative contribution of individual compounds in
chromium carcinogenesis. Unfortunatley, these assays confirmed the main con-
clusion of the epidemiological studies, i. e. sufficient evidence of carcinogenicity
was limited to certain Cr(V1) compounds {{ARC 1987), but the resultimg infor-
mation was rather poor. Indeed, one of the most intriguing aspects is the discre-
pancy between the well-established evidence for carcinogenicity of Cr(Y1) com-
pounds in humans, mainly accumulated when high exposure occurred in the
workplace, and the weak effectsobserved in experimental animals(Langard 1988).

Many carcinogenicity data have been generated by giving chromium com-
pounds by unnatural administration routes, which do not reproduce human ex-
posure patterns and by-pass protective mechanisms based on pharmacokinetic
and metabolic processes. For instance, several Cr(VI) compounds have been
shown to produce injection-site tumors following intramuscular, subcutaneous
or intrapleural implantation (IARC 1980 and 1987; Langard 1988). The intra-
bronchial implantation of 21 chromium-containing materials loaded on inert
pellets produced lung squamous carcinomas or bronchial carcinomasonly in the
case of some sparingly soluble chromate materials (Levy et al 1986). So far, in-
halation studies have not led to definitive conclusions (Langard 1988).

In general, calcium chromate and some relatively insoluble Cr(YI) com-
pounds, such as sintered calcium chromate, lead chromate, strontium chromate,
sintered chromium trioxide and zinc chromate, have been the most commonly
incriminated chromium compounds (IARC 1980). However, it is noteworthy
that solutions of calcium chromate and of the highly soluble sodium dichromate
had comparably weak carcinogenic effects when administered in high doses by
intratracheal instillations to rats (Steinhoff et al 1986).

Activity of chromium compounds in short-term test systems

A great variety of short-term test systems, mostly evaluating genetic effects in in
vitro O in vivo targets, have been used in order to assess the activity of individual
chromium compounds and to clarify some of the mechanisms involved in
chromium carcinogenesis. A large number of studies have shown that Cr(VI)
compounds, once in solution, are positive in virtually all the experimental sys-
tems where they have been tested. Cr(111) compounds have been found to pro-
duce genetic changes in acellular or subcellular systems, such as purified nucleic
acids or isolated cell nuclei, but, with few exceptions, they arc considered to be
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devoid of activity in cellular systems (Rianchi and Levis 1984 and 1987; [
Flora et al 1984a and 1988; Petrilli et al 1986a; Beyersmann and Koster 1987;
IARC 1980 and 1987).

The selective effects of different chromium species are generally ascribed to
their different abilities to cross cell membranes. In fact, while Cr(VY1) readily
penetrates into living cells, Cr(Ill) has a limited uptake (Bianchi and Levis
1987; Beyersmann and K&ster 1987). The positive responses with Cr(I1I) in
short-term tests have been ascribed either to contamination with Cr(VI1) (IARC
1987) or to special conditions allowing its penetration into cells. FOr ins‘ance,
genetic effects in bacteria (DeFlora et al 1988) or yeast (Galli et al 1985) occur
only when a high molarity of phosphate, largely exceeding physiological condi-
tions, are present in the medium. It has been also demonstrated, in both proka-
ryotic (Warren et al 1981) and eukaryotic cells (Beyersmann and Koster 1987),
that complexes of Cr(111) with certain hydrophobic ligands are genotoxic. How-
ever, it is not clear whether similar complexes may occur under natural condi-
tions or whether the organic moiety may be also responsible for some genetic
damage. It is noteworthy that, at variance with synthetic complexes having a
similar chemical composition, the glucose tolerance factor (GTF) is nonmuta-
genic in bacteria (DeFlora et al 1988). GTF is a natural complex of Cr(I11)
with nicotinic acid, glycine, glutamic acid and cysteine, and is used as a dietary
supplement in case of deficiency of Cr{II1) intake with food and of impaired
glucose tolerance.

Metabolic interconversions between Cr(VI) and Cr(III)

Chemical and biochemical interconversions between Cr(VY1) and Cr(1II) have
been investigated by using body fluids (i.e. saliva, gastric juice, blood plasma,
epithelial-lining fluid) and various kinds of cell or tissue preparations [i.e. un-
fractionated cell homogenates, mitochondria, post-mitochondrial (S9 or $12), cy-
tosolic (S105) and microsomal fractions) from various animal species, including
humans (see Table 1). Metabolism was investigated either in healthy and un-
treated individuals or under the influence of diseases (i.e. lung cancer, primary
hepatocellular carcinoma, viral hepatitis, peptic ulcer), drug administration (i. e.
antiulcer drugs) enzyme inducers (i.e. Aroclor 1254, phenobarbital, 3-methyl-
cholanthrene), glutathione (GSH)depletors (i.e. diethylmaleate, buthionine sulf-
oximine) or analogs and precursors (i.e. N-acetylcysteine), special diets (i.e.
cirrhogenic diet) Or exposures (i.e. cigarette smoking, narcosis with ether, intra-
tracheal instillation of NaCl ar sodium dichromate).

On the whole, Cr(IIi) oxidation to mutagenic Cr(V1) was only produced by
oxidizing chemicals but not by metabolic systems, which rules out the hypothesis
that oxidative phenomena of Cr(111) may occur in the organism (Petrilli and De
Flora 1978b). On the other hand, a metabolic reduction of Cr(VI) could be re-
produced in the presence of a variety of tissue or cell preparations. Reference is
made to the papers indicated in Table 1 and to next sections for details,
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Selective reduction OoF Cr(VI) and its relationship with carcinogenkity targets

Previous studies showed that the rank of Cr(VI)-reducing ability of post-mito-
chondrial fractions from various tissues of Aroclor-pretreated rats was the fol-
lowing: liver, adrenals, kidney, testis, stomach and lung. NO decrease of Cr(VI)
mutagenicity was produced by preparations ofskeletal muscle, spleen, bladder
and colon (Petrilli and De Flora 1980 and 1986b; D Flora 1982). Recently,
additional experiments were carried out by comparing the ability of S12 frac-
tions of liver, skin, subcutis and skeletal muscle from Aroclor-pretreated rats in
decreasing the mutagenicity of Cr(Y1) (Fig. I). Even at equivalent protein con-
centration, liver preparations were quite efficient, whereas those of skeletal mus-
cle had a negligible Cr(YI)-reducing activity, which confirms our previous find-
ings. This is of interest because, as discussed later, skeletal muscle is a typical
target of implantation-site sarcomas induced by several Cr{YI) compounds.

As shown in Fig. 1 and Table 1, subcutis and even more skin preparations had
a clearly detectable activity in decreasing Cr(Y1) mutagenicity. It is noteworthy
that, together with inhalation and ingestion, skin contact is one of the possible
routes of exposure of humans to chromium. However, no cases of skin cancer
induced by contact with chromium have been ever reported, only acute irritative
dermatitisand allergic eczematous dermatitis being known to occur in chromate-
exposed workers. Contact hypersensitivity has been ascribed to Cr(YI) reduc-
tion to Cr(I11) in the skin, chiefly by sulfhydryl groups of aminoacids, resulting
in Ce(IlI) conjugation with autologous proteins (IARC 1980). However
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Fig. L EfTect of increasing amounts of tissue S12 fractions pooled from 5 male Sprague-
Dawley rats, tested at equivalemnt protein concentration, on the mutagenicity of sodium dichro-
mate (30 ug/pate)th strain TA100 of S. ryphimurium



) S.DeFlora et al.

Table 1 EfMiciency of tissue ar cell preparations in reducing the mutagenicity of Cr(V1) in the
Ames reversion test. as assessed in studies performed in this laboratory

Metabolic Tissue ar cells Animal References
Cr(YI)»reducing species
eMciency
High Liver Humans De flora, 1982
Rat De Flora, 1978: Petrilli et al.,
1986 b, this study
Mouse De flora, 1982
Hamster De Flora et al, 1985b
Woodchuck De Flora et al., 19872
Chicken e Flora et al., 1985b
Pekin duck Unpublished data
Rainbow trout. De Flora et al., 1982
Pulmonary alveolar ~ Humans Petrilli et al., 1986¢
macrophages Rat De Hora et al., 1986
Erythrocytes Humans Petrilli and De Flora, §978a
Medium Adrenals Rat Petrilli et al,, 1986b
Kidney Rat Pctrilli et al., 1986b
Testis Rat Petrilli et al., 1986b
Stomach Rat Petrilli et al,, 1986b
Skin Rat This study
Subcutis Rat This study
Lung parenchyma Rat Petrilli et al,, 1985
Mouse Oe Flora, 1982
Humans De Flora et al., 1984b
and 1987b
Bronchial tree Humans De Flora et al, 19845
Negligible Skeletal muscle Rat Petrilli et al., 19782
Colon Rat Petrilli et al., 1986b
Bladder Rat Pctrilli et al., 1986b
Spleen Rat Petrilli et al,, 1986b

experimental data provide evidence that, like in the liver, reduction of Cr(VYI)
mutagenicity by rat skin S12 fractions is mainly due to NADPH-dependent
mechanisms (data not shown).

An efficient reduction of Cr(Y1) occurs in the blood stream. A weak reducing
activity was detectable in blood plasma (Korallus et al 1984), but the main proc-
ess, as investigated in several laboratories using both analytical methods and
mutagenicity test systems (e.g. Gray and Sterling 1950; Petrilli and De Flora
1978a; Aaseth et al 1982; Kitagawa et al 1982; Wiegand et al 1984), occurs in
erythrocytes, where Cr(Y1) is known to be selectively accumulated (Gray and
Sterling 1950). Such reduction has been mainly ascribed to GSH (Aaseth et al
1982; Kitagawa et al 1982; Wiegand et al 19%84), the concentration of which can
be increased in erythrocytes by administering in vive suitable precursors such as
N-acetylcysteine (DeFlora et al 1985d).

Cr(Y1) reduction in the blood may explain the lack of carcinogenicity at a
distance from administration sites. In fact, as already discussed, no significant
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increase Of cancer at sites other than the lung has been reported in humans
(IARC 1987), and in animals the only report contrary to this assumption was the
induction of renal carcinomas following intramuscular injection of lead chro-
mate to rats (IARC 1980). However, such effects should be ascribed to lead,
which typically produces kidney tumors in rodents, rather than to chromate
(IARC 1980).

Secretions of the digestive tract, such as saliva and gastricjuice, are capable of
reducing Cr(VI) due to thermostable components (Petrilli and De Flora 1982;
Petrilli et al 1986b; De Flora and Boido 1980). In particular, studies on the
circadian Cr(V1) reduction by gastric juice in several individuals provided evi-
dence for a basal activity (a few pg Cr(VI) reduced per ml) during interdigestive
periods and, irrespective of pH variations, for peaks of activity (some tens pg
Cr(VI) reduced per ml) after each meal. Taking into account that the dailvgecre-
tion Of gastric juice is in the range of liters, tens of mg Cr{VI) would be ex pected
to be reduced daily in the gastric environment (De Floraet al 1987 ¢).

Such a phenomenon renders very unlikely the occurrence of carcinogenic ef-
fects of Cr(VI) introduced by the oral route or swallowed following removal by
the respiratory tract, also because Cr(!11) is very poorly absorbed from the intes-
tine (Donaldson and Barreras 1966: Langard 1982), and a further reduction is
expected to occur in the blood of the portal vein and then in liver cells. This
physiological mechanism also provides an efficient barrier towards the oral toxi-
city of Cr(VI). In fact, the lethal dose in humans is estimated to be in the range
of grams (Langard 1980).

Also in the respiratory tract, in addition to the well-known specific defense
mechanisms against inhaled foreign particles, Cr(V¥I) tends to be reduced prior
to reaching target cells. First, some chemical reduction occurs in the lumen of
terminal airways, due to the so-called epithelial-lining fluid (BF") (Petrilli et al
1986¢). Moreover, pulmonary alveolar macrophages (PAM) are very active in
metabolically reducing Cr(VI1) both in humans (Petrilli et al 1986¢) and in rats
(De Flora et al 1986). This mechanism is considered to be quite important (Lan-
gard 1988), because these phagocytizing cells have an extremely iong life span
(monthsto years) and are very efficiently removed by the muco-ciliatory escala-
tor, accounting for 1 to 5 million PAM leaving the lung each hour to be expec-
torated or swallowed (Green et al 1987).

In addition, Cr(V1) mutagenicity was decreased to an appreciable extent in the
presence of preparations of mixed-cell populations, representative of bronchial
tree in humans, and of peripheral lung parenchyma in both humans and rodents
(see Table 1). As assessed by testing paired sarmples from 18 individuals, lung
parenchyma was significantly more efficientthan bronchial tree in decreasing
Cr(Y1) mutagenicity, and also contained considerably higher concentrations Of
GSH (Petruzzelli et al 1989).
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Interindividual variations in Cr(VI) reduction

As assessed by comparatively testing homogeneous series of tissue samples for
their ability to decrease the mutagenicity of Cr(V1), it was possible to determina
the extent of interindividual variations in chromium metabolism.

ror instance, interindividual variations were investigated in humans by testing
15 samples of ELF and 23 of PAM (Petrilli et al 1986¢), 24 of bronchial tree
(DeFloraet al 1984b) and 71 of peripheral lung parenchyma (DeFlora et al
1987b). The only factor explaining the observed differences of efTiciency of both
PAM and lung parenchyma (healthy tissue) samples was that of smoking habits,
whereas age or diseases, such as lung cancer, had no significant effect

The interindividual variability in the liver metabolism of Cr(Y1) and other mu-
tagens has been investigated in woodchucks, a rodent species represenfing a suit-
able animal model for virai hepatitis and primary hepatocellular carfinoma, In a
study with 36 trapped wild animals (D¢ Flora et al 1987 a), the interindividual
variations were not related to viral infection. This was confirmed in a subsequent
study in 28 captive woodchucks (manuscript in preparation). In fact, contrary to
the response with hepatocarcinogenic promutagens, the decrease of Cr(Y1) mu-
tangenicity was not affected by the viral infection and, in animals bearing liver
cancer, there was no significantdiTerence between cancer and noncancer (Virus-
infected) tissues. interestingly, in the same study, it was noted that the metabol-
ism of Cr(V1) and other mutagens is significantly enhanced in pregnancy.

Inducibility and autoinducibitity of chromium metabolism

The liver metabolism of Cr(Y1) was stimulated by known enzyme inducers, with
the following rank of activity: Arochlor 1254, phenobarbital and 3-methylchol-
anthrene (De Flora et al 1985a). Conversely, only Aroclor 1254 was successful
in stimulating Cr( V1) reduction in the lung (Petrilli et al 1985). Moreover, the in
vivo administration of N-acetylcysteine to rats resulted in stimulation of Cr(Y1)
metabolism in both liver and lung (De Flora et al 19854d), as well as in isolated
PAM (DeFlora et al 1986).

Interestingly, the pulmonary reduction of three C(¥Y1) compounds was also
significantly stimulated by the repeated intratracheal administration of Cr(VYI)
itself to rats (sodiumdichromate, 0.25 mg/kg b.w., 5 times per week for 4 weeks)
(Petrilli et al 1985). Note that, under identical treatment conditions, dichromate
failed to induce lung tumours in rats (SteinhofT et al 1986). On the other hand,
single cumulative intratracheal instillations (1.25 mg/kg b.w. once per week for
4 weeks), following a schedule which was found to be weakly carcinogenic
(Steinhoff et al 1986), did not produce any significant variation in the pulmonary
metabolism of chromium (Petrilli et al 1985).
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Biochemical mechanisms involved in the intraceliular Cr(VI) reduction

Multiple mechanisms participate in the intracellular reduction of chromium.
Comparative analyses showed that the efTiciency of rat liver preparations in re-
ducing Cr(¥I1) ranked as follows: unfractionated cell homogenates, post-mito-
chondrial fractions, cytosolic fractions and microsomal fractions (DeFloraet al
1985 a). This indicates that reduction occurs in various a | | structures, including
e.g. Mitochondria, where reduction has been mainly ascribed to GSH (Ryberg
and Alexander 1984), the endoplasmic reticulum, where cytochrome P-450 has
been shown to work as a chromate reductase (Garcia et al 1981), and the cell
cytosol. A minor mechanism responsible for Cr{Y1) reduction in the cytosol is
provided by electron donors, and chiefly by GSH. However, the major mecha-
nism IS enzyme-catalysed, and several lines of evidence indicate the participation
of DT diaphorase activity (DeFlora et al 1985a, 1987d and 1988). A possible
2.electron reduction of Cr(YI) via this enzyme activity, as has been demonstrated
with other substrates, such as some quinones and azo dyes (Lind et a1 1982),
would by-pass the formation ofhighly reactive Cr(V). An additional flavoprotein
enzyme involved in Cr(V1) reduction is aldhyde oxidase, which differs from cy-
tochrome P-450 reductase and DT diaphorase in that it does not require
NAD(P)H as an electron donor (Banks and Cooke 1986).

Mechanisms OF chromium genotoxicity and carcinogenicity

Once chromium has penetrated the target cells in its hexavalent form, it is a
matter of discussion which species is responsible for the genotoxic effects and
consequently for the initiation of cancer.

In bacteria, where DNA is in close spatial arrangement with the cell mem-
brane, unreduced Cr(VI) itself may be the ultimate mutagen, as shown e¢.g. by
the fact that the S. typhimurium strains reverted by oxidative mutagens are the
most sensitive in revealing Cr(V!) mutagenicity (Bennicelli et al 1983). On the
other hand, in compartmentalized eukaryotic cells, reduced forms are more
likely candidates as ultimate mutagens. In fact, the stable reduced form, i.e,
Cr(11D), is known to react more readily in vitro with purified nucleic acid, as
compared to CrY!l) (Bianchi and Levis 1987). The intermediate reduction
products, i.e. the reactive Cr(Y) and Cr(IV), are also possible candidates (Jen-
nettc 1982). Cr(Y) may also act through generation of reactive oxygen species, as
shown by the finding that reaction of Cr(VI) with intracellular hydrogen peroxi-
de ieads to formation of tetraperoxochromate (V), the decomposition of which
generates hydroxyl radicals. Under in eitre conditions, such reaction results in
DNA alterations without significant chromium-DNA adduct formation (Kawan-
ishi et al 1986: Wetterhahn 1988). However, due to the extremely high reactivity
of the hydroxyl radical, disappearing in less than | nse¢ and traveling no farther
than 1 nm from the site of formation (Simic 1988), a reaction of this type would
be conceivable in the intact cell only if occurring very closed to target DNA
molecules. Indeed, the difficulties in understanding these problems may reflect
the possibility that multiple mechanisms are involved in chromium genotoxicity.
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Conclusions

On the whole, metabolic factors appear to play a crucial role In chromium tox-
icity and carcinogenicity. Cr(VI) reductive processes in the extracellular environ-
ment (e.g. in saliva, gastric juice, blood plasma or epithelial-lining fluid) or in
nontarget cells (e.g. in red blood cells or alveolar macrophages) are expected to
detoxify chromium, thereby limiting its potential effects and selecting target tis-
sues and cells. The intracellular C(VD) reduction may be viewed either as an
activating process, leading to formation of reactive species (Cupo and Wetter-
hahn 1985), or as a detoxification process, due to trapping of the reduced forms
by nucleophilic components of the cytoplasm (Petrilli and De Flora 1986 b and
1988).

In any case, the described mechanisms support the epidemiological and ex-
perimental evidence indicating the lung as the only target oF Cr(V¥1) carcinogeni-
city. However, even in the respiratory tract the described defense mechanisms
are expected to limit the potential carcinogenicity of Cr(V1). The problem of
thresholds in carcinogenesisis quite controversial,and should be faced case by
case (Shubik et al 1984). In the case of Cr(VI) and other compounds which
undergo detoxification in the organism, the existence of thresholds can be hardly
argued, because the protective machinery of the organism must be saturated by
an excess of the compound, which implies the existence of a (hardly quantifia-
ble) threshold dose. AS a matter of fact, mutagens undergoing detoxification are
often noncarcinogenic or borderline carcinogens (DeFlora 1978 and 1985). Epi-
demiological and animal carcinogenicity data for chromium appear to meet all
the criteria proposed for categorizing a given compound among carcinogens
subjected to thresholds, such as 7a) lack of carcinogenicity in some studies, or (b
carcinogenicity only at very high doses (often close to the maximum tolerated
dose), or (c) without linear dose-response effects (so-called hockey stick-like
curves), or (d) only when administered in a single cumulative dose rather than in
fractionated doses, or (e) only close to administration sites, or (/) in cells lacking
detoxification mechanisms (e.g., skeletal muscle cells) or where these mecha-
nisms can be overwhelmed by an excess Cr(VI) (e.g., in cells of the respiratory
tract) (D¢ Flora 1985).
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