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Preface 
 
The Public Interest Energy Research (PIER) Program supports public interest energy research and 
development that will help improve the quality of life in California by bringing environmentally 
safe, affordable, and reliable energy services and products to the marketplace. 
 
The PIER Program, managed by the California Energy Commission (Commission), annually 
awards up to $62 million to conduct the most promising public interest energy research by 
partnering with Research, Development, and Demonstration (RD&D) organizations, including 
individuals, businesses, utilities, and public or private research institutions. 
 
PIER funding efforts are focused on the following six RD&D program areas: 

• Buildings End-Use Energy Efficiency 
• Industrial/Agricultural/Water End-Use Energy Efficiency 
• Renewable Energy 
• Environmentally-Preferred Advanced Generation 
• Energy-Related Environmental Research 
• Energy Systems Integration 

 
What follows is the final report for the Dimmable Ballasts Project, 500-03-026 Task 4-4, 
conducted by Lawrence Berkeley National Laboratory. The report is entitled “Demand Response 
Lighting: A Scoping Study”. This project contributes to the Energy Systems Integration Program. 
 
For more information on the PIER Program, please visit the Commission's Web site at: 
http://www.energy.ca.gov/research/index.html or contact the Commission's Publications Unit at 
916-654-5200. 
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Abstract 
The objective of this scoping study is: 1) to identify current market drivers and technology trends 
that can improve the demand responsiveness of commercial building lighting systems and 2) to 
quantify the energy, demand and environmental benefits of implementing lighting demand 
response and energy-saving controls strategies Statewide. Lighting systems in California 
commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste 
energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, 
are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs 
more than non-dimming lighting and is expensive to retrofit into existing buildings because of the 
cost of adding control wiring. Advances in lighting industry capabilities coupled with the 
pervasiveness of the Internet and wireless technologies have led to new opportunities to realize 
significant energy saving and reliable demand reduction using intelligent lighting controls. 
Manufacturers are starting to produce electronic equipment -- lighting-application specific 
controllers (LAS controllers) --  that are wirelessly accessible and can control dimmable or multi-
level lighting systems obeying different industry-accepted protocols. Some companies make 
controllers that are inexpensive to install in existing buildings and allow the power consumed by 
bi-level lighting circuits to be selectively reduced during demand response curtailments. By 
intelligently limiting the demand from bi-level lighting in California commercial buildings, the 
utilities would now have an enormous 1 GW demand shed capability at hand. By adding 
occupancy and light sensors to the remotely controllable lighting circuits, automatic controls 
could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already 
been achieved. The lighting industry’s adoption of DALI as the principal wired digital control 
protocol for dimming ballasts and increased awareness of the need to standardize on emerging 
wireless technologies are evidence of this transformation. In addition to increased standardization 
of digital control protocols controller capabilities, the lighting industry has improved the 
performance of dimming lighting systems over the last two years. The system efficacy of today’s 
current dimming ballasts is approaching that of non-dimming program start ballasts. 
The study finds that the benefits of applying digital controls technologies to California’s unique 
commercial buildings market are enormous. If California were to embark on an concerted 20 year 
program to improve the demand responsiveness and energy efficiency of commercial building 
lighting systems, the State could avoid adding generation capacity, improve the elasticity of the 
grid, save Californians billion of dollars in avoided energy charges and significantly reduce 
greenhouse gas emissions. 
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Executive Summary 
Objective 
The objective of this scoping study is: 1) to identify current market drivers and technology trends 
that can improve the demand responsiveness of commercial building lighting systems and 2) to 
quantify the energy, demand and environmental benefits of implementing lighting demand 
response and energy-saving controls strategies Statewide.  
Lighting Energy Consumption 
Lighting systems in California commercial buildings consume 30 GWh. Large offices, retail, 
hospital, miscellaneous and food stores make up nearly 60% of the total 6 billion square feet of 
commercial floorspace and use about 75% of the total lighting energy.  Commercial lighting 
demand is largely coincident with total Statewide peak demand and on peak days is responsible 
for 30% of the total demand during the 2:00 PM- 5:00 PM summer peak (compared to 32% for 
air conditioning). Lighting, therefore, has a major impact on electricity demand in commercial 
buildings.   
Dimmable Lighting Underutilized 
Lighting systems in commercial buildings often waste energy and unnecessarily stress the 
electrical grid because lighting controls, especially dimming, are not widely used. By drawing 
less power from the grid when electricity costs are highest, dimming ballasts are an enabling 
technology that allows building lighting loads to become more elastic. But dimmable lighting 
equipment, especially the dimming ballast, costs more than non-dimming lighting and is 
expensive to retrofit into existing buildings because of the cost of adding control wiring. 
Opportunities for New Technologies 
Recent renewed concern for electricity disruptions and power outages has stimulated the industry 
to re-examine and re-design their dimming product lines to implement demand response and 
energy efficiency measures. Advances in lighting industry capabilities coupled with the 
pervasiveness of the Internet and wireless technologies have led to new opportunities to realize 
significant energy saving and reliable demand reduction using intelligent lighting controls. 
Manufacturers are starting to produce electronic equipment  -- lighting-application specific 
controllers (LAS controllers) --  that are wirelessly accessible and can control dimmable or multi-
level lighting systems obeying different industry-accepted protocols. LAS controllers are 
particularly well-suited to retrofitting where it is not cost-effective to add wiring to communicate 
with downstream lights. 
The study finds that controllers are becoming available that can operate dimming ballasts and 
multi-level lighting using 1) low-voltage digital, 2) powerline, 3) powerline-carrier or 4) pure 
wireless communication protocols.  System integrators will soon be able to specify entire solution 
pathways that couple an appropriate LAS controller with a downstream lighting system and 
appropriate communications protocol. A major purpose of the study is to detail the major 
pathways that system integrators can take to cost-effectively implement demand response and 
energy efficiency control strategies in commercial lighting systems, both for existing buildings 
and new construction. 
Bi-Level Lighting Saves Energy 
Because of Title 24’s influence, lighting systems in California have some unique characteristics, 
especially in how they are electrically wired for bi-level lighting. There are major opportunities to 
tap the huge reservoir of potential energy and demand savings inherent in the State’s wiring 
infrastructure. 
One of the favorable long-term consequences of California’s Title 24 Building Standard is that a 
significant proportion of standing commercial building stock enjoys bi-level switching. Bi-level 
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switching is defined as a manual control that provides two levels of lighting power in a space (not 
including off).  Recent studies found a 15% average energy savings from occupants using bi-level 
switching in offices, retail stores and schools. Thus California has already been saving $100-150 
million/yr because of bi-level switching. Some companies make controllers that are inexpensive 
to install in existing buildings and allow the power consumed by bi-level lighting circuits to be 
selectively reduced during demand response curtailments. By intelligently limiting the demand 
from bi-level lighting in California commercial buildings, the utilities would now have an 
enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the 
remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr 
savings above and beyond the savings that have already been achieved.  
Progress in Standardization for Digital Lighting Controls 
One of the technology trends identified in the study is the increased digitization of the lighting 
controls industry. The lighting industry’s adoption of DALI as the principal wired digital control 
protocol for dimming ballasts and increased awareness of the need to standardize on emerging 
wireless technologies are evidence of this transformation. 
Improvements in Dimming Ballast Performance 
In addition to increased standardization of digital control protocols controller capabilities, the 
lighting industry has improved the performance of dimming lighting systems over the last two 
years. The system efficacy of today’s current dimming ballasts is approaching that of non-
dimming program start ballasts. 
Significant Energy and Environmental Benefits 
The study finds that the benefits of applying digital controls technologies to California’s unique 
commercial buildings market are enormous. If California were to embark on an concerted 20 year 
program to improve the demand responsiveness and energy efficiency of commercial building 
lighting systems, the State could avoid adding generation capacity, improve the elasticity of the 
grid, save Californians billion of dollars in avoided energy charges and significantly reduce 
greenhouse gas emissions. 
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Projected Impact of Wireless Lighting Controls on CA Commercial 
Lighting Energy Consumption
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If advanced lighting controls were to achieve 60% penetration in the commercial building market 
in 20 years, the State would consume 100 Twh less electrical energy at a savings to ratepayers of 
$12 billion. Over 20 years, it would reduce greenhouse emissions by 20 MMTCe -- the 
environmental equivalent of removing over 13 million cars from the roads. 
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1.0 Introduction 

1.1 Background and Overview 
The goal of this study is to examine existing and emerging California commercial lighting 
technology, systems, and markets in terms of current and anticipated demand response programs. 
A specific objective of the study is to examine the electric peak demand related to lighting in 
commercial buildings, and develop a research plan to improve the demand response capability of 
such lighting.  Another objective is to explore synergies between lighting technologies and 
systems that can provide both improved energy efficiency and demand responsiveness. 
Electrical lighting in buildings is responsible for 30 – 33% of the commercial sector peak load [i]. 
As a result, lighting in commercial buildings should be considered as a potentially sheddable load 
during times of curtailment.  HVAC and lighting system are the two largest contributors to the 
commercial electrical peak. Many demand reduction programs focus on HVAC since HVAC 
systems are connected to energy management systems that are relatively easy to connect to a 
demand response communications infrastructure. Lighting systems are less automated and are 
therefore more difficult to shed loads automatically. But lighting systems have one advantage 
over HVAC systems from a demand shed capability – a reduction in light level large enough to 
be electrically significant need not encroach on occupant comfort. If dimmable lighting were 
implemented across the entire commercial sector, the demand response potential of California 
building lighting systems would be enormous (see Figure 1below). 
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Figure 1: California commercial sector electrical demand (megawatts) for 1999 Summer 
Peak broken down by major end-use (left). Dimming all commercial lighting to 25% 
(right) could theoretically reduce total commercial peak by 7 GW. 

 
This scoping study describes the load shedding potential of California building lighting systems 
and presents emerging dimming technologies and infrastructures that would greatly increase the 
shed potential of this 6 GW sector. The study shows that the same technologies that increase load 
shed potential also double the effective energy efficiency of commercial lighting systems. 
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Imagine unusually hot and humid weather conditions increasing the electricity demand beyond its 
forecasted levels. Or, imagine a tree falling and severing the transmission line and requiring 
redistribution of power through another transmission line, which may already be close to its 
maximum capacity. In each case the electricity grid operator needs to have reassurance that 
groups of customers can deliver the demand reduction required to keep the grid operational.  
Currently, demand response programs provide incentives and penalties for the program 
participants in order to provide the demand reduction when and where needed. However, simple 
factors such as the absence of the building operator on the day of a demand response event 
prohibit a building’s participation in a demand response event.  We envision a future where the 
grid operators can reduce lighting loads in commercial buildings with a push of a button in their 
service territory. This scoping study examines the potential in lighting systems in commercial 
buildings to participate in such demand reductions. 
Demand response (DR) is a complex resource that requires communication and feedback between 
the supply side and demand side in order to be fully realized. In simplest terms, DR refers to the 
modification of customer electricity usage at peak times in order to help address system reliability 
and/or electricity market conditions and pricing.  Currently DR programs are implemented with 
supply side notification and demand side response (open loop). Usually, supply side notification 
entails e-mail messages, text messages and/or telephone calls anywhere between a day ahead to a 
couple of hours ahead. Each building operator responds to the notification depending on the 
building use patterns during the event time and day, the level of discomfort that the event may 
cause and the financial incentives and penalties related with participation. We envision a future 
where the supply and demand of electricity is balanced through closed loop systems during a DR 
event where the aggregated demand reduction of participants is available to grid operators and/or 
utilities real-time.  
Lighting is usually associated with visual health and safety. Any change in lighting has the 
potential to directly affect the safety and well being of the occupants not to mention their 
productivity. Therefore, commercial building operators are apprehensive about using lighting for 
DR.  However, requirements for lighting depend on the task. Today’s commercial buildings 
house many different tasks and technologies that enable the completion of these tasks. DR 
strategies for lighting systems in commercial builds have to consider all the issues related to the 
tasks of the occupants and the function of the building. In addition to the function, DR lighting 
strategies are also limited by the lighting infrastructure in the buildings. Zone size, zone 
distribution and the balance of local and central controls directly affect the function and cost of a 
lighting system and provide the frame for DR strategy development.   

1.2 Project Objectives 
This scoping study describes the load shedding potential of California building lighting systems 
and presents emerging dimming technologies and infrastructures that would greatly increase the 
shed potential of this 6 GW sector. The study shows that the same technologies that increase load 
shed potential also double the effective energy efficiency of commercial lighting systems. 

1.3 Report Organization 
The report has seven sections. The first section describes a framework for demand responsive 
lighting for commercial buildings.  The demand side management framework is discussed in the 
context of lighting controls and suggestions on various implementations are outlined. A summary 
of previous experience with demand responsive lighting systems follows. The next section 
characterizes lighting controls in commercial buildings in the U.S and in California and describes 
the lighting standards for commercial buildings in California in order to characterize lighting 
infrastructure in existing buildings. The fourth section identifies demand and energy consumption 
patterns of commercial buildings in California. The fifth part of the report describes the different 
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technical pathways for upgrading the lighting in existing buildings. This section describes the 
different types of components, their inputs and outputs and communication protocols and 
technologies they utilize. Demonstration projects for DR lighting controls are matched with the 
pathways concept in the next section. The last two sections summarize the findings and present 
recommendations to deliver significant and reliable demand reduction in California’s commercial 
buildings.    

2.0 Demand Response Issues 

2.1 Demand-Side Management Framework 
Forecasting loads in advance is a major problem for electricity grid operators.  Any prediction of 
demand response time and amount enables effective use of this resource. We envision a future 
where each building chooses lighting shed strategies, programs these into their lighting control 
system and when the price of electricity rises or there is a reliability concern, the demand relief is 
delivered within a certain response time and pre-specified amount. Lighting is one of the best 
targets for demand reduction because it can be delivered within a short period of time 
independently from external conditions (such as weather).  
The demand-side management (DSM) framework presented in Table x provides three major areas 
for changing electric loads in buildings: energy efficiency (for steady state load optimization); 
peak load management (for daily operations); and demand response (DR) (for event driven 
dynamic peak load reduction). In this report, we present the DSM framework from lighting 
controls perspective and use load and demand interchangeably.  
 

Table 1: Energy efficiency, daily load management and DR 

 
Energy Efficiency: Energy efficiency objectives are usually met by lowering energy use while 
providing the same level of service. Driven by utility bill savings, the need to conserve natural 
resources and environmental stewardship, energy efficiency measures permanently reduce peak 
load by reducing overall consumption. In building lighting systems, improved energy efficiency 
has been partly achieved by installing energy efficient lamps and ballasts (Approximately 75% of 
the fluorescent lighting stock in California uses electronic ballasts. Nationally, the fraction is 

Demand Side Management 

 Efficiency and 
Conservation 
(Daily) 

Peak Load Management 
(Daily) 

Demand Response 
(Dynamic 
Event Driven) 

Motivation 

- Utility Bill 
Savings 
- Environmental 
Protection 

- TOU Savings 
- Peak Demand Charges 
- Grid Peak 

- Price 
- Reliability 
- Emergency 

Design 
- Efficient Shell, 
Equipment & 
Systems 

-Low Power Design - Dynamic Control 
Capability 

Operations - Integrated System 
Operations 

- Demand Limiting 
- Demand Shifting 

- Demand Shedding 
- Demand Shifting 
- Demand Limiting 
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about 50% electronic and 50% magnetic ballasts). After more efficient equipment, lighting 
controls are the most effective method to reduce lighting energy consumption in commercial 
buildings. But the success of lighting controls in buildings has been mixed. Occupancy sensors, 
which improve overall lighting efficiency by switching off unnecessary lighting, are finding 
increasing use in commercial buildings. However, the benefit of occupancy sensors is largely 
during non-peak hours, making them less effective for peak demand management. Photo sensors 
for daylight driven dimming or switching have achieved much lower penetration rates because of 
system complexity, commissioning and cost issues. It is unfortunate that daylight-dimming 
systems have such low penetration rates in the commercial market since daylight following 
system effectively reduce peak demand in buildings at precisely those times when it is most 
expensive to produce energy. 
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Figure 2: Demand profile of various demand response methods 

 
Daily Peak Load Management:  Advances in metering technologies have made it possible to 
differentiate electricity usage patterns between buildings. Peak load management is motivated by 
high charges for peak demand and time-of-use rates.  Typical peak load management methods 
include demand limiting and demand shifting. Demand limiting refers to shedding loads when 
pre-determined peak demand limits are about to be exceeded. Loads are restored when the 
demand is sufficiently reduced. This is typically done to flatten the load shape when the pre-
determined peak is the monthly peak demand.  Demand shifting is shifting the loads from peak 
times to off-peak periods. Figure 2 displays the typical demand profile of a commercial building 
employing these methods. Peak load management using lighting systems in buildings is not 
common practice. Changes in the lighting system tend to be visible and disruptive making daily 
peak management problematic. However, daylight driven dimming is used for daily peak load 
management in buildings where daylight is available and peak load is considered problematic.  
 



  

 5

Demand Response: Demand response refers to the modification of customer electricity usage at 
peak times in order to help address system reliability, reflect market conditions and pricing, and 
support infrastructure optimization or deferral.  Demand response programs may include dynamic 
pricing and tariffs, price-responsive demand bidding, contractually obligated and voluntary 
curtailment, and direct load control or equipment cycling. DR methods such as demand limiting 
and shifting can be utilized when the economics and reliability issues are predicted and 
communicated to each site in advance. Demand shedding is dynamic temporary reduction or 
curtailment of peak load when dispatched and refers to strategies that can be possibly 
implemented within a shorter period of response time. Lighting systems are good candidates for 
demand shedding because they have short response times and the demand savings are predictable 
and repeatable most of the time. The occupants tend to notice the change in lighting levels, 
especially when the change is abrupt but do not seem to be too inconvenienced if they know the 
reason. 
There are two ways to strategize demand shedding with lighting systems in commercial 
buildings: absolute reduction and relative reduction. Absolute reduction is achieved by 
programming preset scenes for lighting levels in selected areas when demand response is 
dispatched. In the HVAC controls for DR, this is similar to setting the temperature up to a certain 
setpoint temperature. This may translate to the building lighting system in many different ways 
such as half the lights on, half of the lamps in a fixture on or 70% of full light output. The 
problem with this approach is that it does not yield any savings if the lighting system performance 
already matches the preset scene at the time demand response is dispatched. Therefore, although 
this approach is easy to implement with current lighting control systems, the shed amount is a 
variable depending on the building use and occupancy. Relative reduction is reducing loads with 
respect to their settings at the time demand response is dispatched. In the HVAC controls for DR, 
this is similar to changing the temperature setpoint by a certain ∆F. Instead of dimming to a 
preset value, a certain percent reduction over its current value is achieved during a demand 
response event. This strategy requires that the light output from the lamp or power output from 
the ballast is communicated back to the lighting control system and centrally closed loop control 
is required. Systems with such sophisticated controls tend to be newer and more expensive. The 
decision to implement absolute or relative lighting shedding depends on the building lighting 
infrastructure, the lighting use in the building and the capabilities of the installed lighting control 
system.  
Five techniques for wiring and controlling lighting systems in commercial buildings are identified 
below. 
 
1. Fixture switching (rows) 
2. Fixture switching (“checkerboard”)  
3. Tandem wiring 
4. Stepped Dimming 
5. Continuous Dimming 
 
These wiring methods and their implications for implementing demand response strategies in 
California buildings are discussed in detail in Section 2.  
Figure 3 presents a selection process designed to help facilities managers determine whether or 
not demand response in worth implementing given the electrical wiring system and availability of 
lighting controls equipment in the building. A building operator can implement DR lighting 
strategies manually or semi-automatically. If central control of lighting systems is not available to 
the operator, the time and effort costs and savings and other benefits have to be computed for 
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each facility. If central control of lighting is available to the operator, the next step is for him to 
understand the “granularity” of the lighting control, which is determined through a set of yes/no 
questions in Figure 3.  Advanced lighting controls and increased levels of granularity allow us to 
define explicit steps in building lighting that can potentially be exercised during DR events. 
 

 

Figure 3: Flow diagram for DR Decisions for Lighting Systems 

 
For retrofit applications, the ultimate choice of DR strategy is determined by the in-place building 
electrical system and the availability of appropriately-switched zones to implement DR and other 
energy efficiency strategies. It is important to stress that the choice of DR strategy: dimming, 
fixture switching, etc should not be separated from the choice of energy efficiency strategy. The 
size and location of lighting zones are important factors because as the size of the zone gets 
larger, it covers areas with varying occupancy, lighting requirements and daylight availability. 
Large zone switching strategies in particular may be objectionable to occupants in some 
applications and disrupt work flow.   
The ease with which demand response can be implemented in existing buildings depends on the 
electrical wiring system, particularly the wiring for the overhead lighting. The practicality of 
switching overhead lighting depends on how the fixtures are circuited and lamp switching 
depends on how each lamp/ballast combination is wired. 

3.0 Previous Experience with Demand Responsive Lighting Systems 
This section describes prior historical experience with installing demand responsive lighting 
systems in real buildings. 

3.1. Load Shedding at the Watergate Office Building, Emeryville, CA 
[ii] describes the first documented case study of demand responsive lighting in the country. Light 
levels at this site were dimmed in response to a simulated load shedding signal of about one hour 



  

 7

duration. As shown in the Figure 4 below, the shed reduced lighting power by about an additional 
10% even though the lights were already significantly dimmed at that time because of daylight 
dimming. As shown in the figure, the impact on provided light level was small and was unnoticed 
at the time by building personnel even though they were aware of and were watching for the light 
reduction. This demonstration showed that a small change in dimmed light level is inconspicuous 
of accomplished with dimming and opposed to switching.  
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Figure 4. PGE-funded lighting controls research in 1991 was the first to examine the 
effectiveness of using dimmable lighting to achieve significant demand reduction (aka 
demand response). 

3.2. Implementing DR in a Supermarket 
[iii] describes how demand response lighting was implemented in a California supermarket which 
had an EMCS and zone switching. At this site, there was a central control system and 
furthermore, overhead lighting could be switched in rows (“row switching” above) simply by 
operating relays in the electrical closet. The in-place equipment (EMCS system) and appropriate 
electrical wiring allowed this site to respond effectively to a demand shed signal by switching off 
about 50% of the overhead lighting during the event. The impact of the tested demand shed 
strategies on building electrical demand is shown in Figure 5.  The effect of the demand shed on 
lighting quality is captured in the “before” and “after” images shown in Figure 6.  
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Figure 5: Total electric power in supermarket during two step load shed experiment. 

 

  
  

 Figure 6: Overhead lighting at normal (left) and in load shed mode (right). In load 
shed mode, about 50% of the rows of lamps are switched off. 

This illustrates the practical potential for demand shedding using switching in existing buildings. 
Obviously, there is a noticeable change when the rows of lights are switched off, possibly leading 
to occupant complaints. 
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Levels of automation in DR are defined [iii] and are summarized as follows: 
Manual Demand Response involves a labor-intensive approach such as manually turning 
off or changing comfort set points at each equipment switch or controller.   
Semi-Automated Demand Response involves pre-programmed load shedding  strategies 
initiated by a person via centralized control system.   
Fully-Automated Demand Response does not involve human intervention, but is initiated 
at a home, building, or facility through receipt of an external communications signal.   

Most DR activities involving lighting systems fall in the manual DR category and very little in 
semi-automated category.  This stems from the fact that advanced lighting controls are not widely 
deployed in the U.S [iv]. Only 3% of commercial buildings have lighting controls making up 7% 
of commercial floor space.  
 
Although the lack of advanced lighting controls that allow for centralized control of lights in 
commercial buildings is a barrier, this section only presents technically feasible vision of fully 
automated DR for lighting systems.  The DRRC automated DR studies from 2003, 2004 and 2005 
show that fully automated DR for lighting using existing building infrastructures is technically 
feasible and produce repeatable results.  Two chains (Albertsons and Target), both designed with 
switching lighting systems as a Title 24 requirement, and a building controls company (Echelon) 
with dimmable lighting were participants in the automated DR studies. The maximum electric 
peak demand intensity savings for each facility is summarized in Figure 7.  All of the sites had 
centrally controllable lighting systems. The authors consider Albertsons and Target to be 
potentially high impact customers because of the similarity of each of their buildings, lighting 
system infrastructures and central energy management approach. Their corporate energy 
management groups are located outside of California. They were able to receive a 
communications signal indicating a change in electric price and control the associated store 
remotely. Customers’ reaction to reduced light levels is a concern for both chains especially 
during the high traffic times.  
Beyond the technical feasibility of remotely controlling lights, the coordination of each store with 
its corresponding utility and DR program for a state and communication with a central energy 
management group can introduce a complex problem that is not addressed in this report.  
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Figure 7: Maximum Demands Savings Intensity due to Lighting System Response 

 

4.0 Demand and Energy Consumption Patterns of California Commercial Buildings 

4.1. Demand 
Lighting demand is particularly significant during hot, summer days. As shown in Figure 8, 
lighting is the single largest end-use in CA commercial buildings for the 2003 peak day (31%), 
even higher than air-conditioning [v]. For the 3 hour peak (2:00 PM – 5:00 PM), lighting is 30% 
of the load, while A/C is only slightly larger (32%).  
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Figure 8: End Use Loads for California Commercial Sector on 2003 Peak Day [v] 

 
The peak demand contribution from lighting in commercial buildings on a peak day in 2003 in 
California was nearly 6 GW. A 20% goal of peak demand reduction has the potential to yield 
nearly 1 GW of peak demand. This scoping study examines at the infrastructures, technologies 
and implementations that allow for tapping into the potential demand savings in commercial 
buildings. 

4.2. Energy 
The California Energy Commission has analyzed lighting energy usage across different building 
types in the State [v]. These data are shown in Figure 9. 
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Figure 9: Lighting Energy Usage for Commercial Building Lighting in California 2000  

 
California office buildings are the largest lighting energy consumer, followed by retail, hospital, 
miscellaneous and food stores. These five market sectors constitute nearly 75% of the 30.4 GWh 
of lighting energy consumed in all California commercial buildings. Large offices, retail, hospital, 
miscellaneous and food stores make up nearly 60% of the 5.9 billion sq. ft. of commercial floor 
space. This market data indicates that it is appropriate to focus energy (and demand) reduction 
programs on these major market sectors. 
Other data from the same source provides a breakdown of California commercial lighting energy 
by all major light source types. Of the 30,739 Gwh of lighting energy consumed in California’s 
indoor commercial sector, 85% of the energy is consumed by fluorescent lighting systems. Thus 
fluorescent lighting is clearly the dominant light source with most sectors using 4-foot and 8-foot 
fluorescent lamps. 
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Figure 10: Commercial Indoor Lighting Energy Use 

4.3. Prevalence of Lighting Controls 
Another important attribute of the California commercial building stock is the prevalence (or 
absence) of lighting controls in this market segment. According to the Commercial Buildings 
Energy Consumption Survey [iv] conducted in 2003 and recently published results online, 
lighting controls is not common practice in the U.S. 3% of commercial buildings have lighting 
controls making up 7% of commercial floor space. By contrast, 7% of commercial buildings 
making up 31% of commercial floor space have energy management and control system (EMCS) 
for HVAC system.  
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Figure 11: Lighting Controls Penetration Compared with HVAC Controls in Commercial 
Buildings 

 
While the absence of lighting controls nationally is discouraging, the penetration of lighting 
controls into California buildings is expected to be higher due to California’s Building Standards 
(Title 24 and 20) as well the greater awareness of the lighting controls for energy efficiency and 
the research and policy support that has been provided by the CEC and the utilities.  

4.4. Impact of Title 24 on Lighting Systems 
The Energy Efficiency Standards for Residential and Nonresidential Buildings were established 
in 1978 in response to a legislative mandate to reduce California's energy consumption. Over the 
years, these standards, also known as Title 24, have played an important role on the design of 
infrastructure of major building systems. These standards are updated periodically to allow 
consideration and possible incorporation of new energy efficiency technologies and methods. 
California’s Title 24 has had major positive benefits on the electrical wiring infrastructure of 
California commercial buildings. Because Title 24 has required “bi-level” lighting since 1983, 
much of California’s existing stock includes improved lighting switching [vi].  Title 24 requires 
multiple lighting level controls in controlled spaces of a certain size.  Typically, with bi-level 
switching, office occupants are provided with two wall switches near the doorway to control 
lights.  In a typical installation, one switch would control 1/3 of the fluorescent lamps in the 
ceiling lighting system, while the other switch would control the remaining 2/3 of the lamps. This 
allows four possible light levels: OFF, 1/3, 2/3 and FULL lighting. 

While the Standard requires bi-level switching for many applications, it does not state the exact 
method for implementing it. Five common ways of implementing bi-level lighting are given 
below: 

• Fixture switching (rows): Separately switching “on” alternative rows of fixtures. When 
fixtures are wired in rows, fixture switching is implemented by switching half the rows of 
fixtures from one switch and the remaining rows with a second switch. This is commonly 
done in supermarkets (alternative row switching) and in schools with pendant-mounted 
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fixtures in rows. Fixture switching done in rows runs the risk of increasing lighting non-
uniformity.  

• Fixture switching (“checkerboard”): Separately switching “on” patterns of fixtures. To 
switch fixtures in patterns, every other fixture in the space is wired to one switch and the 
remaining ones to a second switch (also called “checkerboard” switching).  
“Checkerboard” switching provides more uniform light levels than fixture switching done 
in rows and is used in supermarkets and big box retail. 

• Tandem wiring: With tandem wiring, multi-lamped ballasts are wiring so that some 
lamps in each fixture are wired to one switch and the remaining to a second switch. With 
three-lamp luminaires, the “inboard” lamps are one switch while the “outboard” lamps 
are on a second switch. Three-lamp luminaires tandem wired provide 3 levels of light: 
1/3, 2/3 or full lighting. When tandem wiring is used for two- or four-lamp fixtures, only 
two distinct light levels are available: 1/2 or full lighting. This wiring method is often 
used in offices, educational, and healthcare buildings. 

• Stepped Dimming: With stepped dimming, all the lamps in a fixture are controlled 
together to provide one of two (or three) light levels within a space. This requires stepped 
dimming ballasts, which have two hot leads (A and B) rather than one.  All the A leads 
are tied to one switch and the B leads to the second switch. Bi-level and tri-level stepped 
dimming ballasts are available from several ballast manufacturers, but they are 
considerably more expansive than standard ballasts. A description of stepped dimming 
ballasts is presented in Section 5 

• Continuous dimming: With continuous dimming, the lighting in the overhead fixtures can 
be continuously varied from maximum light output to about 10% light output. A detailed 
description of dimming ballasts is presented in Section 5. Because dimming ballasts are 
currently expensive, their use is generally restricted to high-end conference rooms in 
Class A offices. Some big box retail stores are increasingly using continuous dimming in 
conjunction with skylighting. 

Although the standard does not specify centralized controls and most of the dimming controls are 
done by local photo-sensors and control hardware integrated at the ballast level, the existence of 
dimming ballasts and division of circuits or separations of ballasts does lay the foundation for 
manual and with some technical augmentations semi-automatic demand response. 

4.5. Analysis 
Because of Title 24, California has been able to maintain per capita electricity usage at the same 
level for the past 30 years while most other States have increased theirs. What is less well-known 
is that Title 24 has had long-term beneficial effects on the building lighting wiring infrastructure. 
Because the Standard requires that new buildings be wired so that multiple light levels are 
provided for each space, building occupants have a greater degree of control over their lighting 
than other states. It is easy for building occupants to obtain more than one light level in a space 
when  they naturally take advantage of this control flexibility. Fortunately, energy savings is the 
usual result of people taking advantage of this switching infrastructure. The use of improved 
switching by building occupants saves the state some $100 – 150 million annually in avoided 
energy costs [calculated from [vii]].  
Gedunken Experiment - Imagine a heat wave where California’s electrical infrastructure is 
strained to the breaking point. Imagine there is capability to trigger the bi-level switches in all 
California’s buildings from HIGH to MEDIUM (or LOW) in one step. How much demand 
response is available? 
The calculation- As mentioned, offices, schools, retail stores and foodstores consume about 15 
BkWh is used each year in California for lighting offices, schools, retail stores and foodstores. 
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Assuming an average 3200 hours a year operation, this equates to 4.7 Gigawatts average. Assume 
that bi-level switching only affects 75% of this load (3.5 GW). Assume that 20% of the remaining 
load has already been taking advantage of the low switch level and so is excluded from further 
reductions. This leaves 2.5 GW of demand response potential. If the lever were thrown, this 2.5 
GW load would be reduced by about one half (remember that going from HIGH to LOW reduces 
the power by two). Thus the State could save 1 – 1.25 GW just by turning everyone’s bi-level 
lighting from full to medium! 
In the following section, we describe technologies that could harvest this potential.   

5.0 Lighting Control Pathways 
In this section, we present a generic framework for a lighting controls architecture that could be 
implemented throughout the State to provide significant energy savings and full demand response 
in California commercial buildings.  The architecture consists of four stages: input, user interface, 
control and communication and output. The architecture is intentionally generic; i.e., 
manufacturer- and network-neutral. Most lighting control companies and ballast companies offer 
a wide range of components that support one or more of the framework stages.  
After detailing each stage below, we present examples of specific pathways for implementing 
lighting controls in buildings. Each pathway is a set of specific lighting control components 
providing end-to-end control all the way from the input to output stage using components that are 
selected to be compatible and designed to interoperate properly when organized as a system.  We 
propose a generic lighting control pathway (Figure 12), then describe each generic piece more 
detail. This section concentrates on dimmable ballasts and their role on demand responsive 
lighting.  
 

 
Figure 12: A Framework for Lighting Control 
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5.1. Input 
The input to any lighting control system can be divided into two categories: inputs from people 
and inputs from devices (usually sensors).  The first category of input is from people causing a 
change in the system due to comfort or conservation concerns.  
The second category of input is a sensor, which detects changes in the luminous environment. 
These sensors are typically light sensors that measure either illuminance or luminance within the 
controlled space. The light-sensing device in a photo sensor is typically a photodiode, a photo-
resistive cell or a photo-transistor. These devices respond to infrared, ultraviolet and/or visible 
light. Photosensors are designed with circuitry to respond to visible light.  A photosensor is 
characterized by its spatial response and spectral response. Spatial response is the sensitivity of 
the photosensor to light shining in from various directions. Spectral response is its sensitivity to 
visible light with varying wavelengths.  
Using photosensors to control interior lighting is not trivial and requires proper design, placement 
and calibration and commissioning. Illuminance sensors have a wide field of view and are 
recommended to be placed on or close to the work surface. Luminance sensors have narrower 
field of view. These sensors are usually placed on the ceiling oriented to “see” the work surface. 
There are two ways to adjust the gain of a photosensor. If the signal detected by the sensor is 
weak, it can be amplified with electronic circuitry or placing the sensor closer to the light source.  
The output signal of a photosensor can control lighting one of two ways: 1) by turning the lights 
on or off depending on the set threshold; or 2) by dimming lights depending on the dimming 
response function identified during commissioning. It is important to note that for a 0-10V 
dimming ballast, dimming does not occur through the entire range and it is typically limited to 2-
8V range. 

5.1.1. User interface 
Whether the input is a person or a sensor, there must be some user interface between the input 
and the lighting system. This interface usually takes the form of a switch that can be manually 
activated by the occupants, an automatic switch (such as an occupancy sensor) a remote control, a 
lighting panelboard or a computer. Wall switches are the primary method today for occupants to 
control their lighting systems so these controls should be accessible and their function clear. A 
person controlling the lights in his or her workspace may have a switch, an occupancy sensor and 
sometimes even a remote control device available to interact with the lighting control system. 
Often only authorized maintenance personnel have access to lighting panelboards or lighting 
control computer. A person controlling the lights in an entire facility may have access to a 
computer or a lighting panel to make changes in the lighting system. This section defines some of 
the devices that allow users to act to make changes to the lighting system.   

5.1.2. Wall switch 
A wall switch is the oldest and simplest way for manual control of lights. It directly controls the 
power to a fixture or to a set of fixtures. In offices, usually one wall switch is allocated per zone. 
Since 1978, in buildings that comply with California Title 24, two switches per zone are usually 
deployed.  

5.1.3. Occupancy sensor 
There are three types of sensing technologies utilized in occupancy sensors: passive infrared 
(PIR), ultrasonic or acoustics. Dual technology products use a combination of acoustic or 
ultrasonic with passive infrared sensing technologies. PIR sensors respond to movements of an 
infrared source, i.e., human body. The response is most sensitive to vertical movements and least 
sensitive to movements directly to and away from the sensor.  The sensitivity of the sensor 
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depends on the patterned lens being used to concentrate signals on the detector. Ultrasonic 
occupancy sensors emit ultrasonic waves between 25 to 40 kHz at levels over 90 dB. Motion is 
detected when the sound waves hit a moving object and cause a Doppler shift in the frequency. 
Acoustic sensors respond to sound pressure levels in the space and typically used with PIR 
sensors to reduce the occurrence of false offs.  
Sensitivity adjustments such as signal strength, time clocks, and simple logic for occupant sensors 
are usually available to adjust the operation for specific room conditions. The input from the 
detector is adjusted and translated into a binary output that indicates occupied or unoccupied. 
This signal directly controls a relay to switch the lights on or off and usually incorporated in the 
sensor device. Besides turning lights on or off, the output of the occupancy sensors can be used 
for bi-level switching. In the future, the information from the occupant sensors is envisioned to be 
utilized for emergency evacuations, or adjusting HVAC set points in zones with no occupancy.    

5.1.4. Remote control device 
Remote control devices deliver access to the wall switch to the occupant’s location. A remote 
control is a transmitter with either programmable or pre-programmed buttons that control the 
power to a fixture or to a set of fixtures. It allows the occupant to turn the lights on, off or dim. It 
communicates with a transceiver located in the ceiling plenum or directly at the fixture. The 
signals are transmitted at varying frequencies depending upon the interference issues related with 
equipment located at each facility. Communications using infrared or radio frequency are the 
most commonly used media for remote lighting controls. 

5.1.5. Computer interface 
A computer interface is provided to the building operator when a lighting control system is 
installed. In most installations, the software provided to the building operator facilitates the 
creation of schedules for weekdays, weeknights, weekends and regular maintenance. More 
sophisticated lighting control systems provide software tools that allow the operators to 
commission the lighting and conduct continuous maintenance as well as allowing regrouping of 
lighting fixtures to change existing lighting zones in order to meet organizational flexibility 
requirements of a facility.   

5.1.6. Lighting Panelboard 
Lighting panelboards are equipped with circuit breakers with capacity to handle 
the designated load. In their most basic form, facility operators can turn off entire circuits off with 
these panels. The advance of micro-processor based controllers allowed the panelboard designers 
to combine circuit breakers with micro-controllers to create lighting control panels. Advanced 
lighting controls panels:   
• Communicate via building systems communication protocols such as BACnet or Modbus   
• Include electronic clocks that allow for schedule creating. 
• Group branch breakers to be controlled by schedules, manual inputs or override commands 
• Monitor and log power consumption and demand 
• Enable operators to set load shed levels on each breaker 
• Generate alarm logs and trend status changes.  

5.2. Control and communications 
In the previous section, it was noted that lighting systems are operated with switches, relays and, 
sometimes, circuits of dimmable lighting. Lighting controls and any associated communications 
scheme constitute the third stage of the lighting control framework. Functionally, the lighting 
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Figure 13. Application-specific controller 
produced by Power Web Technologies. The 
addressable controller can control one relay 
and two 0-10 VDC analog dimming ballast 
loops. A wireless network communicates 
with the controller through the RF antenna 
shown at the left. 

control system implements a particular communications protocol (either analog or digital) to dim 
and/or switch groups of downstream lighting fixtures (the fourth stage).  
The specific choice of protocol is largely driven by the choice of lighting equipment to be 
controlled, especially the type of ballast.  (A detailed discussion of the different ballast types is 
presented in the next section).  
There are many types of lighting control systems available today from well-established 
companies, but generally these controls are installed during building construction. Because most 
lighting controls require additional wiring, they are often cost-prohibitive to install in existing 
buildings. 
The focus of the present scoping study is existing buildings where conventional lighting controls 
are generally not considered. Over the last few years, several companies are producing control 
hardware that can be installed into existing building electrical distribution systems. For example, 
General Electric now makes a product which is an application specific controller (ASC) intended 
to both switch loads and dim a 0-10 VDC dimming ballast circuit. Unlike conventional control 
hardware, manufacturers are designing and packaging the controllers to be installed onto existing 
electrical junction boxes.  

 
 
Furthermore, some of these emerging controllers are equipped with radio-frequency inputs 
allowing them to be controlled from a wireless network. This makes these controllers ideally 
suited for retrofitting into California buildings in order to deploy advanced lighting control 
strategies into today’s building stock. 
Some different configurations for applying controllers to existing buildings are presented in Table 
2. 
 

• No ballast change-out required. 
• Single switch leg is controllable. 
• Commercial system available. 
• Lighting loads, from 3 to 200 
amps 

No Dim No Dim No DimSwitch A

CIRCUIT DRIVER  

• No ballast change-out required. 
• Both A and B switch legs are 
controllable. 
 

No Dim No Dim No Dim

No Dim No Dim No Dim

Switch A

Switch B

CIRCUIT DRIVER  
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• Analog dimming ballasts replace 
non-dimming ballasts. 
• All dimming ballasts on 0-10 VDC 
control bus dim in unison. 
• Both switch legs are controllable. 

Analog Dim Analog Dim Analog Dim

Analog Dim Analog Dim Analog Dim

Switch A

Switch B

Analog DIM

CIRCUIT DRIVER  

• Digital dimming ballasts replace 
non-dimming ballasts. 
• Digital ballasts individually-
addressible using DALI. 
• Both switch legs are controllable. 

Digital Dim Digital Dim Digital Dim

Digital Dim Digital Dim Digital Dim

Switch A

Switch B

Digital DIM

CIRCUIT DRIVER  

• Wireless dimming ballasts 
replace non-dimming ballasts 
• Wireless ballasts individually-
addressible using ZigBee 

• Both switch legs are controllable 

Digital Dim Digital Dim Digital Dim

Digital Dim Digital Dim Digital Dim

Switch A

Switch B

Wireless DIM

CIRCUIT DRIVER  

Table 2. Different configurations for applying controllers to existing buildings 
The performance of controllers from two different companies is given in Section 5.3. 

5.2.1. Ballast type 
All fluorescent lighting systems use ballasts for operating fluorescent lamps.  Ballasts that can 
operate connected lamps at different light output levels are useful for implementing demand 
response and many energy efficiency strategies. The ability to vary light level within a given area 
provides a flexibility that would be absent if only one light level was possible. 
Not all dimming ballasts can be dimmed continuously. Some ballast manufacturers produce 
multi-level ballasts that operate lamps to one of several light levels. Below, both types of ballasts 
are discussed. 

5.2.1.1. Stepped dimming 
Stepped dimming (or multi-level) ballasts operate lamps to one of several discrete light levels. 
Tri-level (33%, 66%, 100%) and bi-level (50% and 100%) ballasts are available and are typically 
controlled by the additional of a second hot wire to the ballast. By selectively switching the black 
wire, the red wire or both, various combinations of light output are provided. One manufacturer 
offers multi-level ballast with asymmetric light levels (typically full and a low, standby level). 
Asymmetric multi-level ballasts are useful for applications, such as building stairwells, where a 
low-standby level of light is required even when the space is unoccupied. 
Because of California’s bi-level switching infrastructure, stepped dimming ballasts can be used to 
upgrade bi-level switched lighting systems without rewiring. Existing ballasts can be replaced 
with stepped dimming ballasts and one light switch tied to all the ballast black wires and the 
second light switch to the ballast red wires. Thus with only a ballast change-out, a bi-level 
lighting system can be upgraded. 
Unfortunately, there is currently not a large market for stepped dimming ballasts and they are 
therefore similar or only lightly lower in price than continuous dimming ballasts. 
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5.2.1.2. Introduction to dimming ballasts 
This section of the scoping study discusses modern dimming ballasts. We briefly describe the 
different types of commercially available dimming ballasts, including both analog and digital 
ballast types. The key technical attributes of dimming ballasts from the standpoint of 
understanding their relative energy performance over the entire dimming range are presented in 
Appendix A.  
 
Major Types of Dimming Ballasts 
There are several different types of dimming ballast on the market today. (For a more complete 
discussion of dimming ballasts, see [viii]). There are two broad categories of ballasts – analog and 
digital. Dimming ballasts that are controllable using a 0-10 VDC control loop are the most 
common and have been available for many years. Approximately one million dimming ballasts 
are sold each year in the US compared to the approximately 60 million unit market for fluorescent 
ballasts as a whole. Digital ballasts are relatively new and probably constitute no more than 
100,000 units in 2005. 
 
Analog dimming ballasts 
Analog dimming ballasts have two extra leads (violet and grey wires), which form a low voltage 
control circuit (“bus”), operates all connected ballasts to the same dimming level (intensity). Up 
to about 50 ballasts can be wired in parallel to the control bus as shown in Figure 14.  
 

 
 

Figure 14: Wiring diagram showing how 0-10 VDC analog ballasts are wired to a low 
voltage control loop formed by the violet and grey wires. 

 
Powerline controlled ballasts 
Powerline controlled ballasts do not have any additional wires and they wire to the hot and 
neutral leads just like normal (non-dimming) ballasts. A dimmer must be installed in the wallbox 
controlling the lighting circuit (Figure 15). The number of ballasts that can be dimmed on the 
same dimming circuit depends on the wattage rating of the dimmer. Powerline controlled ballasts 
are usually used for controlling the lights in individual rooms rather than for entire lighting 
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systems. Because they do not require additional wiring, they are often used in retrofit 
applications. 
 

 

Figure 15: Wiring diagram showing how powerline controlled ballasts are wired to a wall 
dimmer. 

 
3-Wire controllable ballasts 
3-Wire controllable ballasts have an extra hot lead on them for controlling the ballast dim level. 
Only one company makes this type of system, which is proprietary. 
 
Digital dimming ballasts 
Although digital ballasts are not a large market at this time (less than 10% of the already small 
dimming ballast market), most of today’s digital ballasts in the U.S. use the Digital Addressable 
Lighting Interface (DALI) protocol. DALI is one of several European digital protocols that have 
been imported into the US over the last few years. All major US ballast companies now sell 
digitally controllable ballasts that obey the DALI protocol. One major manufacturer (Universal) 
also sells a competing digital protocol along with their DALI products. 
 



  

 23

 
 

Figure 16: Wiring diagram for a typical DALI ballast. Multiple DALI ballasts are wired in 
parallel to the DALI control leads.  Unlike 0-10 VDC analog dimming ballasts, DALI 
ballasts are individually addressable. 

 

5.3. Emerging Technologies to Bridge the Gap 
Although most buildings can potentially participate in DR by manually shedding lighting loads, 
the advancement in networking technologies and wireless communications make automated and 
semi-automated DR possible in commercial buildings. In this section, two of Southern California 
Edison’s demand responsive lighting controls projects under their Emerging Technologies 
Program and Pacific Gas and Electric’s Automated Critical Peak Pricing project with LBNL are 
summarized. All three projects are using different technologies to achieve centrally dispatched 
demand reductions for the lighting systems. The first two projects concentrate on the use of 
dimmable ballasts with a centralized lighting control system. The criteria for evaluating both 
projects are:  

A. Central control by a utility; 
B. Application of the technologies to 120 Volt and 277 Volt lighting loads; 
C. Response time; and 
D. Shed amount.  

The third project concentrates on the communication infrastructure to reach out to the commercial 
customers’ lighting control system. The existence of a lighting control system in its simplest form 
is the only prerequisite to participate in the pilot study.  Target Corporation’s Hayward store 
shows the possibilities in retail with a well-planned lighting infrastructure. Similar infrastructures 
also have been used in a semi-automated fashion by other retail chains for DR such as Home 
Depot [ix] 

5.3.1. LA County Internal Services Division 
The objective of this study was to evaluate demand response effectiveness of the GE Wireless 
Energy Management technology by controlling lighting and a chiller at a pilot test facility. The 
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GE Wireless Energy Management system was installed in LA County Internal Services Division 
site and controlled by Power Web technologies over the internet [x].  
The components of the system are: 
• Input: Local or Remote User 
• User interface: Computer/Web-based software 
• Control and Communication: Cellular phone infrastructure, 418 MHz to Lighting Router 
• Output: 0-10 volt dimmable ballast 
Figure 17 shows the implementation of the system over the existing pathways concept. The 
demand reduction is initiated at the computer either on site or off site via internet software The 
signal is sent to a wireless tower using existing cellular phone infrastructure. The lighting router 
receives the signal from the wireless tower and sends wirelessly over 418 MHz  to  ballasts 
controllers. As a part of the project, dimmable ballasts were installed. Each ballast controller 
controls up to fifty  0-10 V dimmable ballasts. Their tests show that the response time of this 
system is between 2-12 seconds.  
 

 

Figure 17: Description of the GE Wireless Energy Management System 

 
The project is a good example of absolute semi-automated demand reduction. To be a fully 
automated DR, scalability issues have to be examined. It uses the existing wireless infrastructure 
until the signal is inside the building and transmits the signals to the controller through a less used 
frequency. 0-10 V wiring is required for the last portion of the installation.  
The GE Wireless Energy Management software is administered by Power Web Technologies and 
access is set up for both the utility and the facility manager to monitor and change the settings of 
the control system through a web page. In addition, feedback data from the chiller and the 
lighting panel were made available through the GE Wireless Meter Data Processor.  
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5.3.2. Ganahl Lumber Company 
Universal Lighting Technologies’ Demand Control Lighting (DCL) system was installed in a 
portion of the lighting, mostly in public spaces, of Ganahl Lumber Company, which is a retail 
hardware store.  The test included lighting fixtures on 120 Volt and 277 Volt circuits controlling 
72 lighting fixtures on the first and second floors [xi]. The system has the following components 
displayed in Figure 18:  

1. Universal internet software 
2. Universal DCL circuit control modules 
3. Universal line controlled dimming ballasts 
4. Wireless connection to the internet 

 

 

Figure 18: Pathways concept as applied to Ganahl Lumber Company tests 

 
A user issues a command using the Internet Software.  A wireless tower then transmits a signal to 
the master module at the site.  The master module receiving the coded message sends a signal to 
the other control modules to which it is connected.  The lighting control modules are located in 
enclosures adjacent to lighting breaker panels.  The controller can send the control message to all 
ballasts on the circuits to which it is wired.  Lighting levels can be set from 100% to 50% in 1% 
power increments. The ballasts receiving the signal adjust their dimming level according to the 
instructions issued by the controller. Six ballast controllers were installed for this project.  Three 
controllers were on 277 Volt lighting circuits, and three were on 120 Volt lighting circuits. The 
response times ranged from 8 to 146 seconds. This is another example of semi-automatic controls 
using dimmable ballasts.  
The best way to compare the demand reduction effectiveness of the above two projects is the 
demand intensity savings (W/ft2) but neither study mentions nor provides information to calculate 
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this metric. In the case of the LA County Internal Services, demand savings is stated to be 22.7 W 
per fixture when the lights are dimmed from 70% to 30%. In the case of Ganahl Lumber 
Company demand savings per fixture when the fixture is dimmed from 100% to 50% was 30W.  

5.3.3. Target Corporation, Hayward 
Target developed a simple strategy based on its infrastructure [xii]. The implementation is 
mapped onto the pathways concept in Figure 19. Every fourth fixture is circuited together in their 
Hayward facility. The engineering group in Minnesota is able to issue commands over their 
network to turn off any of the four circuits in their sales area. For the Critical Peak Pricing (CPP) 
event days, they chose to turn of one circuit between 3 pm and 6 pm.  
 

 
 

Figure 19: Pathways concept as applied to Target Company Automated Critical Peak 
Pricing Tests 

 
Due to good initial planning and grouping of the fixtures, although one of every four fixture was 
switched of, the lighting remained uniform in the sales area. The demand savings result of 
switching off every fourth fixture was 50 kW or 0.45 W/ft2 for the 110,000 ft2 store.  
There were no direct customer feedback for this site but a store manager was contacted after 
every event. From the conversations, it was clear that switching every fourth fixture was 
noticeable and not welcomed, especially closer to the holidays when higher occupancy and sales 
are expected.  
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6.0 Findings 

6.1. Context 

6.1.1. Lighting has a major impact on electricity demand and consumption   
Lighting systems in California commercial buildings consume 30 BkWh annually. Large offices, 
retail, hospital, miscellaneous and food stores make up nearly 60% of the total 6 billion square 
feet of commercial floorspace and use about 75% of the total lighting energy.  Commercial 
lighting demand is largely coincident with total Statewide peak demand and on peak days is 
responsible for ~6 GW (30% of the total demand) during the 2:00 PM- 5:00 PM summer peak 
(compared to 32% for air conditioning). Lighting has a major impact on electricity demand in 
commercial buildings, roughly equal to that of HVAC.  

6.1.2. Lighting wastes energy and unnecessarily strains the electrical grid 
because lighting controls, especially dimming, are not widely used. 

By drawing less power from the grid when electricity costs are highest, dimming controls enable 
building lighting loads to become more elastic. But dimming equipment, especially the dimming 
ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings 
because of the cost of adding control wiring. 

6.1.3. Title 24 has had a positive effect on the lighting wiring in CA 
buildings. 

Because of Title 24’s influence, lighting systems in California buildings have some unique 
characteristics, especially in how they are electrically wired for bi-level lighting. There are major 
opportunities to tap the huge reservoir of potential energy and demand savings inherent in the 
State’s wiring infrastructure. EPAct 2005 can help CA ratepayers pay for the installation of new 
energy-saving controls. 

6.1.4. Internet and wireless are major technology drivers 
The pervasiveness of the Internet and wireless technologies in buildings has led to new 
opportunities for lighting manufacturers to develop and deploy intelligent lighting controls that 
realize significant energy savings and reliable demand reduction. 

6.2.  Barriers 

6.2.1. Estimating the energy savings from lighting controls is harder than 
evaluating the savings from more efficient equipment 

More efficient equipment, such as electronic ballasts, saves energy simply because it is installed. 
Lighting controls only save energy if they positively impact operational performance. Most 
utilities have little reliable data on how much energy and demand savings will result from lighting 
control systems utilizing all lighting control strategies in multiple building types. Without this 
information, utilities cannot properly calculate how much to rebate lighting control systems in 
their efficiency programs. Determining the controls savings requires measuring the energy usage 
both before (baseline) and after installation of controls.  
 

6.2.2. Adding control wiring to existing buildings is expensive 
It is usually cost-prohibitive to install conventional lighting control components into existing 
buildings because of the high cost of adding the control wiring. Powerline carrier techniques can 
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avoid added wiring but no reliable PLC system has emerged. Wireless dimming ballasts will not 
be cost-effective for about 2 years.   

6.2.3. Delivering robust systems is harder than manufacturing 
components 

The US lighting controls industry is fragmented with many component manufacturers but very 
few manufacturers making entire systems. System integrators find it difficult to assemble and 
specify robust lighting control systems using components from different vendors. 

6.2.4. Need for proper commissioning not understood. 
Commissioning is the most challenging barrier to the successful deployment of advanced control 
systems. (Commissioning is the process for ensuring that a control system performs in the 
building according to design intent). By migrating to intelligent digital controls, the industry can 
solve the commissioning problem. But the industry currently lacks capability in the critical areas 
of wireless networking, communications protocols and serious software development.  

6.2.5. Dimming systems are more complicated than non-dimming 
Because dimming systems must work reliably over a wide range of light levels, they are more 
sensitive to poor lamp holder design, miswiring and sloppy installation. “Standby” losses can 
reduce the energy efficiency of a lighting control system and the utilities are largely unaware of 
the issue.  

6.3. Opportunities 

6.3.1. Advanced lighting controls can be a compelling value proposition 
Dimming will always be more expensive than non-dimming lighting. So to build a convincing 
economic case for using dimming controls, manufacturers must design robust systems that can 
implement multiple lighting control strategies. Besides from demand response, the major lighting 
control strategies are: daylighting, personal controls and occupancy-based controls. Lighting 
controls should monitor and archive energy data as well as control lighting. 

6.3.2. Personal controls sell 
Dimming according to personal preference is a major driver for lighting controls. Research is 
increasingly showing the importance of personal lighting controls for occupant comfort, 
satisfaction and productivity. 

6.3.4. Lighting industry developing controllers 
Manufacturers are starting to produce electronic equipment -- lighting-application specific 
controllers (LAS controllers) --  that are wirelessly accessible and can control dimmable or multi-
level lighting systems obeying different industry-accepted protocols: 1) low-voltage digital, 2) 
powerline, 3) powerline-carrier or 4) pure wireless communication protocols. LAS controllers are 
particularly well-suited to retrofitting where it is not cost-effective to add wiring to communicate 
with downstream lights. 

6.3.5. The major ballast manufacturers have improved the top-end 
efficiency of their dimming ballasts over the last three years 

These more efficient dimming ballasts are only 10% less efficient than the most efficient non-
dimming fluorescent ballasts available today. This demonstrates that the industry has the 
capability to produce highly efficient dimming ballasts. 
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6.3.6. A concerted program to deploy energy saving lighting controls 
would be of enormous benefit to California 

A concerted 20 year program to improve the demand responsiveness and energy efficiency of 
commercial building lighting systems would improve the elasticity of the grid, delay the need to 
add generation capacity, save Californians billion of dollars in avoided energy charges and 
significantly reduce greenhouse gas emissions. If advanced lighting controls were to achieve 60% 
penetration in the CA commercial building market in 20 years, the State would consume 100 
BkWh less electrical energy at a savings to ratepayers of $12 billion. Over 20 years, it would 
reduce greenhouse emissions by 20 MMTCe -- the environmental equivalent of removing over 13 
million cars from the roads. 

7.0 Recommendations 
Our goal should be to deliver significant and reliable reductions in electric lighting demand and 
electric energy use throughout California’s commercial building stock.  This goal is ambitious but 
it can be accomplished by a coordinated sequence of research and market conditioning activities 
aimed at timely deployment of robust, cost-effective, energy efficient, demand responsive 
lighting systems. 

7.1. Set an ambitious, but practical, goal 
Establish an ambitious but practical goal for significantly reducing lighting energy consumption 
in California commercial buildings. Our vision is: “Every light should be dimmable, addressable 
and affordable”. 

7.2. Learn from the experience with the electronic ballast 
In the late 1980s and early 1990s, PG&E used the “Penrose List” to qualify electronic ballasts for 
their active rebate programs. By setting performance objectives appropriate to their Energy 
Efficiency Program objectives, the Penrose List helped PG&E to transform the California market 
from magnetic to electronic ballasts and save the State billions of dollars over the last 15 years. 
We propose below an equivalent vehicle for transforming the market to energy-saving lighting 
controls.  The Performance Metrics list below is necessarily more complex than Penrose’s, which 
only had to characterize a simple electronic ballast. 

7.3. Develop a uniform test protocol 
Develop, refine and promulgate a uniform test protocol for determining the suitability of specific 
emerging lighting control systems for delivering reliable demand response and implementing all 
major lighting control strategies. 

1. Formulate a building wide, robust, versatile, strategic controls framework that provides a 
“building-entry-to-lighting end-use” control signal pathway to communicate with and 
control any light fixture in a building. 

2. Detail in matrix form the functional requirements for implementing demand responsive 
and all the major energy efficiency strategies, including daylighting, personal controls, 
tunable lighting and occupancy detection. 

3. Develop a list of appropriate, quantifiable performance metrics that a given control 
system must satisfy in order to “qualify” it for implementing different combinations of 
efficiency and demand strategies. 

4. Expand the Functional Requirements and associated Performance Metrics lists to cover 
additional technical issues relevant to Emerging Technology Programs such as dimming 
ballast characteristics, susceptibility to outside interference, and scaling controls from the 
room level to building-wide control. 
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5. Develop procedure for testing how well candidate lighting controls systems satisfy the 
Performance Metrics list. 

7.4. Develop data base of measured energy and demand savings 
Utilities need a consistent, reliable methodology for evaluating the energy savings and demand 
shed potential for various combinations of lighting control strategies in different building 
applications, regardless of networking technology. Develop a database of the energy and demand 
savings from controls as measured by early adopters in testbeds and pilot installations. With such 
a database, utilities will be able to appropriately incentivize the installation of energy savings 
controls in all building types. Make the database accessible to utilities and emerging technology 
program managers. 

7.5. Make appropriate code revisions 
Encourage the development of cost-effective dimming through carefully crafted code revisions. 
Some of these revisions include:  

1. Replace Ballast Efficacy Factor (BEF) with Relative System Efficacy (RSE) as a sensible 
figure of merit for comparing lamp/ballast system efficacy across all major lighting types. 
RSE should be used for the 2008 Revision of Title 24.  

2. Set appropriately challenging RSE targets to include in subsequent revisions to Title 24 
and 20 codes to encourage the adoption of efficient dimming technologies. Appendix C 
provides an example of how RSE target should be set for dimming ballasts for the 2008 
revisions. This recommendation was sent to CEC Staff October, 2006. 

3. Consider requiring the installation of generic control cabling for all new buildings. This 
should be enacted in the 2008 Revision to Title 24. 

4. Consider requiring dimming ballasts for all applications for the 2011 Revision to Title 
24. 

7.6. Leverage EPAct 2005 
Promulgate advice as to how California businesses can best take advantage of the energy efficient 
lighting installation tax incentives offered as part of National EPA 2005 legislation. Provide 
advice to end-users who want to use the tax incentives from EPAct 2005 to upgrade lighting 
systems. Up to $0.60/sf are available for lighting efficiency measures that are 50% of ASHRAE 
90-1. A good summary of this topic is available at: 
http://www.aboutlightingcontrols.org/education/papers/taxdeduction3.shtml. 
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Appendix A 

State-of-the-Art Review of the Performance Characteristics of Dimming 
Ballasts 
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Introduction 
 
We show that the “full output” efficiency of the newer dimming ballasts is beginning to approach 
the efficacy of non-dimming program start ballasts but is still about 10% lower than “high 
performance” Instant Start ballasts. We present the concept of “standby losses” in dimming 
ballasts and show that most manufacturers do not identify the standby losses in their product 
literature. Then we present data which compares the relative system efficiency of all non-
dimming and dimming ballasts all on one graph so that the efficiencies of different models can be 
easily compared. 
 
Dimming Ballast Performance Issues 
Dimming ballasts share most of the same performance characteristics as their non-dimming 
brethren, but the dimming capability means that dimming ballasts have some additional 
properties that specifiers must consider if they are to use dimming ballasts effectively in the 
design process. 
If specifiers are to choose between different dimming ballast types based on efficiency, they need 
specific data from dimming ballast manufacturers.  Many dimming ballast manufacturers already 
provide ballast factors and input power in their technical data sheets. To determine the relative 
light output and actually input wattage drawn at full light output requires that the manufacturer 
list 1) the ballast factor and 2) the actual system input wattage.  To determine the relative light 
output and drawn power under maximally dimmed condition, requires that manufacturers report 
1) ballast factor at minimum light output and 2) actual power drawn at minimum light output. 
(Figure 1 shows an excerpt from a typical ballast manufacturer’s catalog that lists all the relevant 
data).  Unfortunately, some manufacturers do not supply this data, which reduces the specifier’s 
ability to predict the energy performance of a system. Because a modern dimming system may 
spend considerable time at this minimum output level, manufacturers should provide the data that 
identifies exactly what this usage is. 
 

 
 
Figure 1: The orange box highlights the input power and ballast factor data from a ballast manufacturer’s 
catalog. 
 
Standby Losses 
Some dimming ballasts also have the ability to switch off the connected lamps without switching 
off the dimming control circuitry. The lamps are usually switched off by signaling the ballast over 
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a digital bus (e.g., DALI) or, rarely, a 0-10 VDC control loop. When the ballast is in this 
“standby” state,  the lamps produce no light but the lamp/ballast/control system still consumes a 
small amount of power. This “standby” loss is analogous to the standby losses in modern 
appliances. For a typical 2 lamp T8 ballast drawing a nominal 60 watts at full output, the standby 
loss is between 1-6 watts. We have found no ballast manufacturer that quotes the standby loss 
value in their product literature. 
Dynamic Dimming Range 
The information provided by most dimming ballast manufacturers is adequate to determine the 
energy performance of the ballast under full power and fully dimmed modes. Furthermore, most 
dimming ballasts operate linearly between these two extremes. Practically however, the control 
system may impose additional limitations on the actual dimming range achievable in the field. 
To illustrate these concepts more clearly, we use a particular dimming ballast (Sylvania’s new 
PowerSense dimming ballast) as an example. As stated above almost all dimming ballast 
manufacturers list the full light output ballast factor and the associated power draw at full output. 
Many, including Sylvania also list the minimum values: i.e., the ballast factor at full dim and the 
associated power draw at that lowest level. These data for the PowerSense ballast is plotted in 
Figure 2. 
 

Ballast Factor

Input Power (watts)

.88

.05

15 58

Full Output

Fully Dimmed

Standby Loss Example:

Sylvania T8 Powersense  
 
Figure 2: Key ballast performance data plotted with input power on horizontal axis and ballast factor on 
the vertical axis. The data shown is for the Sylvania PowerSense ballast. 
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What is the performance of the ballast between the two extreme? Most dimming ballasts that we 
have measured have linear performance between these two extremes. For example, below is the 
relationship between ballast factor and input power for three different DALI dimming ballasts 
that we measured in our laboratory. Note that the relationship between light output and input 
power is quite linear. The “power-light” lines for each ballast are largely overlapping with the 
main difference being the bottom level provided. 
 

Relative Input Power vs. Relative Light Output for 3 DALI Ballasts
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Figure 3: Linear relationship between relative input power and relative light output for three different 
DALI ballasts from different manufacturers. 
 
From Figure 3, we see that a line drawn between the two extreme points is a very good 
approximation of the actual dimming curve. This curve is best measured in the lab where 
temperature conditions around the lamps can be well controlled. The dimming curve can be 
measured in the field but it is more difficult. 
 
Fitting a line to the two extreme points for our current example is shown in Figure 3. As stated 
earlier the relationship between light output and input power is linear between the two points, but 
not proportional. A proportional relationship (as shown by the line labeled “ideal dimming line 
of constant efficacy” in Figure 3) would be preferable since that would mean that the lamp-ballast 
system efficacy (expressed in lumens per watt)  does not drop as the ballast dims the lamps. 
Unfortunately, this will not be true of any practical dimming ballast for fluorescent lamps because 
of the need to maintain lamp filament power as the lamps dim.  
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Figure 4: Most dimming ballasts have a linear relationship between input power and ballast factor.  
Ideally, the relationship between input power and ballast would be proportional as indicated by the line 
marked “line of constant efficacy.” 
 
It is important to realize that the “top” and “bottom” points are a property of the ballast, not the 
control system. The control system may impose additional limitations that further restrict the 
actual achievable dimming range. 
 
Actual Dimming Range 
 
In operation, it is often desirable to restrict the dimming range either by limiting high bright the 
lamps can go or limiting how low they can be dimmed. As an example, consider the PowerSense 
ballast. In order to prevent unstable operation at full dim, the installer may set the full dim level to 
10%, not 5%. Also, if a space is overlit, the dimmer may be trimmed on the top end so that it can 
only go to .80 rather than the full .88. usually, these trim adjustments are made on the control 
system, not the ballast. Once these commissioning adjustments have been made, the dimming 
range is more restricted. As shown in Figure 1 for our example, the imposition of a .8 “top end 
trim” and a .1 “bottom end trim” restricts the power reduction range that can be practically 
achieved.  Without the trims, the system power could be maximally reduced from 58 to 15 watts 
(43 watts or 74% relative power reduction). With the trims in place, the system power can only be 
maximally reduced from 54 to 17 watts (37 watts or 68% relative power reduction). 
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Figure 5: Graph showing how “trimming” top and bottom of the dimming range reduces the effective 
power reduction achievable by the dimming ballasts. 
 
Relative System Efficiencies 
In this section, we present the results of a technical data search in which we gathered the most 
recent performance data on commercially available dimming ballasts. The purpose of this 
exercise was to compare the “full output” system efficacy of modern dimming ballasts and 
compare them the system efficacies of non-dimming “high performance” Instant Start ballasts 
and Program Start ballasts. The data for the Instant Start and Program Start ballasts was obtained 
from the Consortium for Energy Efficiency (ref). Ballast performance data for all commercially 
available dimming ballasts was collected as part of this project using manufacturer’s data as the 
source. 
The justification for using Relative System Efficiency (RSE) for this inter-comparison rather than 
the more conventional (but flawed) Ballast Efficacy Factor (BEF) is given in an Appendix. 
Table 1 compares the relative system efficiencies (RSE) of the current crop of available Instant 
Start, Program Start and Dimming ballasts on an equal basis. The average RSE of currently 
available Program Start ballasts is approximately 5.5% lower than the average RSE for High 
Performance Instant Start ballasts. 
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TABLE 1: Relative System Efficiencies (RSE) for Non-Dimming Instant Start & Program Start 
Ballasts and Dimming Ballasts 

 Instant Start Program Start Dimming 

Number of Ballasts in Sample 95 21 30 

Mean RSE 1.02 0.964 0.917 

Standard Deviation 0.02 0.036 0.049 

Maximum RSE 1.06 1.03 1.006 

Minimum RSE 0.986 0.91 0.82 

% Reduction in Mean RSE 
Relative to Instant Start 

0.0% 5.5% 10.1% 

 
In the figure below we graph the relative system efficiencies of 95 “High Performance” T8 
ballasts, 21 Program Start ballasts and 30 Dimming ballasts. 
 

Relative System Efficiencies Compared for Instant Start, Program Start 
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Figure 6: Relative system efficiencies for high performance instant start, program start, and dimming 
ballasts. 
 
 
Summary 
Dimming ballasts have improved considerably over the last few years. The “full output” 
efficiency of modern dimming ballasts is about 10% higher than older dimming ballast designs. 
The recent performance data we collected shows that the efficiency of some modern dimming 



 

 39

ballasts only trails modern Program Start ballasts by a modest 3-5%. Even the most advanced 
dimming ballasts are about 10% less efficient than “High Performance” Instant Start ballasts but 
this gap has narrowed. Not all dimming ballast manufacturer’s have improved their dimming 
ballast product performance as evidenced by the large number of dimming ballasts with poor 
efficiency (under 0.9 RSE). It suggested that California impose equipment efficiencies on 
dimming ballasts via Title 20 that eliminate those ballasts that perform below a specified RSE. 
Many, but not all, dimming ballast manufacturers supply the data necessary to evaluate the 
energy performance of competing dimming ballasts. However, some manufacturers do not list the 
performance at the bottom of the dimming range. Manufacturers should list this data as the 
performance of a dimming system cannot be predicted without it.  



 

   40

Appendix B 

 

Projected Energy Savings and Market Potential for Wireless Lighting 
Controls in the State of California 
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Introduction 
This Appendix presents an estimate of the energy savings and market potential from installing 
wireless lighting controls into CA commercial buildings. A concerted program to install wireless 
lighting controls in 60% of CA commercial buildings by 2025 would save the State over $15 
billion in avoided energy costs and create a new $2 billion market for energy-saving lighting 
controls. The environmental consequence of the program would be the equivalent of removing 14 
million cars from California roads. 
Background 
In the 1990s, magnetic fluorescent ballasts, which previously dominated US commercial 
buildings, were supplanted by more efficient electronic ballasts (and T-8 fluorescent lamps). 
Energy consumers saved of billions of dollars in energy costs as a result of this transformation to 
efficient electronic ballasts. We hypothesize that this prior success can not only be duplicated but 
even surpassed by a concerted program to retrofit all California commercial buildings (existing as 
well as new) with wireless lighting controls over a 20 year time period. This memo explores the 
implications of such a transformation on California energy consumption and the expected cost 
savings to the State. The memo also provides a quantitative estimate of the business opportunities 
for lighting companies that would be created as a result of greatly expanded sales of new lighting 
technologies to service this ambitious infrastructure modernization program. 
California Commercial Lighting Energy Usage 
To determine the total energy used for lighting in CA commercial buildings, we use [MB 
spreadsheet] for CA lighting energy consumption in 2000. This quotes California’s commercial 
building lighting was 24 BkWh in 2000, which extrapolates to 26 BkWh in 2004 and includes all 
lighting sources used in commercial buildings. To develop the baseline (“business-as-usual”) 
scenario, we assume that this usage would increase each year in proportion with the expected 
increase in CA commercial floor space.  For projected floor space increase, we have used [xiii] 
and [xiv] and scaled it to California’s commercial floor space.  
The time horizon for the current analysis is 2005 – 2025. Over this 20 year time period, the CA 
building stock is projected to increase by 33.6% or an average annual growth of 1.7%. From the 
lighting energy consumption for 2000 and the size of the commercial floor space the same year, 
we can calculate that the average lighting energy consumption per unit area (Energy Use Intensity 
or EUI) is 5.38 kWh/ft2-yr. To estimate the expected growth in energy consumption from 
building lighting systems in the absence of lighting controls, we forecast that the lighting EUI 
would slowly improve due to gradual replacement of incandescent with fluorescent sources as 
well as evolutionary improvements in fluorescent lighting system efficacy. Between 2005 and 
2025, we estimate that the lighting EUI would improve by 5%. 
Assumptions 
The assumptions made in this analysis are given in the following Table 1. A more thorough 
analysis would estimate uncertainties for all key factors and perform a sensitivity analysis that 
permutes the calculation across the range of expected uncertainties of the key variables. 
 

Table 1: Assumptions for Key Parameters Used in Estimation Model 
Parameter Estimate Unit 
CA Lighting Energy Consumption 2004 26 BkWh 
Total CA Commercial Floor space 2004 4.98 Billion square feet 
Lighting Energy Use Intensity 2004 5.38 kWh/ft2-yr 
Forecasted improvement in EUI 0.25% Per annum 
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Cost of Electricity 0.14 $/kWh 
Energy Savings from Wireless Controls 50 % 
Value of Dimming Ballast 25 $/ballast 
Area Covered by One Ballast 64 Square Feet 
Conversion from Primary to Secondary Energy 91 BkWh per Quad 

 
Market Penetration Scenarios 
We hypothesize that building lighting systems can be largely converted to efficient, intelligent 
lighting by installing wireless lighting controls in a significant fraction of commercial floor space. 
We model the expected penetration rate after the national experience with the electronic ballast in 
the 1990s.  Between 1990 and the present, the electronic ballast largely replaced the magnetic 
ballast in US commercial buildings. As of 2005, electronic ballast sales seem to be saturating at 
about 60% of the total ballast market [xv]. The historical growth of the electronic ballast is given 
in Figure 1.  
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Figure 1: The historical growth of the electronic ballast from 1988 – 2003 based on US Census data [xv]. 
As of 2003 electronic ballasts were over 60% of annual US ballast shipments effectively displacing 
magnetic ballasts in most commercial applications. 
 
At the time of this writing, annual sales of electronic ballasts are about 60% of the total annual 
ballast shipment. In terms of in-place US building stock, electronic ballasts and T-8 fluorescent 
lamps are perhaps 50% of the fluorescent lighting market. (Presumably, this will approach the 
yearly saturation (60%) in a few years). 
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Figure 2: Three market penetration scenarios for wireless lighting controls. The 60% saturation scenario 
duplicates the market success of the electronic ballast. The other scenarios are less aggressive. 
 
For the wireless lighting controls technology, we model three penetration scenarios: 
 High: Saturating at 60% of standing building stock by 2025 
 Medium: Saturating at 30% of standing building stock by 2025 
 Low: Saturating at 15% of standing building stock by 2025 
The High scenario would be approximately the same aggressive trajectory as the electronic 
ballast. (We have smoothed the actual electronic ballast yearly sales to remove some year-to-year 
anomalies). The 30% and 15% saturation curves are generated by scaling the 60% curve 
proportionally. Note that the shape of the curve consists of three parts: an initial slow rise in the 
use of controls for the first five years, a rapid increase in deployment for the next 10 – 12 years 
and finally a 3 – 5 year leveling off period as the market saturates at its final level. This 
penetration rate is more realistic in terms of market behavior than assuming the usual s-shape 
curve. 
California Energy Savings Impacts 
Using these penetration curve and the assumptions below, one can calculate the impact of 
wireless lighting controls on the energy use in the CA commercial building sector. 
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Impact of Wireless Lighting Controls on CA Commercial Lighting 
Energy (Three Market Penetration Scenarios)
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Figure 3: The estimated energy savings from deploying wireless lighting controls in CA buildings 
according to three different penetration scenarios. 
Figure 3 shows the impact of the three scenarios on projected energy consumption for lighting 
over the next 20 years. In the 30% penetration scenario, growth is largely checked until 2025, 
when usage grows again but at a lower rate than before the transformation. If lighting controls 
can achieve the same 60% saturation as electronic ballasts, lighting energy consumption 
nationally would decrease from its current level and remain lower by the end of the 
transformation. 
Now we examine the implications of each scenario, separately, on California energy usage over 
the next 20 years and simultaneously examine the benefit to the lighting control industry in terms 
of greatly increased sales of dimming electronic ballasts required to fuel the lighting system 
conversion. 
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Figure 4: The estimated California energy savings (left hand scale) from deploying wireless lighting 
controls in 60% of CA building stock by 2025. The expected yearly shipments of dimming ballasts to 
service this transformation is given on the right scale. 
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Figure 5: The estimated California energy savings (left hand scale) from deploying wireless lighting 
controls in 30% of CA building stock by 2025. The expected yearly shipments of dimming ballasts to 
service this transformation is given on the right scale.  
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Figure 6. The estimated California energy savings (left hand scale) from deploying wireless lighting 
controls in 15% of CA building stock by 2025. The expected yearly shipments of dimming ballasts to 
service this transformation is given on the right scale. 
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Table 2 summarizes the results of this analysis for the three penetration scenarios. 
 
Table 2: California Energy Savings and Expected Shipments of Lighting Ballasts for Three Market 
Penetration Scenarios 

 60% saturation 30% saturation 15% saturation 

2014    

* Energy Saved: 
** Value of Savings: 

3.9 BkWh 
$ 546 million 

1.9 BkWh 
$ 270 million  

0.95 BkWh 
$ 135 million 

2005 – 2014 Cumulative    

Energy Saved: 
Value of Savings: 

15 BkWh 
$ 2.1 billion 

7.5 BkWh 
$ 1.05 billion 

3.75 BkWh 
$ 500 million 

Ballasts sold: 
Market Value: 

26 million 
$ 660 million 

13 million 
$ 330 million 

6.5 million 
$ 165 million 

2024    

Energy Saved: 
Value of Savings: 

10.4 BkWh 
$ 1.45 billion 

5.2 BkWh 
$ 72 million 

2.6 BkWh 
$ 36 million 

2005 – 2024 Cumulative    

Energy Saved: 
Value of Savings: 

100.4 BkWh 
$ 14.1 billion 

50.2 BkWh 
$ 7 billion 

25.1 BkWh 
$ 3.5 billion 

Ballasts sold: 
Market Value: 

54 million 
$ 1.3 billion 

27 million 
$ 650 million 

13.5 million 
$ 325 billion 

 
* BkWh = One billion kilowatt-hours 
** Value of Savings assumes $0.14/kWh 
 

Manufacturer Benefits 
Lighting manufacturers who produce dimming ballasts and other lighting control devices will 
greatly expanded their market if there is a concerted effort to transform commercial building 
lighting to intelligent, energy-efficient lighting. In the previous section, we show that with 60% 
penetration of lighting controls, the lighting industry would need to produce nearly 54 million 
dimming ballasts by 2025 for just the State of California. During the prime years of the 
transformation (2011 – 2022), the industry would sell 2 - 5 million dimming ballasts annually. 
This is 2 to 5 times the current one million dimming ballasts sold annually in the entire nation. 
Since each dimming ballast will require a wireless transceiver, this will drive up sales of wireless 
transceivers in California by a similar amount (an average of 3 million units between 2011 and 
2022). These volumes will provide significant incentive for wireless transceiver manufacturers to 
lower unit prices because of greatly increased volume of sales. 
Other lighting control devices, particularly sensors (light and occupancy), switches, dimmers and 
wireless access points could easily double the volume of wireless transceivers required (to 
perhaps 7 million units annually). The total value of this new market could exceed $2.6 billion 
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(approximately $1.3 billion on wireless ballast sales and another $1.3 billion in sales of wireless 
sensors, switches and access points). 
Summary 
This analysis indicates that a concerted national program to retrofit all buildings with wireless 
lighting controls over the next 20 years could exceed the California energy savings already 
achieved by replacing magnetic ballasts with electronic ballasts. We show that an aggressive 
program to achieve 60% market saturation of wireless lighting controls by 2025 would save 
California ratepayers 10.4 BkWh in 2025 (a value of $1.4 billion annually). Furthermore, the 
cumulative savings realized in California between 2005 and 2025 would be 100 BkWh, with an 
economic value of over $14 billion. This transformation program would provide significant new 
business opportunities for lighting companies with cumulative expected sales of ballasts alone in 
the State of about $1.3 billion. 
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Appendix C 

 
Proposed Relative System Efficiency Limits for 2008 Title 24 Revision  
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To:  California Energy Commission Staff October 12, 2006 
From: Francis Rubinstein (Lawrence Berkeley National Laboratory) 
RE: Proposed Relative System Efficiency Limits for 2008 Revision to Title 24 
I propose that Staff: 

• Use Relative System Efficiency (RSE) instead of Ballast Efficacy Factor (BEF) for 
setting voluntary efficacy limits for T-8 fluorescent lamp/ballast systems.  

• Require a minimum RSE of 0.93 for dimming ballasts for T-8 fluorescent lamps. 
• Consider an interim minimum RSE for 1-lamp dimming ballasts only of 0.89.  

 

 
The remainder of this memo provides the technical justification for above proposals (2) and (3). 
The justification for replacing BEF with RSE is in [Rubinstein, Technical Memorandum: 
Replacing Ballast Efficacy Factor (BEF) with Relative System Efficiency (RSE), November 3, 
2005]. 

Relative System Efficiency (RSE) for Dimming Ballasts
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1 To convert from RSE to BEF use: BEF = (RSE x 100)/(# lamps x 32 watts) 

Proposed Relative 
System Efficiency (RSE) 

Number of T-8 Lamps 
Per Ballast 

Equivalent Ballast Efficacy 
Factor (BEF)1 

1 2.9 
2 1.45 
3 .97 

0.93 

4 .73 
0.89 1 2.78 
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The above figure shows the distribution of Relative System Efficiency (RSE) from a database of 
49 dimming ballast models [(16) 1-lamp ballasts and (33) 2, 3 or 4-lamp ballasts] as well as the 
Proposed Minimum RSE of 0.93. [Rubinstein and Kiliccote, Demand Response Lighting: A 
Scoping Study, Final Report to Demand Response Research Center, Draft October 1, 2006]. A 
minimum RSE of 0.93 would allow 19 dimming ballasts and reject 30 others. 
The 1-lamp dimming ballasts have a statistically significant lower average RSE than the 2, 3, and 
4-lamp dimming ballasts. (A one-tailed T-test of the difference of the means yields t=1.68, which 
rejects the hypothesis that the average RSE of the 1-lamp and 2-4 lamp ballasts are the same at 
higher than 98% confidence level). Because of the relatively high ballast loss for 1-lamp 
operation, there is some justification to set an Interim RSE of 0.89 for 1-lamp dimming ballasts 
only. On the other hand, there are three 1-lamp dimming ballasts in the whole sample that DO 
exceed the 0.93 level so manufacturers are capable of making a 1-lamp dimming ballast that 
complies at the higher level.  
The following table provides descriptive statistics for High Performance Instant Start, Program 
Start and Dimming Ballasts. The table shows that the average RSE for all dimming ballasts in the 
sample is about 10% less than the average RSE for the new generation HP Instant Start ballasts. 
 

 HP Instant 
Start 
(N=95) 

Program 
Start 
(N=21) 

All 
Dimming 
(N=49) 

Dimming 
2,3,4 
lamp 
(N=33) 

Dimming 1-
lamp 
(N=16) 

Number of Ballasts in 
Sample 

95 21 49 33 16 

Mean RSE 1.02 0.964 0.909 0.923 0.880 

% Reduction in Mean RSE 
Relative to Instant Start 

0.0% -5.5% -10.9% -9.5% -13.7% 

Standard Deviation 0.02 0.036 0.049 0.046 0.044 

Maximum RSE 1.06 1.03 1.006 1.006 0.940 

Minimum RSE 0.986 0.91 0.819 0.824 0.819 

 
By way of comparison, the proposed RSE limit of 0.93 for dimming ballasts is 9% lower than the 
average RSE for the HP Instant Start ballasts. 
Figure 2 shows the average RSE and other descriptive statistics for 1) High Performance Instant 
Start, 2) Program Start and 3) Dimming Ballasts. The data for the High Performance Instant Start 
and Program Start Ballasts are from Consortium for Energy Efficiency [personal communication 
with Afroz Kahn; also see www.cee1.org]. 
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Average RSEs for Dimming Ballasts Compared to High Performance Instant Start and 
Program Start Ballasts
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