Caustic Waste-Soil Weathering Reactions and their Impacts on Trace Contaminant Migration and Sequestration

Principal Investigators:

Jon Chorover (University of Arizona) Karl T. Mueller (Penn State University) Peggy A. O'Day (Arizona State University) R. Jeff Serne (Pacific Northwest National Laboratory).

Primary Minerals

Quartz, plagioclase, mica, K-feldspar, basaltic fragments

Secondary clays

Smectite, vermiculite, illite, chlorite, kaolinite

Objectives

- Determine the **weathering behavior of clays and Hanford Sediments** under the intense geochemical conditions imposed near-field by the waste leachate, including **neoformation of secondary solids**.
- Investigate long-term kinetics of Cs, Sr and I uptake during reaction and establish the extent to which they are coupled to solid phase dissolution and precipitation.
- Determine changes in the **lability/siting of contaminants** in the weathering systems over time.

Kinetic Studies: Coupled Mineral Transformation and Contaminant Sorption

Kaolinite: Dissolution and Precipitation of Si (mmol kg⁻¹ clay)

Chemical Formula: [Si₄]Al_{3.66}Fe(III)_{.07} Ti_{0.16}O₁₀(OH)₈

Kaolinite: Dissolution and Precipitation of Al (mmol kg⁻¹ clay)

XRD Patterns of Kaolinite as a Function of Reaction Time

Radionuclide Sorption Kinetics (KGa-2) Fraction Removed from Solution

Uptake of Cs and Sr During Mineral Transformation KGa-2 (mmol kg⁻¹ clay)

Uptake of Cs and Sr During Mineral Transformation SWy-2 (mmol kg⁻¹ clay)

Environmental Science and Technology Web Release Date: 15 April 2003

Linking Cesium and Strontium Uptake to Kaolinite Weathering in Simulated Tank Waste Leachate

JON CHOROVER,*^{,†} SUNKYUNG CHOI,[†] MARY KAY AMISTADI,[†] K. G. KARTHIKEYAN,[‡] GARRY CROSSON,[§] AND KARL T. MUELLER[§]

Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721, Department of Biological Systems Engineering, University of Wisconsin, Madison, Wisconsin 53706, and Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802

Weathering behavior of kaolinite was studied in batch systems under geochemical conditions characteristic of tank waste released to the vadose zone at the Hanford Site, WA (0.05 M AI_T, 2 M Na⁺, 1 M NO₃⁻, pH ~14, Cs⁺ and Sr²⁺ present as co-contaminants). Time series experiments were conducted from 0 to 369 d, with initial Cs⁺ and Sr²⁺ concentrations ranging from 10⁻⁵ to 10⁻³ M. Dissolution of kaolinite increased soluble Si and AI to maximum levels at 7 d (Cs and Sr concentrations of 10⁻⁵ and 10⁻⁴

important U.S. Department of Energy sites (e.g., Hanford, WA; Savannah River, GA; Oak Ridge, TN) is composed of solutions that are unique in having extremely high pH and ionic strength (7). Contaminant sorption (defined here as uptake to the solid phase) under these conditions is likely to be affected by mineral transformation reactions that are not well-known.

The effect of alkaline solutions on kaolinite transformation has been investigated previously (8-12). For example, Bauer et al. (12), examined kaolinite weathering over several months at 35 and 80 °C in 0.1-4 M KOH solutions and at solidsolution ratios ranging from 1:80 to 1:240. They reported the formation of illite, followed by KI-zeolite and phillipsite and then precipitation of the stable product K-feldspar. The aqueous chemistry of caustic tank waste leachate is dominated by Na⁺, $Al(OH)_4^-$, and NO_3^- with variable quantities of the radionuclides ¹³⁷Cs and ³⁰Sr. The effects of these constituents on kaolinite transformation are unknown. Furthermore, most other studies of kaolinite dissolution have focused on initial dissolution rates at pH < 12 and conditions far from equilibrium with respect to solid-phase products (13-20). As a result, there is a lack of information on dissolution and precipitation reactions in aqueous systems representative of leaking tank waste that interacts with contaminated sediments at several U.S. DOE sites.

In this study, macroscopic and spectroscopic approaches were integrated to investigate kaolinite weathering and contaminant uptake under conditions representative of waste leachate at the Hanford Site, WA.

Solid-State NMR to Study Weathered Clay Samples

²⁷AI MAS NMR Spectra of Kaolinite Transformation

Aluminum Coordination in Kaolinite and Zeolite Structures

AI Coordination Ratio from ²⁷AI MAS NMR

Quantitative Rate Calculations

Tabulated below are first order rate constants (d⁻¹) and halflives (d) for Cs sorption and for kaolinite weathering in STWL. Weathering rates were calculated from ratio of $[Al^{IV}/(Al^{IV}+Al^{VI})]$ MAS NMR peak intensities of reacted solids. All regressions resulted in R² > 0.8 and p < 0.01.

Cs_0 and Sr_0	Rate Constant, k (d ⁻¹)		Reaction half-life, $t_{1/2}$ (d)	
(mol kg ⁻¹)	<u>Cs sorption</u>	²⁷ <u>Al NMR</u>	<u>Cs sorption</u>	²⁷ <u>Al NMR</u>
10-5	4.09 x 10 ⁻³	3.51 x 10 ⁻³	169	197
10-4	1.93 x 10 ⁻³	3.42 x 10 ⁻³	359	203
10-3	0.99 x 10 ⁻³	1.97 x 10 ⁻³	699	351

Advanced Solid-State NMR Approaches: MQMAS

L. Frydman and J. S. Harwood, J. Am. Chem. Soc. 117, 5367 (1995)

- correlation of isotropic dimension with MAS dimension
- spinning at 54.74°
- averages away second-order quadrupolar effects

see J. M. Egan and K. T. Mueller, J. Phys. Chem. B 104, 9580 (2000)

²⁷AI MQMAS of Weathered Kaolinite Sample

Variable-Field NMR of ²⁷AI: Resolution for Quantification

²⁹Si MAS NMR Studies of Kaolinite Transformation

Frequency (ppm from TMS)

Frequency (ppm from $Al(H_2O)_6^{3+}$)

Advanced Solid-State NMR Approaches: One- and Two-Dimensional HETCOR

 Heteronuclear correlation experiments: use couplings between the nuclei to probe interatomic interactions

Variable-Contact Cross-Polarization Experiments

Variation of contact time for long radiofrequency pulses provides discrimination of different sources of polarization transfer.

vary length of pulses

Variable-Contact Cross-Polarization Experiments

One-Dimensional Heteronuclear Correlation Experiments: Spectral Editing Based on Dipolar Interactions

Heteronuclear Correlation NMR Studies: ²⁹Si/¹³³Cs REDOR Experiments

Principal Findings from 1999 EMSP Project

- Caustic waste-soil weathering reactions result in Si release and neoformation of "secondary" solids that sequester Cs and Sr into increasingly recalcitrant forms.
- The secondary solids comprise zeolites chabazite, nitrate sodalite and nitrate cancrinite, depending upon system composition and duration of reaction.
- Specimen clay systems differ in their dissolution kinetics and, therefore, the rate of secondary solid formation.
- Specimen clays provide a baseline for interpretation of weathering processes occurring in heterogeneous sediment samples.

OH- Promoted Dissolution of Layer Silicates in STWL

Sr EXAFS Data: Change in Sr-Containing Environments

Primary Objectives of the Renewal 2003 EMSP Project

- Measure the kinetics of coupled clay transformation reactions and radionuclide sorption along an expanded gradient in solution chemical conditions and soil saturation.
- Determine the molecular nature of contaminant binding sites in neo-formed precipitates and reacted clays/sediments by conjunctive use of microscopy and spectroscopy.
- Determine the rate and extent of contaminant release by desorption, dissolution and dispersion of weathered clays at circumneutral pH (i.e., establish the stability of sorbent-sorbate interactions after removal of the waste leachate source).

Acknowledgements

- Department of Energy EMPSP Program: Grant DE-FG07-99ER15012
- National Science Foundation: grants for equipment purchases (DMR-9413674 and CHE-9601572)
- Penn State University: contributions to purchases of NMR spectrometers
- The EMSL NMR User Facility at PNNL: access to 750 and 800 MHz NMR spectrometers
- Alfred P. Sloan Foundation: support to KTM and GSC

Mueller Research Group Solid-State NMR of Complex Materials

