
A Query-Focused Multi-Document Summarizer

Based on Lexical Chains

Jing Li＊†, Le Sun＊
Institute of Software＊

Chinese Academy of Sciences
{lijing05, sunle}@iscas.cn

Chunyu Kit†, Jonathan Webster†
Dept. of Chinese, Translation & Linguistics†

City University of Hong Kong
{ctckit, ctjjw}@cityu.edu.hk

Abstract

This paper presents our work on query-
focused multi-document summarization with the
enhanced IS_SUM system. We focus on improv-
ing its lexical chain algorithm for efficiency en-
hancement, applying the WordNet for similarity
calculation and adapting it to query-focused
multi-document summarization. We present its
performance in terms of its official DUC2007
evaluation results together with some other im-
provements.

1 Introduction

The IS_SUM system was initially designed
for DUC2005 [2] and was further developed for
DUC2006 [3]. For DUC2007 we tried to carry
out a number of necessary improvements aimed
at enhancing its efficiency and performance. We
continue to use the existing lexical chain algo-
rithm as our major means for extraction. Several
modifications have been made to the algorithm
for ameliorating its efficiency and adapting it to
query-focused multi-document summarization.
The method for calculating word similarity is
replaced by a more reasonable one.

In the remaining sections of this paper, we
will first introduce the modified lexical chain
algorithm for summarization in Section 2. Sec-
tion 3 will present our system’s architecture and
Section 4 its evaluation results. Section 5 con-
cludes the paper and discusses future work.

2 Lexical Chain Algorithm

In 1991, Morris and Hirst first gave a logical
description of the implementation of lexical
chain using Roget dictionary [4]. Hirst and Onge
used WordNet for lexical chain construction and
adopted a strategy to choose a word’s sense with

respect to those words occurring ahead of it [5].
An optimization strategy was put forward by
Barzilay and Elhadad in [6] to insure that all
senses of a candidate word be properly consid-
ered. It was applied to generate coherent sum-
maries for single document summarization.

Our DUC2007 task is to carry out query-
focused multi-document summarization using
lexical chain. Following our previous work for
DUC 2006, we move on to dealing with a few
specific problems concerning the application of
Barzilay and Elhadad’s strategy, including the
time/space cost increasing dramatically along the
size of input documents, and the weight of query
that the strategy does not handle. Therefore we
need to take care of them in our implementation.

2.1 Candidate Words

After text preprocessing, words are extracted
from input documents as candidate words for
building lexical chains. Three types of words are
selected, namely, nouns, noun compounds and
name entities. We identify nouns with the aid of
Stanford tagger [7] for POS tagging, develop a
simple script for recognizing adjective-noun and
noun-noun compounds in each document, fol-
lowing the practice in [6], and use GATE [8] to
annotate name entities. Nouns and noun com-
pounds are used to build lexical chains directly,
whereas name entities are used for sentence
selection.

2.2 Similar Senses

For lexical chain building we have to deter-
mine whether a word is semantically related to
any others. We use the WordNet to find out such
relationships between words. In the WordNet,
nouns with the same meaning are grouped into a
synset, and synsets are organized into a hierar-

chical lexical tree in terms of their semantic rela-
tions, as exemplified in Figure 1 below [9].

Figure 1. WordNet’s lexical tree for nouns

Any synset as a leaf node in the tree has a path

through its super-ordinate synsets back to the
root, e.g., oak @-> tree @-> plant @-> organism
@-> entity. The “@->” operation is an upward
move in the lexical tree, going from specific to
generic [9].

There are two methods to calculate the simi-
larity between two words with respect to the
lexical tree.

1) The similarity of two words is assessed by
the depth of their maximal co-ancestor, i.e.,
the root of the minimal tree that subsumes
both words. That is,

where ci and cj are the synsets to which the
two words belong, respectively, c* is their
maximal co-ancestor, d(c) stands for the
depth of the synset c, and ck ranges over all
synsets in the synset hierarchy. Intuitively,
if ci = cj, their similarity is 1. [9]

2) The similarity of two words is calculated as
the ratio of their commonality weight and
positional weight, formally defined as

where com(w1…wn) and pos(w1…wn) are
the commonality and positional weights of
words w1…wn, respectively. The weight of
a word is defined as its depth in the lexical
tree. This similarity ranges from 0 to 1,
with 1 for two identical words and 0 for
words with no common ancestor.

A problem with the first method is that the
similarity of ci and cj may equal that of c* and cj,
if d(ci) < d(cj). To avoid this, we opt for the sec-
ond choice.

2.3 Lexical Chain Building

Lexical chain building is conducted in two
steps, single document chain building and
multi-chain building.

The purpose of the first step is to generate the
strongest lexical chains to represent the main
themes of a document [6]. It is carried out by the
following procedure.

1) Sort the candidate words in the descending
order of frequency.

2) Retrieve the next most frequent word’s
sense set from the WordNet and create a
chain for each sense.

3) For each chain so created, search through
the remaining words for those that can be
inserted into the chain according to the
similarity between their synsets.

4) Repeat 2) and 3) until half of the candidate
words have been processed.

5) Merge the resulting chains; score the final
chains.

We give a higher priority to the words with a
higher frequency, because they can strengthen
the score of their chains. The strongest chains
often contain the most frequent words. In this
way, we can get the strongest chains for a docu-
ment. Also, every word in a chain has a specific
sense, bearing no ambiguity.

In the second step for multi-chain building,
we merge all strongest chains from each docu-
ment into a new chain set as the final result of
lexical chain building. It is implemented as fol-
lows:

1) Select the strong chains from the existing
chain sets following the “Strength Crite-
rion” [6].

2) Merge these chains and remove some of
them to insure that one word occurs once in
each chain. Score and sort the resulting
chains.

Repeated words are not removed until this step.
Because keeping more distinct words in the pre-
vious steps would keep a better chance in this
step for merging multi-chains with at least a
common word and arriving at a better represen-
tation of the main themes of the input docu-
ments.

2.4 Summary Generation

Our summarizer is based on sentence extrac-
tion with the aid of lexical chains. We score a
candidate sentence with the following formula

and extract sentences with the highest scores:

where P(chain) is the sum of the scores of the
chains whose words come from the candidate
sentence, P(query) is the sum of the co-occur-
rences of key words in a topic and the sentence,
and P(nameentity) is the number of name entities
existing in both the topic and the sentence. Each
score is normalized first. We select the sentence
with the next highest score until reaching the
word number limit for a summary.

In our experiment, P(query) and P(nameentity)
are found to affect the system’s performance
remarkably. Empirically, the three coefficients α,
β and γ are set to 0.2, 0.3 and 0.5, respectively.

Comparing the manual summaries with our
machine-generated ones, we find that the manual
ones contain more short sentences and, accord-
ingly, cover more content within a preset number
of words. We resort to sentence compression for
possible improvement. A sentence is first parsed
into a syntactic tree using Charniak’s parser [12],
and then passed to a sentence compressor [11]
for core word extraction. Unfortunately, the sen-
tence compressor sometimes destroys the back-
bone structure of a sentence or returns too few
words. Even so, our submission to DUC2007
could have been better if such sentence com-
pression were applied. Certainly, a better sen-
tence compressor is needed for our summarizer.

3 System Architecture

The IS_SUM system consists of 3 basic mod-
ules for preprocessing, modeling and summari-
zation, respectively, as illustrated in Figure 2,
where the arrows show the data flow in the sys-
tem.

Figure 2. IS_SUM modules

3.1 Text Preprocessing

Each input document undergoes necessary
text preprocessing, including sentence splitting,

lemmatization, word counting, POS tagging,
noun compound recognition and name entity
annotation. The preprocessing outputs a candi-
date set of words for lexical chain construction.

3.2 Modeling

A set of lexical chains are built for each docu-
ment with the algorithm given above. Then, the
resulting chain sets are merged for multi-docu-
ment summarization. Two chains are merged if
they have at least a common word with the same
sense. Finally, we got a merged chain set for
each input document.

3.3 Summarization

Each candidate sentence is scored first with
the scoring scheme given above in Section 2.4.
Then, the sentence with the next highest score is
recursively selected until the total number of
words has reached a given limit, i.e., 250. If
sentence compression were applied, long sen-
tences (>30 words) would be parsed by a syntac-
tic parser and then compressed into short ones
by a sentence compressor as a preparation for
sentence selection.

4 Evaluation

The two official evaluation results for our sys-
tem in DUC2007 are presented in this section as
follows.

4.1 Manual Evaluation (Linguistic Quality)

Table 1 and Table 2 present the linguistic
quality scores for our system in DUC2006 and
DUC2007 respectively. The linguistic quality is
judged in terms of grammaticality, non-redun-
dancy, referential clarity, focus, structure and
coherence, identified respectively by L1, L2, ...
and L5 in the tables.

Table 1 IS_SUM’s average linguistic quality in DUC2006

System L1 L2 L3 L4 L5

IS_SUM 3.96 4.36 3.24 3.49 2.67

Table 2 IS_SUM’s average linguistic quality in DUC2007

System L1 L2 L3 L4 L5

IS_SUM 1.69 3.44 2.22 2.47 1.4

The average linguistic quality scores in

DUC2007 are worse than before. Lacking sen-
tence compression is one of the causes. In gen-
eral, shorter sentences are more preferable in a

summary, as indicated by the comparison of our
linguistic quality evaluation results in DUC 2005,
2006 and 2007.

4.2 ROUGE Evaluation

Table 3 shows the ROUGE scores for our
summarizer. In general, the performance of our
system this year is about the same as last year. A
main reason is that many modifications for im-
provement were not finished in time.

Table 3 Our ROUGE scores

System ROUGE-2 ROUGE-SU4

Highest 0. 12448 0.17711

IS_SUM 0.08039 0.13503

Baseline 0.06039 0.10507

Table 4 gives the ROUGE evaluation of our

system after the modifications. This performance
could probably have put it very close to rank 17
among 32 in DUC2007.

Table 4 Our ROUGE scores after modifications

System ROUGE-2 ROUGE-SU4

Highest 0. 12448 0.17711

IS_SUM 0.09848 0.14801

Baseline 0.06039 0.10507

5 Conclusion and Future Work

Our work for DUC2007 shows that lexical
chain method is useful in extracting important
sentences. Unfortunately, it has not illustrated
any advantage in eliminating redundant content
units and/or responding to queries. In our future
work, we will try some other query analysis
methods like agent finding and domain analysis
and also explore effective approaches to query
expansion for performance enhancement.

6 Acknowledgment

The research work described in this paper was
partially supported by City University of Hong
Kong through the Strategic Research Grant
#7001879.

Reference

[1] DUC 2005/2006/2007 http://duc.nist.gov.
[2] Zhou, Q., L. Sun, and J.-Y. Nie. 2005. IS_SUM: A

multi-document summarizer based on document

index graphic and lexical chains. DUC2005.
[3] Zhou, Q., L. Sun and Y. Lv. 2006. ISCAS at DUC

2006. DUC 2006.
[4] Morris, J., and G. Hirst. 1991. Lexical cohesion

computed by thesaural relations as an indicator of
the structure of text. Computational Linguistics
17(1): 21-48.

[5] Hirst, G., and D. St. Onge. 1998. Lexical chains as
representation of context for the detection and
correction of malapropisms. In Fellbaum, C. (ed.),
WordNet: An electronic lexical database, pp. 305-
332. Cambridge, MA: MIT Press.

[6] Barzilay, R., and M. Elhadad. 1997. Using lexical
chains for summarization. ACL/EACL-97 Summa-
rization Workshop, pp.10-18, Madrid.

[7] The Stanford Natural Language Processing Group
http://nlp.stanford.edu/software/tagger.shtml.

[8] GATE http://gate.ac.uk.
[9] Huang, G., and W. Liu. 2004. An online adaptive

method for personalization of search engines. Web
Information Systems – WISE 2004, pp.422-427,
LNCS 3306.

[10] Maynard, D., and S. Ananiadou. 2000. TRUCKS:
A model for automatic multi-word term recogni-
tion, Journal of Natural Language Processing,
8(1):101-126

[11] Balazer, J. 2005. Sentence compression using a
machine learning technique, http://www.eecs.
umich.edu/~balazer/sc/.

[12] Charniak, E., S. Goldwater, and M. Johnson.
1998. Edge-based best-first chart parsing. In Pro-
ceedings of the Sixth Workshop on Very Large
Corpora, pp.127-133, Montreal.

http://duc.nist.gov/
http://nlp.stanford.edu/software/tagger.shtml
http://gate.ac.uk/
http://www.eecs/

	A Query-Focused Multi-Document Summarizer Based on Lexical Chains
	Abstract
	1 Introduction
	2 Lexical Chain Algorithm
	2.1 Candidate Words
	2.2 Similar Senses
	2.3 Lexical Chain Building
	2.4 Summary Generation
	3 System Architecture
	3.1 Text Preprocessing
	3.2 Modeling
	3.3 Summarization
	4 Evaluation
	4.1 Manual Evaluation (Linguistic Quality)
	4.2 ROUGE Evaluation
	5 Conclusion and Future Work
	6 Acknowledgment
	Reference

