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Abstract 

This paper presents our work on query-    
focused multi-document summarization with the 
enhanced IS_SUM system. We focus on improv-
ing its lexical chain algorithm for efficiency en-
hancement, applying the WordNet for similarity 
calculation and adapting it to query-focused 
multi-document summarization. We present its 
performance in terms of its official DUC2007 
evaluation results together with some other im-
provements.  

1 Introduction 

The IS_SUM system was initially designed 
for DUC2005 [2] and was further developed for 
DUC2006 [3]. For DUC2007 we tried to carry 
out a number of necessary improvements aimed 
at enhancing its efficiency and performance. We 
continue to use the existing lexical chain algo-
rithm as our major means for extraction. Several 
modifications have been made to the algorithm 
for ameliorating its efficiency and adapting it to 
query-focused multi-document summarization. 
The method for calculating word similarity is 
replaced by a more reasonable one.  

In the remaining sections of this paper, we 
will first introduce the modified lexical chain 
algorithm for summarization in Section 2. Sec-
tion 3 will present our system’s architecture and 
Section 4 its evaluation results. Section 5 con-
cludes the paper and discusses future work. 

2 Lexical Chain Algorithm 

In 1991, Morris and Hirst first gave a logical 
description of the implementation of lexical 
chain using Roget dictionary [4]. Hirst and Onge  
used WordNet for lexical chain construction and 
adopted a strategy to choose a word’s sense with 

respect to those words occurring ahead of it [5]. 
An optimization strategy was put forward by 
Barzilay and Elhadad in [6] to insure that all 
senses of a candidate word be properly consid-
ered. It was applied to generate coherent sum-
maries for single document summarization.  

Our DUC2007 task is to carry out query-   
focused multi-document summarization using 
lexical chain. Following our previous work for 
DUC 2006, we move on to dealing with a few 
specific problems concerning the application of 
Barzilay and Elhadad’s strategy, including the 
time/space cost increasing dramatically along the 
size of input documents, and the weight of query 
that the strategy does not handle. Therefore we 
need to take care of them in our implementation.  

2.1 Candidate Words 

After text preprocessing, words are extracted 
from input documents as candidate words for 
building lexical chains. Three types of words are 
selected, namely, nouns, noun compounds and 
name entities. We identify nouns with the aid of 
Stanford tagger [7] for POS tagging, develop a 
simple script for recognizing adjective-noun and 
noun-noun compounds in each document, fol-
lowing the practice in [6], and use GATE [8] to 
annotate name entities. Nouns and noun com-
pounds are used to build lexical chains directly, 
whereas name entities are used for sentence   
selection.  

2.2 Similar Senses 

For lexical chain building we have to deter-
mine whether a word is semantically related to 
any others. We use the WordNet to find out such 
relationships between words. In the WordNet, 
nouns with the same meaning are grouped into a 
synset, and synsets are organized into a hierar-



chical lexical tree in terms of their semantic rela-
tions, as exemplified in Figure 1 below [9]. 
 

 
Figure 1. WordNet’s lexical tree for nouns  

 
Any synset as a leaf node in the tree has a path 

through its super-ordinate synsets back to the 
root, e.g., oak @-> tree @-> plant @-> organism 
@-> entity. The “@->” operation is an upward 
move in the lexical tree, going from specific to 
generic [9]. 

There are two methods to calculate the simi-
larity between two words with respect to the 
lexical tree. 

1) The similarity of two words is assessed by 
the depth of their maximal co-ancestor, i.e., 
the root of the minimal tree that subsumes 
both words. That is, 

 
where ci and cj are the synsets to which the 
two words belong, respectively, c* is their 
maximal co-ancestor, d(c) stands for the 
depth of the synset c, and ck ranges over all 
synsets in the synset hierarchy. Intuitively, 
if ci = cj, their similarity is 1. [9] 

2) The similarity of two words is calculated as 
the ratio of their commonality weight and 
positional weight, formally defined as  

 
where com(w1…wn) and pos(w1…wn) are 
the commonality and positional weights of 
words w1…wn, respectively. The weight of 
a word is defined as its depth in the lexical 
tree. This similarity ranges from 0 to 1, 
with 1 for two identical words and 0 for 
words with no common ancestor. 

A problem with the first method is that the 
similarity of ci and cj may equal that of c* and cj, 
if d(ci) < d(cj). To avoid this, we opt for the sec-
ond choice.  

2.3 Lexical Chain Building 

Lexical chain building is conducted in two 
steps, single document chain building and 
multi-chain building.  

The purpose of the first step is to generate the 
strongest lexical chains to represent the main 
themes of a document [6]. It is carried out by the 
following procedure. 

1) Sort the candidate words in the descending 
order of frequency. 

2) Retrieve the next most frequent word’s 
sense set from the WordNet and create a 
chain for each sense. 

3) For each chain so created, search through 
the remaining words for those that can be 
inserted into the chain according to the 
similarity between their synsets.  

4) Repeat 2) and 3) until half of the candidate 
words have been processed. 

5) Merge the resulting chains; score the final 
chains. 

We give a higher priority to the words with a 
higher frequency, because they can strengthen 
the score of their chains. The strongest chains 
often contain the most frequent words. In this 
way, we can get the strongest chains for a docu-
ment. Also, every word in a chain has a specific 
sense, bearing no ambiguity. 

In the second step for multi-chain building, 
we merge all strongest chains from each docu-
ment into a new chain set as the final result of 
lexical chain building. It is implemented as fol-
lows: 

1) Select the strong chains from the existing 
chain sets following the “Strength Crite-
rion” [6].  

2) Merge these chains and remove some of 
them to insure that one word occurs once in 
each chain. Score and sort the resulting 
chains. 

Repeated words are not removed until this step. 
Because keeping more distinct words in the pre-
vious steps would keep a better chance in this 
step for merging multi-chains with at least a 
common word and arriving at a better represen-
tation of the main themes of the input docu-
ments.  

2.4 Summary Generation 

Our summarizer is based on sentence extrac-
tion with the aid of lexical chains. We score a 
candidate sentence with the following formula 



and extract sentences with the highest scores: 

 

where P(chain) is the sum of the scores of the 
chains whose words come from the candidate 
sentence, P(query) is the sum of the co-occur-
rences of key words in a topic and the sentence, 
and P(nameentity) is the number of name entities 
existing in both the topic and the sentence. Each 
score is normalized first. We select the sentence 
with the next highest score until reaching the 
word number limit for a summary. 

In our experiment, P(query) and P(nameentity) 
are found to affect the system’s performance 
remarkably. Empirically, the three coefficients α, 
β and γ are set to 0.2, 0.3 and 0.5, respectively. 

Comparing the manual summaries with our 
machine-generated ones, we find that the manual 
ones contain more short sentences and, accord-
ingly, cover more content within a preset number 
of words. We resort to sentence compression for 
possible improvement. A sentence is first parsed 
into a syntactic tree using Charniak’s parser [12], 
and then passed to a sentence compressor [11] 
for core word extraction. Unfortunately, the sen-
tence compressor sometimes destroys the back-
bone structure of a sentence or returns too few 
words. Even so, our submission to DUC2007 
could have been better if such sentence com-
pression were applied. Certainly, a better sen-
tence compressor is needed for our summarizer. 

3 System Architecture 

The IS_SUM system consists of 3 basic mod-
ules for preprocessing, modeling and summari-
zation, respectively, as illustrated in Figure 2, 
where the arrows show the data flow in the sys-
tem. 
 

 

Figure 2. IS_SUM modules 

3.1 Text Preprocessing 

Each input document undergoes necessary 
text preprocessing, including sentence splitting, 

lemmatization, word counting, POS tagging, 
noun compound recognition and name entity 
annotation. The preprocessing outputs a candi-
date set of words for lexical chain construction.  

3.2 Modeling 

A set of lexical chains are built for each docu-
ment with the algorithm given above. Then, the 
resulting chain sets are merged for multi-docu-
ment summarization. Two chains are merged if 
they have at least a common word with the same 
sense. Finally, we got a merged chain set for 
each input document. 

3.3 Summarization 

Each candidate sentence is scored first with 
the scoring scheme given above in Section 2.4. 
Then, the sentence with the next highest score is 
recursively selected until the total number of 
words has reached a given limit, i.e., 250. If 
sentence compression were applied, long sen-
tences (>30 words) would be parsed by a syntac-
tic parser and then compressed into short ones 
by a sentence compressor as a preparation for 
sentence selection.  

4 Evaluation 

The two official evaluation results for our sys-
tem in DUC2007 are presented in this section as 
follows. 

4.1 Manual Evaluation (Linguistic Quality) 

Table 1 and Table 2 present the linguistic 
quality scores for our system in DUC2006 and 
DUC2007 respectively. The linguistic quality is 
judged in terms of grammaticality, non-redun-
dancy, referential clarity, focus, structure and 
coherence, identified respectively by L1, L2, ... 
and L5 in the tables. 
 

Table 1 IS_SUM’s average linguistic quality in DUC2006 

System L1 L2 L3 L4 L5 

IS_SUM 3.96 4.36 3.24 3.49 2.67

 
Table 2 IS_SUM’s average linguistic quality in DUC2007 

System L1 L2 L3 L4 L5 

IS_SUM 1.69 3.44 2.22 2.47 1.4 

 
The average linguistic quality scores in 

DUC2007 are worse than before. Lacking sen-
tence compression is one of the causes. In gen-
eral, shorter sentences are more preferable in a 



summary, as indicated by the comparison of our 
linguistic quality evaluation results in DUC 2005, 
2006 and 2007.  

4.2 ROUGE Evaluation 

Table 3 shows the ROUGE scores for our 
summarizer. In general, the performance of our 
system this year is about the same as last year. A 
main reason is that many modifications for im-
provement were not finished in time. 
 

Table 3 Our ROUGE scores 

System ROUGE-2 ROUGE-SU4 

Highest 0. 12448 0.17711 

IS_SUM 0.08039 0.13503 

Baseline 0.06039 0.10507 

 
Table 4 gives the ROUGE evaluation of our 

system after the modifications. This performance 
could probably have put it very close to rank 17 
among 32 in DUC2007.  
 

Table 4 Our ROUGE scores after modifications 

System ROUGE-2 ROUGE-SU4 

Highest 0. 12448 0.17711 

IS_SUM 0.09848 0.14801 

Baseline 0.06039 0.10507 

 

5 Conclusion and Future Work 

Our work for DUC2007 shows that lexical 
chain method is useful in extracting important 
sentences. Unfortunately, it has not illustrated 
any advantage in eliminating redundant content 
units and/or responding to queries. In our future 
work, we will try some other query analysis 
methods like agent finding and domain analysis 
and also explore effective approaches to query 
expansion for performance enhancement.  
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