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ABSTRACT 
Energy is dissipated in mechanical systems in several forms. 
The major contributor to damping in bolted lap joints is 
friction, and the level of damping is a function of stress 
distribution in the bearing surfaces. This study examines the 
effects of bearing surface configuration on lap joint energy 
dissipation. The examination is carried out through the 
analysis of experimental results in a nonlinear framework. 
Then finite element models are constructed in a nonlinear 
framework to simulate the results. The experimental data 
were analyzed using piecewise linear log decrement. 
Phenomenological and non-phenomenological mathematical 
models were used to simulate joint behavior. Numerical 
results of experiments and analyses are presented. 
 
NOMENCLATURE 
[m]   mass matrix 
[c]   linear viscous damping matrix 
[k]   stiffness matrix 
{x}   response vector   

),(R ξϕξϕ &
11   nonlinear friction force 

cF,  σ    Dahl model parameters 

dv,v,,,,, 021010 ααασσ  LuGre model parameters 
 
INTRODUCTION 
All mechanical systems exhibit damping characteristics. 
These characteristics can be the result of (1) energy 
dissipation within the material of the system,  (2) radiation of 
energy into the surrounding medium (air, water, soil, the 
system itself, and other mechanical devices), (3) the 
frictional interaction between elements of a structure and 
consequent energy dissipation at the microscopic or 
macroscopic level due to roughness of the material 
(asperities), and (4) components such as dampers that are 
designed to remove energy from a system in a controlled 
manner. (Thomson, 1988) 
 
Friction is present in mechanical systems where relative 
motion occurs at one or more physical interfaces between 
surfaces in contact. The presence of friction in mechanical 
systems can be desirable or detrimental, depending on the 

type of system under consideration. Friction is a nonlinear 
phenomenon and, therefore, can cause tracking errors, limit 
cycles, steady-state errors, and undesired stick-slip motion. 
As well, friction leads to energy dissipation, which results in 
diminished motion, and this can influence the reliability of the 
system. According to Olsson, et al. (1998) many different 
mechanisms influence the effects of friction such as contact 
geometry and topology, properties of the surface materials of 
the bodies, and the presence of lubrication.  
 
Both macro- and micro-slip result in energy dissipation in 
mechanical systems and are frequently the dominant 
damping mechanisms in structures.  Macro-slip occurs in a 
lap joint when there is relative motion over the contact area 
between two surfaces, and does not occur until the two 
surfaces are pulled in opposite direction by a sufficiently 
large force. Micro-slip occurs in a lap joint when relative 
motion occurs over any portion (either large or very small) of 
the contact area between adjacent surfaces. 
    
Bolted lap joints are used in a variety of applications ranging 
from bridges to aircraft structures because they are 
inexpensive and easy to fabricate. This investigation 
examines the effects of stress distribution on lap joint energy 
dissipation. To do so, washers are used to alter the stress 
distribution at the bearing surfaces.  Relationships involving 
energy dissipation are determined by performing three 
experiments, in an attempt to validate two hypotheses. The 
hypotheses are: (1) That the local equivalent linear damping 
(and therefore energy dissipation) is a function of the 
amplitude at low levels of motion. (We anticipate that at low 
levels of motion energy dissipation tends to increase with 
amplitude of motion.), (2) The equivalent linear damping 
(and, therefore, energy dissipation) in a lap joint is a function 
of the bearing area over which micro-slip can potentially 
occur. (We anticipate that for small bearing areas, energy 
dissipation tends to increase as a function of area.) 
 
The specimen that was used in the experiments consists of 
two beams connected by two plates bolted together. A 
schematic of the specimen is shown in Figure 1. The beam 
and plate interfaces create the desired lap joints to be 
analyzed and tested.  



 
 

 
Figure 1: Schematic of Jointed Beam Specimen 

 
 
Each experiment was performed according to the procedure 
outlined in a later section. An impact hammer was used to 
excite the structure, and the dynamic response was 
measured. The excited beam exhibits response amplitudes 
characterized by monotonic decay, and the first mode shape 
resembles the schematic shown in Figure 2. In addition the 
locations where washers were added in some of the 
experiments are shown by capital letters.  
 
 

 
 

Figure 2: First Excited Modal Shape of the Beam 
 
 

In the first experiment the friction effects on dynamic 
response corresponding to the absence of any washers at A 
and B were investigated. This configuration established the 
greatest possible bearing area where micro-slip can 
potentially occur. The second experiment involved placing 
large diameter washers at A and B in the lap joints. This 
configuration diminishes the bearing area where micro-slip 
can occur. The third experiment involved placing small 
diameter washers at A and B. This final configuration further 
diminishes the bearing area where micro-slip can occur.  
 
In order to predict the characteristic behavior in frictional 
joints an accurate frictional model is required. There have 
been numerous models proposed ranging from static to 
dynamic models based on phenomenological and non-
phenomenological observations of sliding friction. Most of 
the existing models use classical friction. These are 
acceptable for high velocity applications, but for low velocity 
applications these models are not sufficient. In this paper we 
consider two friction models for the mathematical simulation 
of the experimental results. 
 
The first model considered to represent friction in the lap 
joints is the Dahl model (Dahl, 1976). The Dahl model, which 
was developed to simulate control systems with friction, was 
constructed with reference to the stress-strain curve in 
classical mechanics. The friction force in this model is only a 
function of the displacement and the sign of the velocity. 
Therefore, the model is considered to be rate independent 
and as a result does not capture the Stribeck effect (Gaul 
and Nitsche), a rate dependent phenomenon. The model 
does not account for stiction.  
 
The second friction model considered to describe the friction 
in the bolted lap joints is the LuGre model (Olsson, et al. 

1998). The LuGre model (Lund-Grenoble) combines the 
effects of the Dahl model and the bristle model (Haessing 
and Friedland, 1991) and has more parameters than the 
Dahl model. Therefore, it should have the potential to model 
joint friction more accurately. This model accounts for both 
the Stribeck effect and stiction.  
 
In the following sections we (1) quantitatively describe the 
principles associated with the energy dissipation in the 
micro-slip domain, (2) describe the experimental 
configuration and the testing and data analysis procedures 
used for the experiments, (3) describe the two damping 
models and an approximate finite element model created to 
simulate the experimental findings, and (4) present the 
experimental and analytical results. Finally, conclusions and 
recommendations for future investigations are offered.   
 
PRINCIPLES OF ENERGY DISSIPATION IN 
MICRO-SLIP 
Structures with lap joints display higher damping than 
analogous structures with monolithic construction in place of 
lap joints because friction occurs in lap joints. This friction 
can be modeled in many different ways; however, for the 
purpose of this discussion, consider Coulomb friction.  
Coulomb friction can be explained using the simple model in 
Figure 3. 
 

 
Figure 3: Simple Coulomb Friction Model 

 
Friction occurs at the interface between the block and the 
rigid surface. P is an external lateral force, and q the normal 
force acting on a rigid block. No displacement occurs, in 
Coulomb friction, when sqP µ< , where sµ is the coefficient 
of static friction. However, once P exceeds the limiting 
Coulomb static friction force, sqµ , sliding commences and 
the friction restoring force becomes dP qµ= , where dµ is 
the coefficient of dynamic friction. Typically, ds µµ > .  
Therefore, Coulomb friction prevents motion form occurring 
until an adequate tangential force is realized and then 
opposes that force once motion occurs.  When sliding 
occurs, energy is dissipated in the system.  The 
phenomenon described here is macro-friction because 
motion occurs over the entire contact surface between the 
rigid block and the rigid surface that supports it.  Before 
sliding commences no energy is dissipated.  After sliding 
starts, energy is dissipated because of friction.  The amount 
of energy dissipated is proportional to the normal force. 
 
In the case of lap joints, high normal loads applied by 
connecting bolts limit relative motions between components.  
The schematic in Figure 4a shows a lap joint in the beam 
tested in this investigation. As the beam vibrates, it bends.  
The beam bending causes generation of shear stresses on 



the bearing surfaces of the lap joints.  When the limiting 
friction force is high, no slippage occurs immediately under 
the bolt.  However, away from the bolt, the normal stresses 
due to clamping are smaller, and in these regions, small 
slippage can occur.  This slippage that occurs over a fraction 
of the region of contact results in micro-slip.   
 
An easy way to visualize the micro-slip-related damping in 
the lap joint is to consider a simple, spatially discretized 
system in Figure 4b that models the lap joint.  Each beam 
connecting into the lap joint is divided into rigid elements and 
the elements are connected with springs.  The springs have 
constants reflecting the stiffness of the beam material.  The 
lap joint clamping load is applied to the blocks in the 
discretized model.  The equal and opposite clamping forces 
are great in the center, where the bolt is modeled, and 
smaller away from that point. 
 
The phenomenon of micro-slip in the joint can be seen 
readily.  When the clamping force, q, associated with the bolt 
is large, slippage between elements A and B may never 
occur.  Yet the clamping force away from the bolt diminishes.  
Slippage occurs at the interface between elements C and D 
when the forces are large enough to overcome both the 
sliding friction between the elements and the stretching of 
the connecting springs.  This slippage may occur quite 
readily awa  from the lap joint bolt where the clamping force 
is low.  Th slippage results in energy dissipation due to 
micro-slip. 

y
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Figure 4: Modeling and Discretization of Lap Joint 
 
 
EXPERIMENTAL CONFIGURATION AND 
PROCEDURES 
The basic test structure used in the experiments of this 
investigation is shown schematically in Figure 1.  The 
structure consists of four 0.25 inch thick and 1 inch wide 
steel beams.  The two main beams are ten inches in length 
and are sandwiched between two 3.25 inch beams. Two 
0.25 inch steel bolts that are tightened to 85 in-lbs establish 
the joint.  This configuration leaves a 0.3125 inch space 
between the bolted ten inch beams.   

 

To test the hypotheses specified in the introduction, three 
variations on the basic testing configuration of the lap joint 
were devised.  The interior surfaces of interest in the joint 
were labeled in Figure 2.  In the three experiments (a) no 
washer, (b) large diameter washers, and (c) small diameter 
washers were placed at these bearing surfaces.  The large 
and small washers are 0.75 and 0.5 inches, respectively, in 
outer diameter.  Experiments were performed in the three 
configurations.  
 
In order to assemble the lap joint as precisely as possible for 
each configuration, a standard assembly procedure was 
developed.  First, all beam components are laid out in the 
correct configuration for assembly standing on their edges.  
The bolts are run through the lined up holes, placing the 
appropriate washers in the correct bearing surfaces.  Then 
the joint is held in tension from the ends of the long beams 
while the bolts are torqued to 85 in-lbs.  To create the free-
free boundary conditions for the experiment, the lap joint is 
then hung from a tripod using rubber tubing (see photo in 
Figure 5).  The tubing suspends the lap joint at points 4.5 
inches away from the ends of the long beams, where first 
mode nodes were experimentally located. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Shows the experimental set up 
including beam, tripod and rubber tubing 

 
The beam was instrumented with an Endevco Isotron® 
2250A-10 accelerometer fixed with wax to the beam, 0.5 
inches outside the joint (see photo in Figure 6).  The 
accelerometer sensitivity and range were 10.01 mV/g and +/- 
500 g respectively.  A PCB 086C03 impact hammer with a 
rubber tip was used to excite the beam at the desired 
frequencies.  The hammer impacted the beam along the 
central axis, 0.5 inch from the end opposite the 
accelerometer.  The force transducer on the impact hammer 
has a range of 0-500 lbf. and sensitivity of 10 mV/lbf. 
 



 
 
All force and acceleration data were collected through the 
Dactron four-channel Photon dynamic system analysis data 
acquisition system using Dactron’s RT Pro Dynamic Signal 
Analysis software on a desktop computer running Microsoft 
Windows 2000.  Data were recorded for 3.1996 s at a rate of 
2560 samples/s.  The data acquisition system is triggered 
when the hammer force surpasses 1 lbf.  A 25 sample buffer 
is included at the beginning of each run.  Although ten runs 
were averaged to estimate the beam frequency response 
functions, each time response was saved individually.  The 
time domain files of both the hammer and the accelerometer 
were exported as ASCII text files and analyzed in MATLAB.   
 
Denote the measured acceleration response 

. The objective of the data analysis is to 
estimate the local linear damping factor in the first mode of 
response as a function of response velocity amplitude. This 
is accomplished as follows. The frequency response function 
of the structure at a point is estimated using multiple 
realizations of the measured excitation and response. The 
frequency response function is then used to infer the 
structural modal frequencies, and all the measured response 
signals used in the investigation are band-pass filtered to 
obtain the component of response associated with the first 
structural mode. Denote the filtered, first mode response 

. 
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The first modal frequency is approximately 125 Hertz. The 
band pass filter has a tenth order Butterworth filter with pass 
band [100,150] Hertz. Next each filtered first mode response 
is Hilbert transformed to establish the envelope of filtered 
response. Let  denote the discrete Hilbert 

transform of the filtered, first mode response data.  Then the 
envelope of the first mode response data is: 
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These envelope data are to be used to estimate the 
equivalent damping factor of the first mode of response in 
the experimental system. Log decrement is the method to be 
used to establish the estimate. 
 
The log decrement approach is implemented in a local linear 
construct to approximate energy dissipation.  The impulse 
response function of the first mode of a linear multi-degree-
of-freedom system has the form: 
 

01211
11 ≥+= − t),tcosctsinc(e)t(x dd
t     ωωωζ (2) 

 Impact Accelerometer 
where  and  are constants relating to the amplitude, 1c 2c

1ζ  is the damping factor of the first mode, 1ω  is the first 
modal frequency, and 1dω  is the first damped modal 
frequency.  This form can be digitized by evaluating the 
equation at 1−10=∆= nj,tt ,...,,j , where t∆  is the time 
increment of the recorded data points.  The theoretical 
envelope of the impulse response is:   Figure 6: Shows accelerometer placement and 

impact location on the beam  
tj

j cee ∆−= 11ωζ     (3) 
 

Equate the right side expressions in Eq. (1) and (3), take the 
logarithm on both sides of the equation, and estimate the 
damping factor 1ζ  by using a least squares computation 
involving time indices that cover a small range of values.  
Use the values of the envelope, with the same time 
indices, to evaluate the average envelope amplitude.  The 
results are an estimate of local equivalent first mode 
damping factor and its associated amplitude. 

je

 
This procedure is applied to data sets from experimental and 
numerical results in a section to follow, and graphic results 
are presented below. 
 
MATHEMATICAL MODEL  
The limited scope of this investigation precluded the 
specification of a mathematical model in the predictive 
framework. Because it is preferable not to require 
experiments to obtain an accurate simulation for structures 
with joints, the development of a mathematical model is still 
of great interest. In view of this we desire to create a finite 
element model of the beam shown in Figure 1 using some 
standard friction models from the literature. In particular we 
used the Dahl and LuGre models to simulate the dissipation 
of energy in the lap joint. We start be giving a brief overview 
of each model. 
 
The Dahl model was initially established to simulate control 
systems with friction and for adaptive friction compensation, 
but it has also been shown to approximate the solid friction 
between metal surfaces (Olsen, et al. 1998). Dahl’s model 
allows for the simulation of the dissipative frictional force, 
and in this investigation was used to approximate the energy 
dissipation at the bearing surfaces of a lap joint. The 
governing equations for the Dahl model are: 
 

z
F

|v|v
dt
dz

c

σ
−=     (4a) 

zF σ=      (4b) 
 
where F is the restoring friction force, z is an auxiliary 
variable of the friction model that is related to the bristle 
deformation in the bristle model. (Haessing and Friedland, 
1991), σ is the rest stiffness and is related to the bristle 
stiffness, is the limiting Coulomb friction, and  is the 
relative velocity between the contact surfaces where friction 
occurs.  

cF v

 



According to Eq. 4 the friction force is only a function of the 
displacement and the sign of the velocity. Therefore, the 
Dahl model is a rate independent model and does not 
capture the Stribeck effect, nor does it account for stiction. In 
addition, this model characterizes the energy dissipation that 
occurs as a result of hysteretic work loss in the lap joint as 
the beam flexes in bending. An example of the variation in 
the friction force as a function of the relative displacement 
between surfaces is shown in Figure 7. Values of  
and  were used to generate the plotted results. 

22 )( πσ =
38=cF

 
Figure 7: Friction force versus displacement for Dahl model 

 
 

The LuGre model is a generalization of the Dahl model, and 
incorporates the bristle interpretation established in the 
bristle model. The bristles represent the asperities present at 
the microscopic level of the surfaces. In this investigation a 
standard parameterization of the LuGre model was used. 
This special case accounts for linear viscous damping and 
nonlinear friction interface. The model is given by: 
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where F is the frictional force, v is the relative sliding velocity 
at the friction interfaces, 0σ  is the bristle stiffness, 1σ is the 
nonlinear damping coefficient, 0α is the Coulomb friction 
force, 10 αα + is the stiction force, and 2α is the linear 
viscous friction coefficient. 
 
The LuGre model, unlike the Dahl model, is a rate 
dependent friction model and, therefore, accounts for the 
Stribeck effect and stiction phenomenon. In addition, as a 
result of being rate dependent this model also captures the 
varying break-away force and frictional lag phenomenon. It 
should be noted that the Dahl model can be obtained from 
the LuGre model by setting 021 == ασ and 0σcF)v(g = . 
The LuGre model also exhibits the same hysteretic energy 
dissipation characteristics that were shown for the Dahl 

model in Figure 7. The following figure shows the analogous 
friction force versus displacement for the LuGre model when 
the parameters were given values of , 2
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Figure 8: Friction force versus displacement for LuGre model 

 
 

Because the objective of this part of the investigation is 
merely to explore the plausibility of the friction models 
described above for the simulation of lap joint friction in the 
structure shown in Figure 1, it is sufficient to simulate the 
system behavior using an approximate nonlinear finite 
element analysis. To construct this analysis the following 
steps were taken. First the partial differential equation 
governing the motion of the system was approximated by the 
matrix system of ordinary differential equations: 
 

   (6) 
 

where x denoted the vector of displacement at structural 
degrees of freedom, dots denote differentiation with respect 
to time, m is the mass matrix, c is the linear viscous 
damping matrix, k is the stiffness matrix, and R  is the 
nonlinear restoring force vector. We can rearrange the 
governing equation by moving the nonlinear term to the right 
hand side: 
 

   (7) 
 

Next a modal analysis using the mass and stiffness matrices 
was performed. This yields a sequence of modal frequencies 

, and mode shapes k =  for the 
system. Then mass normalize the mode shapes so that 

. Because the experiments to be discussed later 
filter the motions so that only the first oscillatory mode is 
present, the current model must be required to respond only 
in the first mode. This is done by writing: 
 

     (8) 
 

where 1ϕ  is the first mode shape, and ξ is the coordinate of 
motion in the first mode. Use this in Eq. (7) to obtain: 
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This is the equation of motion for a nonlinear single-degree 
of freedom system. In this investigation this equation was 
solved using the Runge-Kutta method. The restoring force 

is negative the friction force F specified in the 
models above. Note that the auxiliary variable, z, in either 
friction model must be included in the state vector during 
numerical solution of Eq. (9). Some examples of the 
numerical solutions of Eq. (9) using both friction models are 
presented in the following section. 
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EXPERIMENTAL AND ANALYTICAL RESULTS 
The experiments described in a previous section were 
performed and system excitations and responses were 
measured. One measured acceleration response time 
history is shown in Figure 9. The figure shows the filtered 
acceleration response for the no washer-configured beam 
with filter pass band [100, 150] Hz. The time history also 
shows the envelope formed as described in Eq. (1). The 
envelopes were analyzed as specified in the Analysis of 
Experimental Data Section. Local linear estimates of 
damping factors were computed for all three-beam 
configurations and are shown in Figures 10, 11, and 12. The 
figures depict local linear estimates of damping factors as a 
function of velocity amplitudes. The first presents this 
information for the no washer beam, the second for the large 
washer beam, and the third for the small washer beam.  
Each figure presents the results of 10 tests. Each decaying 
amplitude envelope was divided into several overlapping 
segments. Each segment corresponded to about 10 cycles 
of motion. This sampling explains the number of local linear 
damping factor estimates shown in the figures. 
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Figure 9: Unfiltered and Filtered Time history of the 
no washer-configured beam 
 
 
 

Figure 10: Estimates of local linear damping factor
versus velocity amplitude for the no washer beam.
Figure 11: Estimates of local linear damping factor 
versus velocity amplitude for the large washer beam.
velocity(in/s)  

Figure 12: Estimates of local linear damping factor 

versus velocity amplitude for the small washer beam.



These results make it clear that damping of a beam with a 
lap joint is a function of the velocity amplitude. As shown 
previously in the discretized representation of the beam, the 
motion that occurs in the lap joint causes a friction restoring 
force that opposes that motion, and thus acts to stop the 
vibrations. The behavior of the no-washer system indicates 
diminishing slope of the damping factors with increasing 
velocity amplitude. This implies an upper bound on damping 
for the lap joint beam. 
 
Damping levels in the three beam configurations tested differ 
as shown in Figures 10, 11, and 12. These differences 
correspond to differences in lap joint bearing area. The area 
over which micro-slip can potentially occur are: 1.36 in2 for 
the no-washer configuration, and 0.66 in2 and 0.17 in2 for the 
larger and smaller diameter washer configurations 
respectively. These areas are the total contact area minus 
the bolt head area. Note that micro-slip can occur on both 
surfaces of the washers, and this part is accounted for in the 
area computation. 

Figure 13: Shows the damping ratios versus velocity 
amplitudes against the bearing areas in the joints

 
 
 
 
Figure 13 shows polynomial fits to the data in Figures 10, 11, 
and 12. The curves indicate that the damping in the lap joint 
is dependent on the size of the frictional area.  For the case 
of the small washer, the effective area is so small that 
damping force is high and, therefore, little energy dissipation 
occurs. Damping is almost constant with amplitude as in the 
linear viscous case. On the other hand the no-washer joint, 
with a large effective area, exhibits a very nonlinear damping 
behavior. 
 
The nonlinear finite element model described in the 
mathematical model section was used in conjunction with 
the Dahl and LuGre models to determine their plausibility in 
simulating the experimental results. Only the case where 
there are no washers present between the frictional 
interfaces were considered in the comparison of the 
experimental results to the mathematical models.  
 

The Dahl model has two variable parameters that can be 
used to alter the characteristics of the model. In this 
investigation parameter values of  and 38=cF 4.2133=σ  
were determined to give the best approximation of the 
experimental results. The comparison of numerical results to 
experimental results is shown in Figure 14. 
 

 
Figure 14: Experimental Results fitted with Dahl model 

 
 

The LuGre model on the other hand has seven parameters 
that can be altered and, therefore allows for a more accurate 
representation of the data. A similar analysis was performed 
and a damping versus velocity plot illustrating the 
experimental data and the finite element approximation was 
created and can be seen in Figure 15. The parameters that 
were used to create this mathematical model were: 

1,95. 0 == vvd   , 4.21330 =σ , 4573.1 −=σ , 100000 =α , 

01 αα = , and 3731.2 =α . 
 

 
Figure 15: Experimental Results fitted with LuGre model 

 
 

These results show that the LuGre model more accurately 
approximates the friction at the bearing surfaces in the lap 
joints. Despite the fact that the LuGre model more accurately 
reflects damping in the beam at low velocities, the model 
diverges from the experimental results at large velocities. 
Therefore the model does not precisely represent the 



experimental results at all amplitudes. Further analysis is 
needed to develop a more accurate model. 
  
CONCLUSIONS 
A combined experimental and analytical investigation was 
conducted to study (1) the effect of stress distribution in 
bolted lap joints on energy dissipation, and (2) the plausibility 
of standard friction models to describe the experimental 
phenomena. 
 
The experiments conducted in this study confirm and permit 
a degree of quantification of the two hypotheses regarding 
lap joint behavior made in the introduction. First, it was 
shown that the equivalent linear damping is a function of the 
velocity amplitude for low-level motion. Constant damping 
force and increased motion at higher response amplitudes 
correspond to increased damping and energy dissipation.  
Second, it was shown that the equivalent linear damping in a 
lap joint is a function of the bearing area over which micro-
slip can potentially occur. Because all configurations had the 
same bolt torque, the larger the bearing areas within the lap 
joint correspond to lower normal stresses, greater potential 
for micro-slip, and therefore more micro-slip. 
 
In order to further the understanding of energy dissipation in 
lap joints, the authors recommend performing tests with 
more bearing area variations, clamping load variations, 
alternative geometries of the joint, different materials, and 
variable washers on the outside of the joint.   
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