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Abstract 
 

Recently, we proposed a new algorithm to control 
frictional dynamics of an array of particles towards 
pre-assigned values of the average sliding velocity 
[1]. The algorithm is based on the concepts of 
terminal attractor and global targeting, which endow 
the control with robust efficiency.  In this paper, we 
focus on the transient times needed to reach the 
prescribed behavior and their dependence on the 
control parameters. 
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Despite great progress made during the past half century, many issues in fundamental 

tribology, such as the origin of friction and failure of lubrication, have remained unsolved.  
Moreover, the current reliable knowledge related to friction and lubrication is mainly applicable 
to the macroscopic systems and machinery and, most likely, will be only of limited use for micro- 
and nano-systems. Indeed, when the thickness of the lubricant film is comparable to the 
molecular or atomic size, its behavior  becomes significantly different from the behavior of 
macroscopic (bulk) lubricant [2]. Better understanding of the intimate mechanisms of friction, 
lubrication, and other interfacial phenomena at the atomic and molecular scales is expected to 
provide designers and engineers with the required tools and capabilities to monitor and control 
friction, reduce unnecessary wear, and predict mechanical faults and failure of lubrication in 
MEMS and nano-devices [3]. 
 

The ability to control and manipulate friction during sliding is extremely important for a 
large variety of technological applications. The outstanding difficulties in realizing efficient 
friction control are related to the complexity of the task, namely dealing with systems with many 
degrees of freedom, under strict size confinement, and only very limited control access. 
Moreover, a nonlinear system driven far from equilibrium can exhibit a variety of complex 
spatial and temporal behaviors, each resulting in different patterns of motion and corresponding 
to different friction coefficient [4].  

 
Friction can be manipulated by applying small perturbations to accessible elements and 

parameters of the sliding system. This operation requires a-priori knowledge of the strength and 
timing of the perturbations. Recently, the groups of J. Israelachvili [5] (experimental) and U. 
Landman [6] (full-scale molecular dynamics computer simulation) showed that friction in thin-
film boundary lubricated junctions can be reduced by coupling the small amplitude (of the order 
of 1Å) directional mechanical oscillations of the confining boundaries to the molecular degree of 
freedom of the sheared interfacial lubricating fluid. Using a surface force apparatus, modified for 
measuring friction forces while simultaneously inducing normal (out-of-plane) vibrations 
between two boundary-lubricated sliding surfaces, load- and frequency-dependent transitions 
between a number of "dynamical friction" states have been observed [5].  In particular, regimes 
of vanishingly small friction at interfacial oscillations were found.  Extensive grand-canonical 
molecular dynamics simulations [6] revealed the nature of the dynamical states of confined 
sheared molecular films, their structural mechanisms, and the molecular scale mechanisms 
underlying transitions between them. Significant changes in frictional responses were observed 
in the two-plate model [7] by modulating the normal response to lateral motion [8]. In addition,  
surface roughness and thermal noise are expected to play a significant role in deciding upon 
control strategies at the micro and the nano-scale [9,10].  These results point to a completely new 
direction for realizing ultra-low friction in mechanical devices. 
 

In a previous paper [1], we proposed a global feedback control scheme, based on the 
properties of terminal attractors [11, 12]. The main advantage of terminal attractor algorithms 
consists in their robustness and efficiency [1].  In this paper, we continue the study of the non-
Lipschitzian control algorithms for friction, by focusing on the dependence of the transient times 
on the parameters of the control.  
 

We illustrate the proposed control strategy on a phenomenological model of friction 
[7,13-16].  Despite their relative simplicity, phenomenological models [10,13-16] show a fair 
agreement with many experimental results using the friction force apparatus [7,18,19] and quartz 
microbalance experiments [9,17,20].  The basic equations for the driven dynamics of a one 



 3

dimensional particle array of N identical particles moving on a surface are given by a set of 
coupled nonlinear equations of the form [16]:  
 

/ / ( )n n n n nmx x U x V x f t� �� � �� � �� � � ��� � ,  n=1,…N   (1) 
 
where xn is the coordinate of the nth particle, m is its mass, �  is the linear friction coefficient 
representing the single particle energy exchange with the substrate, fn is the applied external 
force, and ( )t�  is Gaussian noise. The particles in the array are subjected to a periodic potential, 

( ) ( )n nU x a U x� � , and interact with each other via a pair-wise potential  
( ),  ,  1, 2,... .n jV x x n j N� �  The system (1) provides a general framework of modeling friction 

although the amount of details and complexity varies in different studies from simplified 1D 
models [15,16,21,22] through 2D and 3D models [17,23-25] to a full set of molecular dynamics 
simulations [25]. 
 

To better present our ideas, we make the following simplifications, namely: (i) the 
substrate potential has a simple periodic form, (ii) there is a zero misfit length between the array 
and the substrate, (iii) the same force f is applied to each particle, and (iv) the interparticle 
coupling is linear. The coupling with the substrate is, however, strongly nonlinear. For this case, 
using the dimensionless phase variables 2n nx / a,� � �  the equations of motion reduce to the 
dynamic Frenkel-Kontorova model [16] 
 

1 -1sin( ) ( - 2 ),    1, 2,....n n n n n nf n N
�

� � �� � � � � � � � � � ��� �     (2) 
 

Throughout this paper, we shall use an array with N=25 particles. We performed 
extensive numerical simulations for other arrays sizes (3 < N < 40) to verify that we indeed 
present a typical example. Without control, we observed four co-existing different regimes: 
periodic sliding, periodic stick-slip, chaotic stick-slip, and rest (no motion). All motion types are 
obtained by only changing the initial conditions of the particle's positions and velocities, but not 
the system’s parameters.  The average (center of mass) velocity for the "natural" (i.e., 
uncontrolled) motion may take only a limited range of values, namely: (i) v f /� �  for periodic 

sliding motion, (ii) v = nv0, where n is an integer, and 
1

1 2
0

2 cos /
c

fv ( )
nN

�

� � �
� � � �

� �
, for 

periodic stick-slip motion, (iii) v = 0 for rest (no sliding). [16]. In the range of parameters under 
consideration, we observed only one single value of the average velocity for chaotic stick-slip. 

 
To better illustrate the dynamics of the uncontrolled system, we display the time series of 

the average velocity and the velocity of the first particle in the array for different sets of initial 
positions and initial velocities.  
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Figures 1a-b: (a) Time series of the average velocity and (b) time series of the first particle in the array with 
no control. The average velocity is 0.0625. The other parameters are:  N = 25; f = 0.3; � = 0.1; � = 0.26. 
 
 
 
 
 
 
 
 
 
 
Figures 1c-d: (c) Time series of the average velocity and (d) the time series of the first particle in the array 
with no control. The average velocity is 0.13. The other parameters are:  N = 25; f = 0.3; � = 0.1; � = 0.26. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 1e-f: (e) Time series of the average velocity and (f) time series of the first particle in the array with 
no control. The average velocity is 3.0. The other parameters are:  N = 25; f = 0.3; � = 0.1; � = 0.26. 
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Figures 1g-h: (g) Time series of the average velocity and (h) time series of the first particle in the array with 
no control. The average velocity is 1.81. The other parameters are:  N = 25; f = 0.3; � = 0.1; � = 0.26. 
 

Our objectives are to: (i) achieve any targeted value of the average sliding velocity using 
only small values of the control and (ii) significantly reduce the transient time needed to reach 
the desired behavior. To that effect, we propose the following control algorithm:  
 

arg( ) ( )t et cmC t v v �
� � �      (3) 

 

where 
1

(1/ )
N

cm n
n

v N
�

� ��� is the average (center of mass) velocity, argt etv  is a constant targeted 

velocity for the center of mass, 1/(2 1)n� � � , and 1, 2,3n � � . Note that the control term is 
identical for all the particles in the array and requires only the knowledge of the average velocity 
of the array. This control utilizes the concept of "terminal attractors" [11,12] whose relevance for 
the dynamics is explained below. 
 
The equations of motion (Equation 2) in the presence of the control term C(t) (Equation 3) reads: 

1 1sin( ) ( 2 ) ( )n n n n n nf C t
� �

� � �� � � � � � � � � � � ��� �    (4) 
 
System (4) can be written as a 2N-dimensional first order system:  
 

1 2 2( , , ) 0,    1, 2,3, , 2n n NF n N� � � � � � �� � �     (5) 
 
where, for simplicity, we maintain the same notation for the (now different) unknown functions.  
The fixed points of this 2N-dimensional, dissipative dynamical system are obtained by solving 
the stationary version of Eq. (5). If the real parts of the eigenvalues e� of the Jacobian matrix, M, 

/nm n mM F� � �� , at a fixed point are all negative (that is 0eRe� � ) then this point is locally 
asymptotically stable and constitutes a local attractor of the dynamics. 
 

When a nonlinear dynamical system satisfies the Lipschitz condition, namely 
| / |  n mF K� �� � � � , there is a unique solution for each initial configuration.  Moreover, the 
time spent by each trajectory to reach an attractor is, in principle, infinite. Therefore, the time 
needed to reach the desired target within the needed precision may become unacceptably large. 

In contrast, the terminal attractor dynamics that we are utilizing violates by construction 
the Lipschitz condition. As a result, trajectories reach the terminal attractor in finite time. To 
illustrate this point, consider one of the simplest systems with terminal attractor [11], i.e. the 
equation 1/3� � ��� .  At the equilibrium point, � =0, the Lipschitz condition is violated, since 
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2/3/ (1/ 3) ��� �� � � ��  tends to minus infinity as � tends to zero. Also, one can easily check that 
the trajectory started at the initial point 0� reaches the terminal attractor in a finite time, 

2/3
0

3
2

� � � . 

This is precisely the effect realized by the non-Lipschitzian  control   term,   C( t ) .    
The 
“infinite attraction power” of the “terminal” (non-Lipschitzian) attractor endows the proposed 
algorithm with excellent efficiency and robustness , as illustrated in Figure 2 for the target 
velocity of: t arg etv  = 1. Red color lines indicate the time series of the control (Equation 3), while 
the blue lines show the time series of the velocity of the center of mass. In all cases, we reached 
and sustained the (arbitrarily chosen) target value for rather small values of the control.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 2a-d. Time series of the average velocities (blue lines) and of the control (red lines). In all cases, the 
targeted velocity is equal to 1.0, while the initial uncontrolled velocities are: 3, 1.81, 0.0625, and 0. The 
other parameters are the same as in Figure 1, and the control parameters are: � = 0.15, and � = 1/7.  The 
control is applied at time t = 3000. 
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We performed extensive testing of the proposed algorithm (Eqs.3-4) by choosing 

numerous values of the target velocity [1]. For some values of vtarget, the dependence of the 
average velocity, vcm on � appears to be irregular. In all cases, however, we succeeded to identify 
a specific value of control � to reach the desired value of the average velocity. We also studied 
the convergence process, i.e. the dependence of the average velocity of the center of mass as a 
function of the control amplitude �. Figures 3a-b illustrate this dependence.  
 
  
 
 
      
 
 

 
 
 
 
 
 

 
Figures 3a-b. (a) Dependence of the average velocity on the control amplitude �; (b) dependence of the 
time averaged control on the control amplitude. The exponent values are: � = 1/7 (black line), � = 1/5 (red 
line), and � = 1/3 ) blue line), and all the other parameters  are as in Figure 1. 
 

Figure 3a illustrates that the convergence to the targeted value is faster for smaller values 
of the exponent. The reason for this behavior is the fact that smaller exponents correspond to 
larger average controls in the vicinity of the target (Fig. 3b).  

 
In summary, we proposed a new type of algorithm to control friction of sliding nano-

arrays. This algorithm is based on the concepts of "terminal attractor" and global targeting and 
requires only the knowledge of the velocity of the center of mass of the array. We demonstrated 
the ability to control the array towards the desired sliding velocity and this control was achieved 
in a short transient time.  Finally, we studied the dependence of the transient time on the 
parameters of the control. 
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