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To reduce parasitic losses of Advanced 
Natural Gas Reciprocating Engines by 
reducing piston/ring assembly friction,  
without introducing major adverse effects

Target:

PROJECT OBJECTIVES

Initial 30% reduction in piston and ring pack friction
Subsequent 50% friction reduction in power-cylinder
friction
2% engine efficiency improvement



Mechanical Loss Comparison

Crank, Cam, Oil 
Pump, Geartrain

Water Pumps

Valvetrain

Pistons, Rings, Rods
(~40% [Richardson, 1999])

(Motoring)

Motoring Tear-Down Test: Waukesha F18GL Engine
1800 RPM (2002)



Mechanical Loss Comparison

Crank, Cam, Oil 
Pump, Geartrain

Water Pumps

Valvetrain

Pistons, Rings, Rods
(~50-55%)

(Firing)

Projected Firing Component Losses from Power Cylinder
[+25% at mid-load.  Mufti, 2004]
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Bridge fundamental research in engine 
component tribology with engine application
Develop low-friction piston/ring-pack/engine 
system strategies by modeling & engine 
validation
- System analysis and evaluation
- Design and prototyping candidate components or materials
- Full-scale engine demonstration

Initial System:  Ring-Pack
Overall system: Piston, Liner, Material, Engine, Lubricants
(Current)

TECHNICAL APPROACH
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Relevance to ARES Objectives
• Power cylinder friction accounts for about half of all

mechanical losses
• Goal is to reduce half of power-cylinder friction, 

(or 25% of all mechanical losses)
2% increase in brake thermal efficiency towards 
50% target 
(5% fuel economy improvement from current level)

10% Reduction$ 0.05-0.06 /kWhCost
0.1 g/hp-hr1-2 g/hp-hrNOx Emissions
50%37%Efficiency

ARES TargetBaseline  Engine 
Status

Criteria





9Massachusetts Institute of Technology

-90 -45 0 45 90
0

5

10

15

Land Pressures

pr
es

su
re

 (b
ar

s)

Modeling
Oil film thickness, friction, ring 

dynamics, gas flow,
piston motion, design options

Research Program Structure

Experiments
Engine performance, friction 
cylinder pressures, inter-ring 

land pressures, oil 
consumption, emissions.

Engine Manufacturer(s)/
Suppliers

Technical Support/Input



Major Tasks
Expand analyses for improved piston friction: Parametric study
on shape, rigidity, secondary motion effects, coatings

Perform System Analyses to include effects of mechanical design,
material, surface features, lubricants, and engine as a system

Recommend and design components and system

Complete ring-pack studies: ring/liner surface 
characteristics and lubricant effects; additional testing

Demonstrate low-friction power-cylinder 
components and system on full-scale engine at CSU

Analyze test results and iterate designs for 
optimized system

Waukesha VGF18GL



Synopsis of Where We Stood: 
Prior Accomplishments

Developed/adapted computer simulations for piston and 
ring-pack friction applicable to ANGRE engines.

Reduced-friction ring-pack designs developed, with 
overall friction reduction potential of 35%.

Top ring and oil control ring identified as major friction 
sources. Scraper ring strategy improves oil consumption

Tests on full-scale Waukesha engine at CSU measured 
friction reduction of 30% with low-friction OCR design

Piston design, material and lubricant identified as areas 
to further optimize system for low-friction and improved 
efficiency
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Friction Reduction Potential of Designs
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Analyses: Piston and Ring-Pack System

Liner
Crown Land

Top Ring

Second Land

Second Ring

Third Land

Oil Control Ring
(OCR)

Earlier Study: Ring-Pack Friction

Piston SkirtCurrent Focus: 
Piston-Skirt Friction



Current Accomplishments

Developed surface-finish analyses, which showed that 
surfaces that are smoother, more plateau honed, and 
with cross-hatch patterns more perpendicular to the 
cylinder axis can reduce ring-pack friction by 15%

Detailed piston-skirt friction analysis showed that a 
flatter piston-skirt profile offers potential friction 
improvement of 15-25% from current designs. 

Identified and quantified other parameters that affect 
piston friction, such as the skirt stiffness, waviness 
pattern and oil supply to the piston skirt, all of which can 
affect piston friction by 30-40% 

Worked and continue to work with a major lubricant 
supplier in optimizing lubricants for ARES efficiency



Current Accomplishments
Lubricant models show that less viscous oils are better 
for hydrodynamic friction, up to a point where boundary 
friction becomes dominant.   Results show 10% 
additional friction improvement beyond all other 
approaches. 

Confirmed piston-friction reduction potential is 
comparable to ring-pack friction reduction.  

System analysis and optimization, considering various 
combinations of parameters, are continuing 

Full-Scale ARES engine testing and demonstration 
continues at CSU.  Diagnostics significantly improved.

Developed and will continue periodic technical exchange 
& interactions with engine manufacturers, Purdue & MIT
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Waukesha VGF Engine Test Cell
EXPERIMENTS

18 liters 6 cylinders, 1800 RPM, 200 psi BMEP  



• Conceptually, it is simple to measure FMEP…
– As long as IMEP and BMEP can be measured accurately
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Oil Consumption Measurement 
• AVL 403S automatic oil 

consumption meter
– Provides continuous monitoring 

of oil addition to maintain a 
constant level in the sump 

Oil Consumption Rate (LTOCR & NTSR)
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• Oil consumption 
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stabilizes over a 
few hours of 
operation



Piston-Ring Pressure Measurement by 
Inter-Ring Pressure Diagnostics

Piston
at TDC

Piston
at BDC

#1: Between top and 2nd ring at TDC 
#2: Between 2nd ring and OCR at TDC 

#3: Between top and 2nd ring at BDC 

3 pressure transducers 
mounted in the cylinder  
liner



Pressure Measurement
• Cylinder 5 is instrumented with 4 pressure 

transducers, as shown:



PISTON DESIGN 
RESULTS

For

Low Friction



Piston tilts - side impact 
(secondary motion)

Major
thrust Minor

thrust

Piston-Skirt and Cylinder-Liner Interactions

Two-Dimensional Oil-Film 
Between Skirt and Liner Surfaces



Piston Dynamics

Engine Design Parameters:
Basic engine parameters
Ring-pack parameters
Piston-skirt parameters

Skirt Lubrication: Unsteady Modified Reynolds Equation
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33With flow factors 
for skirt surface 
waviness and 
roughness



Approach to Piston Friction Study
• Effects of varying piston design parameters of an 

ARES engine were investigated using modeling tools

• The following piston design parameters 
were considered:

Piston skirt-to-liner clearance
Initial oil film thickness between
skirt and liner
Piston-skirt profile
Surface characteristics: waviness
Skirt material stiffness
Lubricant Viscosity
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Piston Profile Shapes (Curvature)
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Flatter (shallow-curvature) profile has larger wetted area and shallower 
penetration depth
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Pressure Distribution vs. Piston Curvature
(Crank angle = 40° ATDC during expansion stroke)

x2 profile
(sharp curvature)

Higher pressure,
smaller wetted area

x8 profile
(shallow curvature)

lower pressure,
larger wetted area



Cumulative Boundary Friction Work vs. Crank Angle 
(Thrust Side)
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Effects of Oil Viscosity on Piston-Skirt Friction
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Lower viscosity oils result in higher piston-skirt 
boundary and total friction.  There appears to be an 
optimum viscosity for given mechanical design.
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Pressure Distribution on the Thrust Side
Reference Skirt           5 Times Flexible
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Distance between Skirt and Liner from 360 to 600 ATDC

Reference Skirt                           5 Times Flexible
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Summary of Piston Friction Study

Clearance between piston and liner shows a
perceptible but mild effect on skirt friction 

Reduced skirt waviness and increased oil supply
to skirt tend to reduce piston friction significantly

A flatter piston-skirt profile (at given oil film
thickness) decreases the tendency of solid-solid
contact and thus reduces total piston-skirt friction

A less viscous oil reduces hydrodynamic friction
but tends to enhance boundary contact. Optimum
viscosity for given mechanical design desirable

A more flexible (less rigid) skirt reduces friction in
a similar manner to a flatter skirt profile



LUBRICANT 
EFFECTS

on 

RING-PACK FRICTION



Ring-Pack Friction Reduction

Ring-Pack Design Parameters:

OCR tension
Ring profiles
Barrel skewness (top ring)
Ring surface roughness

Lubricant parameters:

Oil viscosity
Boundary friction modification
Temperature dependence of viscosity
Shear dependence of viscosity

barrel profile

taper profile

twin-land OCR

Ring-Pack Parameters:
Roughness:
Top Ring
Oil Ring: 
Liner: 0.2 µ

0.3 µ
0.1 µ



Lubricant parameters studied:
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Effects of temperature sensitivity of viscosity
(By changing slope of viscosity-temperature curve)

Oil Temperature (Deg C)
BDC TDC

Approximate Position on Liner

Ideal viscosity

Ideal viscosity should be low at mid-stroke and high at end strokes:   
either via lubricant design or component thermal management
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Viscosity: shear rate dependence

• Cross equation: 
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ν0 = kinematic viscosity at zero strain rate
= kinematic viscosity at infinite strain rate

γ   = lubricant shear rate
β  = critical shear rate
m = correlation constant; governs width of transition region
c1, c2 = correlation constants 
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Ring pack friction dependence on ν∞/ν0: total effect
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Summary:
Lubricant Effects on Ring-Pack Friction

• An optimal range of viscosities for given mechanical 
design

• Shear thinning, temperature dependence & control, 
viscosity, and friction modifiers all affect ring-pack friction 
appreciably. However, additional potential improvement 
depends on the current baseline, i.e. how close we are to 
having optimized the oil and engine system

• An additional 10% ring-pack friction reduction via 
lubricants (towards 50% goal), above all other 
approaches, appears feasible



Effects of Cylinder   
Liner Surface 
Characteristics

Surface Skewness
Honing Cross-Hatch Angle



Statistically Characterizing Surfaces
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Asperity contact 
pressure affected

Flow resistance 
affected

Surface Characteristics affect friction in the following 
ways:

Surface Effects on Friction
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Explanation of Results: Boundary Contact

Friction reduction will be realized in the mixed lubrication 
regime

When surface skewness decreases, hydrodynamic pressure 
will carry an increasing proportion of the total ring load

Mean 
separation

Decreasing skewness (σ=constant)

Piston speed, U

Ring Load Ring Load

Increasing the relative proportion of the load supported by 
hydrodynamic pressure will reduce friction



Flow Factor Effect on Friction

U

U

U

• At large separations, 
flow factors have little 
effect

• Smooth surface 
solution applies

• As separation 
decreases, effect of 
surface roughness 
increases

• Shear flow factor 
reflects fluid transport 
in valley of roughness

• Pressure flow factor 
reflects pressure-driven 
flow blockage due to 
rough surface

• At small separations, 
effect of surface 
roughness dominates

• Flow in valleys very 
important

• Complete flow 
blockage can occur

Fluid transport

Couette flow variation 
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• Surface generator used to simulate surfaces with different 
honing angles, using same honing process
• A lower cross-hatch angle corresponds to hatch marks 
more perpendicular to the flow direction 

Cross-hatch angle

Ring Wetted Area

90° Cross-hatch 60° Cross-hatch 30° Cross-hatch

L

θ

L L
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LyLG

axial 
direction



Reducing honing cross-hatch angle reduced
predicted friction
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Skewness 
5% friction improvement max in practice

Honing Cross-Hatch Angle
5-10% friction improvement extent

Actual Benefits
Combine with liner surface roughness design

Summary: Surface Effects



Summary of Progress To Date
Tests on full-scale Waukesha engine at CSU 
measured friction reduction of 30% with low-friction 
OCR design. Additional confirming experiments are 
continuing

There appears to be an optimal viscosity for total ring-
pack friction due to the tradeoff between 
hydrodynamic and boundary friction, as both 
phenomena occur in the engine cycle

Piston Skirt Profile studies show preferred
profile shapes, which vary with selected lubricant
properties

Surface textures with transverse grooves 
perpendicular to flow can provide friction benefits 



Continuing Research

Continue experimental validation of reduced friction 
piston/ring designs on full-scale Waukesha engine at CSU:

Development of practical designs to reduce piston and 
ring friction for experimental validation on a natural-gas 
engine

Detailed investigation of the impact of material and 
lubricant effects on friction

Immediate Work Plan:
- Piston Design
- Surface/Material Application
- Lubricants



Progress Towards DOE Objectives

Friction reduction of 30-50% power-cylinder friction translates
to 2% engine efficiency or 5% fuel economy improvement
Simple component replacements.  No additional parts
No additional cost anticipated

Technical Impact

Educational Impact
Students carried out research and testing towards program goals,
attended conferences and published papers (5) to promote research

Technology Transfer with other University Team(s) and Industry

• Monthly phone conferences and semi-annual meetings with Waukesha
• Started technical alliance with Purdue and engine manufacturers for 

periodic interactions (possible student exchanges/internships)
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