_Mycobacterium nonchromogenicum_ Bacteremia in an AIDS Patient To the Editor: _Mycobacterium avium_ complex is the most common nontuberculous mycobacterium that causes disseminated infection in HIV-positive patients (1). Other less common nontuberculous mycobacteria responsible for disseminated disease in these patients are _M. fortuitum_ (2), _M. genavense_ (3), _M. gordonae_ (4),_ M. haemophilum_ (5), _M. kansasii_ (6), _M. malmoense_ (7), _M. marinum_ (8), _M. scrofulaceum_ (9), _M. simiae_ (10), _M. szulgai_ (11), _M. terrae_ (9), and _M. xenopi_ (2,9). Although only _M. genavense_, _M. kansasii_, and _M. xenopi _are significantly more frequent in these patients (2,3,9), HIV infection is likely a predisposing condition for all nontuberculous mycobacterial infections. We report the first case of disseminated infection caused by _M. nonchromogenicum_ in an HIV-infected patient. A 28-year-old man with HIV infection acquired by sharing injection tools was seen in our outpatient clinic because of intermittent fever, drenching nocturnal sweats, and cough with purulent sputum of 4 months' duration. He also reported a weight loss of 10 kg in the previous 2 months. He had been treated for bronchial infection with an unknown antibiotic in another hospital. After this treatment, respiratory symptoms had improved somewhat, but fever and constitutional symptoms continued. His only previous opportunistic infection had been recurrent oral and esophageal candidiasis. The last CD4-cell count had been 16/µL 1 year earlier, and he was receiving didanosine and prophylactic therapy with cotrimoxazole and fluconazole. On physical examination the patient appeared ill; he was febrile, cachectic, and had thrush and oral hairy leukoplakia. Neither lymphadenopathy nor abnormal cardiopulmonary symptoms were found. The liver, which had enlarged since the last examination, was palpated 6 cm below the right costal margin. Abnormal laboratory values included aspartate aminotransferase 61 U/L, gamma-glutamyl transferase 209 U/L, lactate dehydrogenase 516 U/L, hemoglobin 12.3 g/dL, leukocyte count 4,300/µL (66% neutrophils, 19% band forms, 1% metamyelocytes, 3% lymphocytes, 11% monocytes), platelet count 130,000/L, and erythrocyte sedimentation rate 72 mm/h. Chest X-rays were unremarkable, and a set of blood cultures was sterile. A sputum culture yielded _Haemophilus influenzae_ sensitive to ampicillin, and smears and cultures for mycobacteria in one stool and three sputum samples were negative. The patient was treated with oral amoxicillin for 2 weeks without improvement. Empirical therapy against _M. avium_ complex with clarithromycin, ciprofloxacin, and ethambutol was started; the patient's condition improved dramatically within the next few days, and the fever and diaphoresis disappeared, although cough and sputum production remained unchanged. Three weeks later, a slow-growing nonphotochromogenic mycobacterium, identified as _M. nonchromogenicum_ in a reference laboratory (Centro Nacional de Microbiología, Majadahonda, Madrid, Spain) by biochemical tests and confirmed by polymerase chain reaction-restriction enzyme pattern analysis, was isolated from a blood sample obtained on admission. This microorganism was sensitive to the three drugs administered, and the treatment was continued. Two months later the patient had gained 10 kg, hemoglobin had increased to 13.8 g/dL, the erythrocyte sedimentation rate had decreased to 52 mm/h, and the differential leukocyte count had returned to normal. Antimycobacterial drugs were withheld after 1 year of treatment. Twenty-two months after the diagnosis, the patient is doing well. He is receiving combination antiretroviral therapy, and his CD4-cell count is 128/µL. _M. nonchromogenicum_, a slow-growing nonpigmented (Runyon's group III) mycobacterium, belongs to the _M. terrae_ complex, together with _M. triviale_; it is traditionally considered nonpathogenic. However, it has been involved in a few cases of pulmonary infection (12) and chronic tenosynovitis secondary to puncture wounds (13), like the related organism _M. terrae_. In fact, some authors think that _M. nonchromogenicum_ is the true pathogen in the _M. terrae_ complex (13), and it is possible that some reports have misidentified this organism. This complex was first isolated in soil washings from radishes, but it has been found to be ubiquitous in the aquatic environment, including a hospital potable water supply (14). Unlike osteoarticular infections, which commonly occur in previously healthy people, the scanty reports on pulmonary and disseminated infection by _M. terrae_ complex suggest that either immunosuppression or local predisposing conditions (e.g., tuberculous cavities) are necessary pathogenetic cofactors (15). To our knowledge, _M. nonchromogenicum_ bacteremia has never been reported before. No specific DNA probes exist for _M. terrae_ complex, but false-positive reactions with _M. tuberculosis_ complex DNA probes have been described (16). Isolates are usually resistant to most antituberculosis drugs, with the exception of ethambutol and streptomycin, and susceptible to erythromycin, ciprofloxacin, and sulfonamides. Only one case of disseminated infection by _M. terrae_ has been described in a patient with advanced HIV infection and positive cultures in blood and bronchoalveolar lavage fluid, but no additional data were provided (9). Although the isolate we recovered might represent a laboratory contaminant, several pieces of evidence make this possibility very unlikely: lack of alternative explanation for a persistent and progressive clinical picture of 4 months' duration, absence of response to standard antibiotic therapy, negative results in the search for other pathogens, rapid and sustained clinical and laboratory response to drugs active against this strain, clear improvement despite the lack of treatment for other conditions, and absence of other isolates of this pathogen in our hospital despite the large number of samples examined for mycobacteria. Acknowledgments We are indebted to María Soledad Jiménez, Mycobacterial Laboratory of the Centro Nacional de Microbiología, Majadahonda, Madrid, for providing the microbiologic data. José Mayo, Julio Collazos, and Eduardo Martínez Hospital de Galdakao, Vizcaya, Spain References 1. Nightingale SD, Byrd LT, Southern PM, Jockusch JD, Cal SX, Wynne BA. Incidence of _Mycobacterium avium-intracellulare_ complex bacteremia in human immunodeficiency virus-positive patients. J Infect Dis 1992;165:1082-5. 2. Raszka WV Jr, Skillman LP, McEvoy PL, Robb ML. Isolation of nontuberculous, non-avium mycobacteria from patients infected with human immunodeficiency virus. Clin Infect Dis 1995;20:73-6. 3. Bessesen MT, Shlay J, Stone-Venohr B, Cohn DL, Reves RR. Disseminated _Mycobacterium genavense_ infection: clinical and microbiological features and response to therapy. AIDS 1993;7:1357-61. 4. Lessnau KD, Milanese S, Talavera W._ Mycobacterium gordonae_: a treatable disease in HIV-positive patients. Chest 1993;104:1779-85. 5. Straus WL, Ostroff SM, Jernigan DB, Kiehn TE, Sordillo EM, Armstrong D, et al. Clinical and epidemiologic characteristics of _Mycobacterium haemophilum_, an emerging pathogen in immunocompromised patients. Ann Intern Med 1994;120:118-25. 6. Parenti DM, Symington JS, Keiser J, Simon GL. _Mycobacterium kansasii_ bacteremia in patients infected with human immunodeficiency virus. Clin Infect Dis 1995;21:1001-3. 7. Chocarro A, González-López A, Breznes MF, Canut A, Rodríguez J, Diego JM. Disseminated infection due to _Mycobacterium malmoense_ in a patient infected with human immunodeficiency virus. Clin Infect Dis 1994;19:203-4. 8. Tchornobay AM, Claudy AL, Perrot JL, Levigne V, Denis M. Fatal disseminated _Mycobacterium marinum_ infection. Int J Dermatol 1992;31:286-7. 9. Schafer RW, Sierra MF. _Mycobacterium xenopi_, _Mycobacterium fortuitum_, _Mycobacterium kansasii_, and other nontuberculous mycobacteria in an area of endemicity for AIDS. Clin Infect Dis 1992;15:161-2. 10. Valero G, Peters J, Jorgensen JH, Graybill JR. Clinical isolates of _Mycobacterium simiae_ in San Antonio, Texas: an 11-yr review. Am J Respir Crit Care Med 1995;152:1555-7. 11. Roig P, Nieto A, Navarro V, Bernacer B, Borras R. Micobacteriosis por _Mycobacterium szulgai_ en paciente con infección por el virus de la inmunodeficiencia humana. An Med Interna 1993;10:182-4. 12. Tsukamura M, Kita N, Otsuka W, Shimoide H. A study of the taxonomy of the _Mycobacterium nonchromogenicum_ complex and report of six cases of lung infection due to _Mycobacterium nonchromogenicum_. Microbiol Immunol 1983;27:219-36. 13. Ridderhof JC, Wallace RJ Jr, Kilburn JO, Butler WR, Warren NG, Tsukamura M, et al. Chronic tenosynovitis of the hand due to _Mycobacterium nonchromogenicum_: use of high-performance liquid chromatography for identification of isolates. Rev Infect Dis 1991;13:857-64. 14. Lockwood WW, Friedman C, Bus N, Pierson C, Gaynes R. An outbreak of _Mycobacterium terrae_ in clinical specimens associated with a hospital potable water supply. American Review of Respiratory Diseases 1989;140:1614-7. 15. Peters EJ, Morice R. Miliary pulmonary infection caused by _Mycobacterium terrae_ in an autologous bone marrow transplant patient. Chest 1991;100:1449-50. 16. Ford EG, Snead SJ, Todd J, Warren NG. Strains of _Mycobacterium terrae_ complex which react with DNA probes for _M. tuberculosis_ complex. J Clin Microbiol 1993;31:2805-6.