

# **Opportunities in Epigenetic**



### Mukesh Verma, PhD

Program Director Analytic Epidemiology Research Branch

Epidemiology and Genetics Research Program



Chicago, September 20, 2004





### To stimulate population based research on application of epigenetic markers in cancer epidemiology



# Markers in Epidemiology Research

**Currently Used:** Genetic markers Biochemical markers

Unexplored: Epigenetic markers Proteomic markers

In epidemiology, biomarkers are used to follow disease prevalence by determining their level in cohort studies with potential of identifying the high risk population



# **Characteristics of Population Studies**

In population based studies, questions of

- reliability,
- sensitivity,
- specificity,
- reproducibility, and
- scalable capacity for automation

are central in selecting assays to determine factors associated with carcinogenesis



# **Epigenetics: Background**

**Epigenetics is the study of** 

- mitotically heritable changes
- not caused by DNA sequence alterations

**Epigenetic controls** 

- essential for normal development
- misdirected in cancer cells



# Background

Misdirected epigenetic controls can cause - silencing of tumor suppressor genes - activation of oncogenes

**Epigenetic events vs. genetic events** 

- higher frequency
- can be reversed





Verma and Srivastava (2003) Lancet Oncology. 3, 755-763



Transcription Ac Ac Methylation ۰ Me MeCP2 binding ALCP2 Co-Repressor Co-repressor and deacetylase binding Deacetylase o-Represso Co-Repressor eacetylase acetyle o-Represso Histone deacetylation and chromatin compaction °-°-Co-Repressor Mailtin Acetylation Methylation Co-Represso No transcription

Jones and Laird (1999) Nat Rev Gen 21: 163

### Inhibitors of DNA Methyltransferase (5-AZA-C) and Histone Deacetylase (TSA) can Restore Gene Activation



# **Epigenetics in Epidemiology**



## **Molecular Targets**

### **Tumor suppressor Genes**

APC, p15, p16, p73, ARF/INK4A, VHL, ER, RARbeta, AR, HIC1, Rb Invasive/Metastasis suppressor Genes

E-cadherin, TIMP-3, mts-1, CD-44

### **DNA Repair Genes**

Methylguanine methyl transferase, hMLH1, BRCA1, GST

### Angiogenesis

Thrombospondin-1 (TSP-1), TIMP-3

## **Cancer Development is Lengthy**



# **Epigenetic Markers in Lung Cancer**







# Potential Epidemiological Markers in Colon Cancer



### A Model for Colorectal Tumorigenesis

Modified from Jubb et al 2001. J Path. 195: 111.



# Pancreatic Cancer: Methylation of p14ARF and p16INK4a

Division of Cancer Control & Population Sciences

Pancreatic Carcinoma (PCA) : 39 19/39 p16INK4a

**Chronic Pancreatitis (CP) : 16** 

0/16 p16INK4a

p16INK4a

0/6

Normal Pancreatogram (NAD) : 6



Sample: Pancreatic Fluid

(Klump et al. Mol Cell Path 88: 217, 2003)

|                              |                                             | GEI                                                                           |                    | AS         | SS:                                        |                                                                                     |              |                        |
|------------------------------|---------------------------------------------|-------------------------------------------------------------------------------|--------------------|------------|--------------------------------------------|-------------------------------------------------------------------------------------|--------------|------------------------|
| Epigenetic Patterns in       | 'SUE<br>'YPE                                | ASE #<br>DKN2A<br>SR1<br>YOD1                                                 | ALCA<br>GMT<br>MP3 | <b>ຕ</b> ຸ | AF<br>DH1<br>STP1<br>CISS2<br>HBS1<br>HBS1 | TINNB1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B | C ] <b>J</b> | ASSOCIATED<br>DYS OR T |
| Esophageal<br>Adenocarcinoma | T NORMAL T<br>STOMACH(S)                    | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                      |                    | AF         |                                            |                                                                                     |              | NO ITO                 |
| Cancer Research<br>61:3410   | NORMAL ESOPHAGEAL<br>SQUAMOUS MUCOSA ( NE ) | 46799<br>44495555<br>1155<br>1155<br>1155<br>1155<br>1155<br>115              |                    |            |                                            |                                                                                     |              | NO                     |
| Cancer Progression           | BARRETT'S<br>(IM)                           | 467<br>4479<br>554<br>556<br>162<br>152<br>17                                 |                    |            |                                            |                                                                                     |              | NO<br>YES              |
|                              | DYSPLASIA<br>(DYS)                          | 16L<br>16H<br>188<br>139<br>388<br>39                                         |                    |            |                                            |                                                                                     |              | STAGE                  |
|                              | ADENOCARCINOMA<br>(T)                       | 8<br>113<br>483<br>97<br>3726<br>404<br>7<br>199<br>3399<br>444<br>517<br>212 |                    |            | N                                          | N<br>N<br>N                                                                         |              | 1<br>2<br>3<br>4       |
|                              | < 4 PM                                      |                                                                               | 4-20 PM            | ИВ         | 21-50                                      | PMR                                                                                 | > 50         | PMR                    |

## Esophageal Cancer: Probability of Survival



Brock et al. Clinical Cancer Research. 9: 2912 (2003)

## **Esophageal Cancer and Methylation**

|        | TUMOR SAMPLES |      |       |        |        | NORMAL TISSUE |     |     |      |       |        |       |    |     |
|--------|---------------|------|-------|--------|--------|---------------|-----|-----|------|-------|--------|-------|----|-----|
| PARENT | p16           | MGMT | DAP-K | TIMP-3 | E-CAD  | ER            | APC | p16 | MGMT | DAP-K | TIMP-3 | E-CAD | ER | APC |
| 1      | U             | Ų    | M     | м      | м      | M             | М   | Ų   | м    | U     | U      | U     | м  | U   |
| 2      | M             | Ų    | M     | U      | М      | M             | M   | Ų   | М    | Ų     | U      | U     | M  | U   |
| 3      | M             | M    | U     | U      | М      | M             | М   | M   | М    | Ų     | U      | U     | M  | M   |
| 4      | U             | U    | U .   | U      | Ų      | U             | М   | M   | U    | Ų     | U      | U     | U  | U   |
| 5      | U             | м    | U     | U      | U      | U             | U   | U   | U    | U     | U      | U     | U  | U   |
| 6      | M             | U    | U     | м      | М      | M             | M   | U   | U    | U     | U      | U     | U  | U   |
| 7      | U             | м    | U     | U      | М      | U             | М   | U   | U    | U     | U      | U     | U  | U   |
| 8      | U             | U .  | M     | Ų      | М      | Ų             | M   | U . | U.   | U     | U .    | U     | ų. | U   |
| 9      | M             | M    | U.    | Ų      | м      | М             | М   | M   | м    | Ų     | Ų      | М     | Ų  | Ų   |
| 10     | U.            | Ų    | U     | U      | U      | Ų             | U   | U   | Ų    | Ų     | Ų      | U     | U  | U   |
| 11     | M             | M    | M     | Ų      | М      | M             | M   | M   | м    | Ų     | Ų      | U     | Ų  | Ų   |
| 12     | U.            | U    | M     | M      | м      | M             | U   | M   | U    | V     | U      | M     | M  | U.  |
| 13     | M             | м    | U     | U      | м      | M             | М   | Ų   | м    | U     | U      | M     | U  | U   |
| 14     | U             | м    | U     | U      | М      | U             | U   | U   | М    | U     | U      | U     | U  | U   |
| 15     | U             | M    | U     | U      | м      | U             | М   | U   | U    | U     | U      | U     | U  | U   |
| 16     | Ų             | M    | M     | Ų      | м      | Ų             | Ų   | M   | Ų.   | M     | Ų      | М     | U  | Ų   |
| 17     | U             | U    | U     | U      | м      | М             | M   | M   | U    | U     | U      | U     | U  | U   |
| 18     | Ų             | Ų    | U     | Ų.,    | М      | М             | м   | M   | Ų    | Ų     | ų      | U     | U  | U   |
| 19     | M             | M    | U     | M      | U      | U             | м   | U.  | U    | Ų     | U      | U     | U  | U   |
| 20     | М             | M    | U     | U      | м      | M             | м   | M   | U    | U     | U      | U     | Ų  | U   |
| 21     | U             | U    | U     | U      | U      | U             | м   | U   | U    | U     | U      | U     | U  | U   |
| 22     | U             | м    | U     | M      | U      | U             | М   | U   | U    | U     | U      | U     | U  | M   |
| 23     | U.            | Ų    | U     | Ų      | м      | V             | U   | V   | U.   | U U   | U      | U     | U  | U   |
| 24     | м             | M    | U     | M      | U      | М             | M   | U   | M    | U     | U      | М     | M  | U   |
| 25     | м             | M    | U     | U      | A MARK | М             | M   | U   | U    | U     | U      | U     | U  | U   |
| 26     | U             | Ų    | Ų     | U .    | M      | U             | Ų   | U   | Ų    | Ų     | Ų      | U     | U  | U   |
| 27     | U             | U    | Ų     | U      | Ų      | U             | M   | Ų   | Ų    | Ų     | Ų      | U     | U  | U   |
| 28     | U             | M    | M     | U      | U      | U             | U   | Ų   | Ų    | U     | U      | U     | U  | U   |
| 29     | U             | M    | м     | U      | L L    | М             | M   | U   | Ų    | U     | U      | U     | U  | U   |
| 30     | м             | M    | U     | U      | L L    | U             | U   | U   | U    | U     | U      | U     | U  | U   |
| 31     | м             | M    | U     | M      | М      | М             | M   | м   | M    | U U   | U      | U     | U  | U   |
| 32     | U             | U    | U     | M      | U      | М             | M   | U   | M    | U     | U      | U     | U  | U   |
| 33     | U.            | M    | U     | V      | U      | М             | M   | U U | V.   | U     | U.     | U     | U  | U   |
| 34     | M             | M    | U U   | U      | M      | М             | M   | Ų   | Ų    | Ų     | U      | Ų     | U  | U   |
| 35     | M             | M    | U.    | Ų      | Ų      | м             | M   | Ų   | Ų    | Ų     | Ų      | Ų     | U  | M   |
| 36     | U             | M    | U     | U      | U      | U             | U   | U   | U    | U     | U      | U     | U  | U   |
| 37     | U             | U    | U     | U      | M      | М             | M   | U   | U    | U     | U      | U     | U  | U   |
| 38     | м             | M    | U     | U      | M      | U             | U   | U   | U.   | U     | U      | U     | U  | U   |
| 39     | U             | U    | U     | U      | M      | U             | U   | U   | U    | U     | U      | U     | U  | U   |
| 40     | м             | M    | U     | U      | M      | м             | M   | U   | U    | U     | U      | U     | U  | U   |
| 41     | U             | V    | U     | U      | U      | U             | U   | U   | U    | м     | U      | U     | U  | U   |

### Brock et al. Clinical Cancer Research. 9: 2912 (2003)



# Bladder Cancer: Methylation of LAMC2 in Exfoliated Cells

Division of Cancer Control & Population Sciences



Sample: Urine

(Sathyanarayana et al. Can R



## **Esophageal Cancer: Immuno-histochemistry**

### Unmethylated







Brock et al. Clinical Cancer Research. 9: 2912 (2003)

## Tumor Class Prediction by Methylation AML and ALL



В







AML: Acute Myeloid Leukemia ALL: Acute Lymphoblastic Leukemia

#### Adorjan et al (2002) Nuc Ac Res. 30: e21

### Tumor Class Prediction by Methylation AML and ALL



AML:Acute Myeloid Leukemia ALL: Acute Lymphoblastic Leukemia

Adorjan et al (2002) Nuc Ac Res. 30: e21

## **Principle of Methylation**

| a Methylation | content            |
|---------------|--------------------|
| 8888888       | 8888888            |
| 8 8888 8 8    | 8888888<br>8888888 |
| 8888888       | 8888888            |
| 8888888       | 8888 8 8 8         |
| 8888888       | 8888888            |
| 8 8888 8 8 8  | 888888             |
| 8888888       | 888 888            |
| 8888888       | 8888 8 8 8         |

| b   | Methy | yla | tion | level |     |  |
|-----|-------|-----|------|-------|-----|--|
| - 8 | 8888  | 8   | 88   | 8888  | 888 |  |
| -8  | 8888  | 8   | 88   | 8888  | 888 |  |
| -8  | 8888  | 8   | 8    | 8888  | 888 |  |
| - 8 | ****  | 8   | 88   | 8888  | 888 |  |
| -8  | 8888  | 8   | 88   | 8888  | 888 |  |
| -8  | 8888  | 8   | 88   | 8888  | 888 |  |
| -8  | 8888  | 8   | 8    | 8888  | 888 |  |
| - 8 | 8888  | 8   | 88   | 8888  | 888 |  |

### c Methylation pattern

| 8 8888 8 8 8 | 888 888    |
|--------------|------------|
| 8 8888 8 8 8 | 8888888    |
| 8 888 888    | 88888888   |
| 8 888 888    | 888 888    |
| 8 8888 8 8 8 | 888 888    |
| 8 8888 8 8 8 | 888 888    |
| 8 888 888    | 8888 888   |
| 8 888 888    | 8888 8 8 8 |

### d Level profile

| ~   | - |            | 0 |   | •  |     | 5 | - | 0 | - |
|-----|---|------------|---|---|----|-----|---|---|---|---|
| -8  | ŏ | 888        | ð | ð | ð  | 000 | ð | ð | ŏ | 8 |
| •   |   |            | 0 | - | •  | 000 |   | 0 | ~ | • |
| ð   | ŏ | <b>888</b> | Ö | ð | ð  | 800 | ö | ŏ | ŏ | ð |
| •   | 0 | 000        | 0 | 0 | •  | 000 | 0 | 0 | 0 | 0 |
| •   | 0 | 000        | 0 | 0 | Ö. | 000 | ø | 0 | ō | 0 |
| •   | 0 | 000        | 0 | • | •  | 000 | 0 | 0 | 0 | • |
| •   | 0 | 000        | 0 | • | •  | 000 | P | 0 | 0 | • |
| 0   | 0 | 000        | 0 | 0 | 0  | 000 | 0 | 0 | 0 | 0 |
| •   | 0 | 000        | 0 | • | •  | 000 | Ρ | 0 | 0 | • |
| 0   | 0 | 000        | 0 | 0 | 0  | 000 | D | 0 | 0 | 0 |
| •   | 0 | 0000       | 0 | ۰ | •  | 000 | P | • | 0 | • |
| - 2 | 0 | 000        | 0 | 0 | 0  | 000 | 0 | 0 | 0 | 0 |
| •   | 9 | 000        | 0 | 0 | •  | 000 | ٢ | 0 | 0 | • |
| - 2 | 0 | 000        | 0 | 2 | 2  | 220 | 2 | 2 | 0 | 2 |
| •   | 9 | and the    | 0 | 0 | •  | 000 | 2 | 0 | 0 | • |

#### e Pattern profile

| -8  | 8888                                                                 | 888               | 8888                         | 888               |
|-----|----------------------------------------------------------------------|-------------------|------------------------------|-------------------|
|     | 8888                                                                 | 888               | 8888                         | 888               |
| - 8 | ****                                                                 | 888               | 8888                         | 888               |
|     | 8888                                                                 | 888               | 8888                         | 888               |
| -   |                                                                      |                   |                              |                   |
| -   | 2000                                                                 | 888               | 2000                         | 000               |
| *   | 8888                                                                 | 888               | 8888                         | 888               |
| 8   | 8888<br>8888<br>8888<br>8888<br>8888<br>8888<br>8888<br>8888<br>8888 | 888               | 8888<br>8888<br>8888<br>8888 | 888               |
| *   | 8888<br>8888<br>8888<br>8888<br>8888<br>8888<br>8888<br>8888<br>8888 | 888<br>888<br>888 | 8888<br>8888<br>8888<br>8888 | 888<br>888<br>888 |

### Laird (2003) Nat Rev Cancer 3:253

### Nature Reviews | Cancer

# **Circulating DNA to Detect Methylation**

Real time PCR HeavyMethyl Method (Cottrell et al NAR 32: e10, 2004)





# **Nanochip for Methylation**



Micro-array test sites connected with platinium wires



# Why Epigenetic Markers

- Multiple markers are better than single marker
- Complementary to biochemical and genetic markers
- Epigenetic events occur early in cancer development
- Easy to assay in small sample size (MS-PCR based assay)
- Source of markers: biofluids, exfoliated cells
- Automation possible (nanochips)



# **Funding Opportunities**

R03 (Small Grant): PAR-03-010

R21 and R33 (IMAT Program)

R01

R41/42 and R43/44

# **Epigenetics Interest Group**



🛃 start 👘 😂 🎯 🖸 🦥

💽 Inbox - Microsoft Out... 🛛 🗁 H:\My Documents\DC...

Directory Mukesh Au... 🕅

🔯 Document1 - Microsof... 🧉 SIGS: Epigenetics Int...

🧐, 🕅 🐜 N - 5:35 PM

## **SUMMARY**



### Epigenetic markers can be used for cancer detection and risk assessment to identify populations at high risk of developing cancer

