
Practical Lessons in Supporting Large-Scale Computational Science
Ron Musick, Terence Critchlow
{rmusick, critchlow}@llnl.gov

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

 ���������
	�����
������������	�������������������� �!�"���!������#����$	��
� �!�"%$& '(&!)
��������� �������*	��
+(�!����,.-/���*0�0�120
���������(#�	��!� ����#����!	�&43658749�:�;�5�+(��,.5�9�<=&>%@?(AB0�5�C�?(58D�EF;�G�:�G*AB��HI&�D�&

1. Introduction
Business needs have driven the development of
commercial database systems since their inception. As
a result, there has been a strong focus on supporting
many users, minimizing the potential corruption or loss
of data, and maximizing performance metrics such as
transactions-per-second and benchmark results [Gra93].
These goals have little to do with supporting business
intelligence needs such as the decision support and data
mining activities common in on-line analytic processing
(OLAP) applications. As a result, business data are
typically off-loaded to secondary systems before these
activities occur. In addition, they have little to do with
the needs of the scientific community, which typically
revolve around a great deal of compute and I/O
intensive analysis, often over large data with high
dimensionality. For scientific data, in many cases the
data was never collected in a DBMS in the first place,
and so the analysis and visualization take place over
specialized flat-file formats. This is a painful solution,
because a DBMS has much to offer in the overall
process of managing and exploring data.

Of late, industry and the research community have been
pushing to develop DBMS-based systems that will
break this mold, and provide the needed OLAP support.
The recent activity in OLAP [GC97, OLA98], multi-
dimensional databases [TD96], ORDBMS [SM96], and
the TPC council’s TPC-D [TPC98] benchmark all
testify to the strength of this new direction. This is a
promising change of focus. OLAP optimizations are
much closer than on-line transaction processing (OLTP)
to supporting the interactive computational data
analysis (ICDA) activities that take place in scientific
domains [MM97]. OLAP and ICDA do not, however,
represent identical workloads. In fact, little is known
about exactly how DBMS technology fails to meet
ICDA needs. We explore this issue in some depth,

describing an evaluation of DBMS technology for
large, high-dimensional computational data (see
[Mus99] for more detail). After extensive testing, we
can report that the technology is much closer to being
able to support ICDA than one might expect.
Furthermore, there is a clear evolutionary path that
should lead to full support once the technology matures.

The main function this report serves, in lieu of stable
and well-known benchmarks for ICDA, is to provide a
practical evaluation of the current state of DBMS
technology. In Section 2 we describe the characteristics
of ICDA data and workloads, while Section 3 explains
the evaluation criteria. Section 4 contains the bulk of
the evaluation results, focussing first on relational
databases, then discussing the newer object-relational
approaches that have appeared commercially in the past
few years. Finally, we conclude with the future
directions and research that may finally integrate ICDA
and mainstream database management systems.

2. ICDA Data and Workloads
Mesh data is by far the most common abstraction for
computational data in the scientific community. A
mesh provides a way of breaking a surface or volume
down into an interconnected grid of much smaller zones
(Figure 1). Each zone stores a range of computed or
collected variables. The hope is that if the zones are
small enough, the micro-scale properties and
interactions can be modeled with enough accuracy to
provide precise predictions of macro-scale events. The
main limitation on decreasing zone size (and thereby
increasing the number of zones per mesh) is the
additional storage and computational costs incurred by
the additional zone variables. Current capabilities are
at the scale of a few billion zones; a typical simulation
will contain between tens of thousands and tens of
millions of zones.

Mesh data is typically stored in highly structured binary
files, using standard low-level self-describing formats
like NetCDF [RDE93] or HDF [HDF98]. The mesh is
accessed through high-level APIs that provide methods
to read and write individual components of the mesh
directly, without reading the rest of the structure into
memory. The zones in a mesh are made up of lists of
points, or nodes. For example, in a 3-dimensional case,
a cubic zone has 8 nodes that describe the corners of the
cube. Nodes have X, Y, and Z coordinates, whose
values can change if the mesh deforms over time.
Variables can be assigned to zone centers, or to nodes.
Variable values are recorded at each time step in a
simulation, for each node and zone in the mesh.

The standard that a new DBMS-based implementation
must compare favorably to is the existing legacy system
in use on the scientist’s desktop. For ICDA
applications, this typically means comparing to native
Unix (NU) fwrite and fread performance with optimal
block sizes. While we would not expect DBMS-based
performance on large array I/O to beat NU, a question
we would like to answer is how much do we pay in
performance to gain the additional query and data
management capabilities? This depends of course on
what typical ICDA workloads look like.

ICDA characteristics are distinct from OLAP and
OLTP. ICDA applications involve high dimensional,
dense data, so multi-dimensional database solutions are
not effective. The data will be as large as the
computational and storage platform supports, and so
significant storage overhead for indexing or replication
is not acceptable. The data is write-once, read-many,
so update facilities do not need to be optimized.
Transactions are not needed, and there are few
concurrent users of the same data. There is a strong
emphasis on extreme data throughput rates in order to
support visualization-oriented operations on a mesh,
such as iso-surface, or orthogonal slice extraction.
ICDA workloads are very hard to pin down.

Visualization-oriented queries lean heavily on range
and multi-point queries over mesh variables. Scientists
looking for anomalies, specific events or phenomena in
the mesh, however, will generate workloads that rely
more on point and extremal queries, thus benefiting
more from query optimization. In either case, data
throughput rates are the prime metric of concern.

3. Evaluation and Testing
Generating fair and repeatable comparisons between
any two systems is hard due to the number of variables
that impact the validity of a comparison.
Unfortunately, there are no widely accepted
benchmarks available for testing ICDA applications on
DBMSs. This work does not define a new benchmark
for ICDA. Instead, the goal has been to develop a set of
tests that clarify the performance implications of
supporting ICDA-style queries with a NU-based
approach, compared with a DBMS-based approach. For
the purposes of this study, only single node
performance is compared.

Several issues arise when comparing two such open-
ended approaches to data management. For example,
the tests should be run on the same system, and under
the same conditions with respect to system load. The
test suite should also reflect a workload similar to the
application that the system is meant to support. Some
of the more interesting issues include:
• Counting: Throughput in terms of Mb/s is a key

measure of interest for this evaluation. Exactly
which bytes should be counted? For example, if the
system reads 1Mb of useful information from a
3Mb interleaved array, but had to read the entire
3Mb to get it, was the total amount of data read
1Mb or 3Mb? For this work, the answer is based on
the apparent throughput to the application, and
therefore is 1Mb. Note that the use of apparent
throughput leads to much lower rates, in terms of
Mb/sec, than the maximum raw I/O throughput.

• DBMS Implementation: DBMS tuning plays an
important part in determining performance. For
each query and schema, several different embedded
SQL queries using several combinations of indexes
were tested. This resulted in several hundred
small-scale performance tests. Tuning was
performed on the system with the goal of
understanding the full range of potential
performance [Sha92].

• NU Implementation: For NU testing, the data was
arranged on disk in binary files in much the same
way it is for ICDA applications at LLNL. Choosing
a reasonable NU implementation is a difficult task.
If enough effort is expended, one can always
construct a NU test that will outperform the

Figure 1. An Example of Mesh Data

corresponding DBMS test. We need to compare
not just performance, but the relative costs of
achieving that performance. To help with this,
three classes of NU tests were written for every
SQL query: poor, good, and very good. Poor
implementations were the simplest and fastest to
build, and do no memory management. Good
implementations make full use of system memory,
while very good code is the most complex, it
builds and makes use of indexes. Consider for
example a point query on an array. Poor NU reads
an object, checks the conditions, then reads the
next object. Good NU reads several thousand
pages of data into memory before testing
conditions, while very good code will use the
index to read only the data desired.

• Cache. Separating the performance impact of the
cache and memory from the storage hierarchy is
important. Isolating the cache allows one to
predict what will happen with I/O performance as
applications move from small-scale to large-scale,
or toward tasks with low locality of reference.

Several relational schemata were created to represent
the full complexity of the mesh data. This includes
node and zone variables, lists of surface nodes and
zones, mesh deformation information, material
mixtures in zones, and internal file structures. The
overwhelming majority of the data is found in the 2-4
dimensional tables that contain the variable data.
Because ICDA workloads are focused on point and
range queries over the variable data, the evaluation
concentrates on this task as well.

The DBMS testing and timing was carried out in C
using embedded SQL, since this is the most likely
approach for building a DBMS into ICDA applications.
For the evaluation, queries were constructed over
databases that contained single tables with 2-4 columns
of integers and floats. The raw data ranged in size from
500kb to 500Mb for point queries, and 150Mb to
500Mb for range queries. All point and range queries
consisted of 1-4 conditions in the where clause. Point
queries selected 1 integer or float. Range queries
selected between 1% and 100% of the table. Note that
none of these queries involve joins. Indexes were
constructed and optimized for each query. Range
queries were run both where the selected data was
stored contiguously on disk due to the use of a clustered
index, and where the selected data was scattered
throughout the table. Thousands of individual point
queries were made per test, so that the total test time
took anywhere from 10 – 60 minutes. Range queries
were large enough to run for the same time interval.
Stored procedures were not used, since understanding
ad hoc query performance is the goal of the testing.

Slow tests were repeated 3 times, while faster tests were
repeated 10 times. These tests were run using Sybase
10 and 11, and Informix IUS 9 (both as an RDBMS,
and an ORDBMS) across several hardware platforms,
and with hot and cold caches. Each DBMS test lead to
3 NU tests (poor, good, very good) on the same
platform. Finally, there were no concurrent users, and
no other significant loads on the machines.

We can not fully report on the results of the hundreds of
small tests the testing plan lead to, nor would it serve an
interesting purpose. Only a well-written (and broadly
accepted) benchmark for ICDA could be used to
provide a comprehensive picture of the performance
capabilities of a particular DBMS. The performance
numbers summarized below do, however, give a flavor
of the types of results that were consistently found over
the course of this evaluation.

4. Results
In this section, we break our analysis of the DBMS
technology into three components. First, we describe
the advantages the technology brings to ICDA,
followed by the disadvantages, theoretical and practical,
that arise when attempting to use it. Then, because the
“traditional wisdom” about using DBMS technology for
ICDA is often misleading, we attempt to dispel the
more common myths associated with the technology.
Finally, we conclude with a brief summary of the
technology’s applicability to ICDA.

4.1 RDBMS Systems

Advantages
1. The RDBMS market is very strong and growing,

and the major vendors are relatively stable.
Interfaces to RDBMS data have been standardized
for a long time, at several levels of abstraction,
allowing customers to switch between products
without dramatic modifications to legacy code.

2. RDBMS products are relatively mature, which has
many advantages including a large pool of
experienced labor, knowledgeable customer
support from vendors, fairly efficient software and
well understood query optimization technology.

3. There is a large base of third party tool vendors
that offer a wide range of software for accessing
and manipulating data stored in RDBMS. This tool
base makes an RDBMS the foundation of a highly
flexible, end-to-end data management capability,
from design to storage and finally to access.

Disadvantages

4. A significant drawback of relational systems is the
clumsiness of the data modeling paradigm. The
model is capable of representing arbitrarily
complex objects, but the result is often far from
intuitive, or efficient.
The table-based type system in an RDBMS is very
simple and straightforward. However, the extent of
conceptual mismatch between this data model and
ones found in ICDA application code means that
the user will be required to maintain two data
models – that of the application, and that of the
DBMS. The translation code between the two can
be non-trivial, easily reaching thousands of lines of
code. For example, consider that, in the relational
model, even the simple definition of a vector
becomes tedious. Since each table is officially a
set of tuples (rather than an ordered list), the only
way to insure that the jth element of array X is
returned is to have a table that stores the array
index along with a second feature that is actually
the value of X. This increases both the required
storage space, and the complexity of accessing
elements of X in a query. This becomes much
worse in multi-dimensional cases. Another
uncomfortable aspect is the strong typing that must
occur in the schema. In the table above, the
“value” must have a fixed type. A mesh, though,
may have zone and node variables of mixed types.
Efficiently representing this flexibility in a
relational schema is challenging. On the positive
side, once in a table, we can ask very interesting,
ad hoc queries over the values of X.

5. Performance of these systems is very poor for
ICDA, independent of the vendor. In our
performance studies, slowdowns of 5 to 40x were
seen for the simple range and multi-point queries
critical for ICDA.
The tests performed over the course of the
evaluation clearly demonstrated that RDBMSs do
not provide the throughput performance needed for
ICDA applications.
The data in Figure 2 and Figure 3 are from point
and range queries, respectively. Point queries are

the types of queries that one would expect a DBMS
to consistently perform well on, mainly due to
query optimization, and the relative ease of
constructing and using indexes.
As shown in Figure 2, for point queries over large
data with a warm cache, the DBMS performed
basically on-par with the good NU
implementations. None of the NU implementations
achieved more than 7% of the character read I/O
capacity for the disk. The bulk of the tests showed
results that utilized a much smaller fraction of the
expected I/O bandwidth. This is not surprising,
given that only apparent throughput to the
application is being counted. The poor and good
NU versions were I/O bound due to reading in data
not useful to the application (and thus not counted).
While the very good NU code shows extremely
good relative performance, there is some overhead
costs associated with reading the index. DBMS
performance does not approach very good NU
performance due to server communication, and
other overhead costs mentioned below (#8).
The range and multi-point queries (Figure 3) were
much less consistent between vendors than the
point queries. When compared to good NU
implementations, total throughput rates varied from
5 to 40x slower, even with substantial tuning.
These tests were carried out with data sizes that
ranged up to 150Mb of “useful” data out of 500Mb
total, and for the test shown in Figure 3, maximum
apparent throughput to the application of 1.1Mb/s.
The NU implementations reached maximum
potential throughput within the first several Mb of
data being read. The DBMS implementations
flattened out much sooner, and at much lower
throughputs.
An interesting note is that for small data, while the
NU implementations ran anywhere from 10-50
times faster with a warm cache, the DBMS
implementations consistently gained only about
10%. For larger datasets, the cache had much
smaller beneficial effects. This most likely reflects

20kb/s

DBMS
 (100s)

NU Poor
 (20,000s)

NU Good
 (117s)

NU Very Good
 (1.86s)

.2 .4 .6 .8
Kb/s to Application

Figure 2. Point Queries

Max: 1.1Mb/s
10,000-

 1000-

 100-

kb/s

DBMS

NU Good

Mb of “ useful data”

1 2

Warm start
Cold start

Warm start

Cold start

Figure 3. Range Queries

the fact that the RDBMS is a compute-bound
system.

Myths
6. “ Stable code.”

Any complex piece of software, such as a
commercial database system or a legacy
application, optimized to perform well on a
specific platform will never be stable as long as the
underlying platforms are regularly upgraded.

7. “ Scientific data is too complex for RDBMSs.”
Complexity of the underlying data is certainly an
important issue, but alone is not sufficient to
disregard this approach for data management. It is
certainly possible, and in many cases profitable, to
use an RDBMS for managing scientific data. The
Human Genome Project has a wide range of data
requirements, from acquisition, to high-level search
and browse, to detailed analysis. The data is highly
structured and interrelated. While no one, standard
set of tools is used in this community, RDBMSs
are seen more often than any other choice
RDBMSs [CGM98].

8. “ RDBMSs are fast due to excellent query
optimization benefits.”
Depending on the performance metric chosen, this
is just simply not true – the performance study
demonstrates that DBMSs are overwhelmingly
compute-bound. Query optimization speeds things
up but does not get close to the throughput
capabilities of the I/O subsystem. Stored
procedures can ensure the query optimization
overhead occurs only once. However, a large part
of the code path per tuple returned involves
locking, alignment, transaction management, tuple
management, page management, and update, delete
and insert facilities. Some relational systems
require that each tuple returned to the client calls
the server to invoke much of the code path listed
above. Other systems allow one server call to fill
large buffers and pass them back to the client.
Independent of which RDBMS is used, however,
the transaction semantics, consistency and
correctness guarantees result in only a small
fraction of the potential I/O bandwidth being used
to respond to a query, even for large range and
multi-point queries.

RDBMS Summary
The main difficulty with RDBMSs, of course, is their
performance. RDBMS solutions require too much
space, and are too slow, to support legacy ICDA
applications. This problem is independent of which

vendor is used; it falls out as a result of the relational
model, and the requirements of OLTP customers.
These approaches are not practical for ICDA currently,
and they are not likely to be in the foreseeable future.

4.2 ORDBMS Technology
There are several small vendors of ORDBMSs, and
three giants: IBM DB2, Oracle 8, and Informix
Universal Server (IUS). DB2 is using its DataJoiner
technology. Oracle is providing OR capabilities
through cartridges, which are essentially component
technology for DBMSs, and Informix is using a similar
approach called data blades. For evaluation purposes,
we worked with the IUS 9.12 because it was available,
and the architecture has a few special features that
make it extremely attractive for ICDA applications.
The conclusions drawn below, however, apply to
ORDBMS products in general.

Advantages
1. ORDBMSs have been in the planning stages for the

major DBMS vendors for several years now, and
the advantages of merging object and relational
approaches have been proclaimed by the research
community for much longer. Nearly all of the
potential for DBMS-oriented growth lies in this
area, at levels that bode well for market share,
vendor support, and third-party tools [SM96] .

2. ORDBMS combines, in theory, the modeling
capabilities of ODBMSs with all the RDBMS
advantages mentioned above.
The IUS allows the user to build user-defined types
(UDTs), and provide methods for accessing them.
The system provides hooks for presenting an
interface to those new objects in terms of relational
tables, and provides a mechanism to supply
statistical information on the underlying data to the
query optimizer. The data blade approach allows
collections of UDTs, and their corresponding
interfaces, to be packaged and provided as an add-
on to the DBMS. One of the special features of the
IUS is its underlying technology called the Virtual
Table Interface (VTI). The VTI is the mechanism
used to define the interface of the UDTs to the
database. The interesting aspect of the VTI is that
it allows the data being described in the UDTs to
sit outside the DBMS storage manager. This means
that the legacy data does not need to be copied or
modified. The VTI essentially wraps it in such a
way that the ORDBMS can provide query access to
it. Thus the query capabilities of an RDBMS are
added to an ICDA application without impacting
the storage costs or legacy access speeds.

3. ORDBMSs have great potential for speed, and
should be able to provide near-native Unix fread
and fwrite performance levels. Currently,
however, it is only within 3-15x of NU.
The IUS VTI requires building the access methods
to the external data that provide a new storage
manager for that data. This provides a great deal of
flexibility, but can also be a lot of work. The
benefit is that much of the RDBMS code path
involving locking, page management, update delete
and insert facilities, etc. will be avoided.
Furthermore, if handled properly, the
communication between the server and the client
can be cut tremendously. For large requests, the
throughput capability of this new approach should
be capable of reaching near-NU performance.
Performance testing was done comparing the IUS
to relational systems, and to NU. This testing was
performed on a simple binary dataset (a set of
vector variables and a corresponding schema and
interface). The IUS showed a 3-5x performance
enhancement on the range and multi-point queries
as compared to the RDBMSs. Unfortunately, it is
still 3-15x slower than NU, depending on the query
and the NU implementation being used. One
limiting aspect of IUS performance is that each
tuple returned still needs to be individually
processed by the server. An example of the test
results is shown in Figure 4.

Disadvantages
4. There are no best-of-breed approaches yet for how

best to integrate external, or “ OO” data into the
relational query interface. Since there is also no
vendor agreement on this issue, any application
that relies on one style of interface will be largely
tied to a single vendor.
At the abstract level, the large ORDBMS vendors
look very similar. At the level of how the OO–
relational interface is actually specified, created,
and used, there is little vendor agreement. The

current design has several weak points. First,
query optimization is difficult. The developer has
the non-trivial task of collecting and providing the
information the query optimizer needs to build the
new OO data into the relational “ fold” . Second, it
is no longer easy to do several things that are
natural in an RDBMS environment. For example,
there is no simple SQL command to create an
index for the OO data. Third, wrapping the OO
data and accessing it through the relational system
stunts much of the potential flexibility of the
system because the data must be presented in terms
of relational tables and external functions. A better
approach would be to construct functions that
provide access to the object by taking arguments
and returning a value. The downside of this is that
any query that attempts to access the data in a way
not preconceived and supported through the
functions may require that new code be written.
This is the same major drawback faced with the
NU approach! In other words, because the data is
not explicitly represented (as with relational
tables), supporting true ad hoc queries over the
data with simple and intuitive SQL statements may
be very difficult to achieve.

5. There is no delivery yet on the potential
advantages mentioned above. This is a new
approach, and the instantiations of it being offered
by the major vendors are not ready for general
consumption.
The ORDBMS has great potential, but at this point,
much of it is unrealized: The OO modeling
capabilities are only partially accounted for. The
RDBMS advantages of market, external vendors,
standards and maturity are currently not shared by
the ORDBMS products. The ORDBMS can be
made faster than the corresponding RDBMS for
ICDA applications, and should eventually reach
near-native Unix speeds. Right now however, this
goal is still a distant one, for the reasons discussed
above. While ORDBSs may be the wave of the
future, and may enable a unification of ICDA,
OLAP, and OLTP data management systems, this
will not come to pass within the next few years.
Furthermore, the current products are complicated
and are introducing a completely new way to
interact with, and manage data. The products are
not mature, and the new OR mode of interacting
with data is neither well nor widely understood.

6. Tying external data into the relational system takes
a great deal of effort on the part of the DBMS
developer. To internalize an external object,
several chunks of code must be written
To build an interface to data, one must:
A. Develop the user-level interface, using the

interface defined in B and C. For example,

 200-

 100-

kb/s

% of “useful data”

< 1% 7%

.3 kb/s

33% 100%

(point &
multipoint)

(range queries)

JLKNM�O�P4Q$R�SUTWV
X
YBZ"[]\(^`_�acbIdeQgf
uery Speeds

modifying a visualization tool to support
DBMS queries.

B. Describe relational tables that define the
ORDBMS interface to the data. The difficulty
of the design depends on the specific project,
the implementation is fairly simple.

C. Define the new functions that complete the
interface to the underlying data. Both the
design and the implementation difficulty are
driven by the functions being created.

D. Define the access methods used to replace
DBMS storage functionality. For example,
methods are needed to open and close tables,
begin and end scans, get the next element, and
etc. The definition includes function names,
locations of the code, etc. Implementation is
in extended SQL.

E. Write the code for the access methods. These
methods can be arbitrarily complex, depending
on how intelligent the memory management
and disk management is, how complete the
qualification system is, and how complex the
external data is. The implementation is done
using a set of libraries that replace the Unix-
based file and memory management routines
with Informix versions, since the IUS runs in a
CPU extended virtual process.

F. Compile the access methods, and place them
in the DBMS extension code.

G. Reconfigure the DBMS to create and handle
the extent virtual processes properly.

H. Create tables in the ORDBMS according to the
definitions above.

7. The interface to the new capabilities is buggy,
fragile, and limited. There were quite a few bugs
and VTI design problems in this version of the IUS,
some more serious than others.
A. The VTI use of a CPU extent virtual process

causes several serious difficulties. First,
standard RDBMS mirroring facilities do not
work here. Second, while POSIX operations
are supported, Unix file system operations are
frowned upon, and *alloc is forbidden. When
writing the access methods, all interactions
with external data must be written using the
Informix libraries. Thus a large base of legacy
code is not available for use.

B. Bugs in the code for the access methods can
corrupt the database. During the course of the
case study, the test database (and once,
unfortunately, the group’s research database)
had to be rebuilt from scratch literally
hundreds of times. The potential consequences
of buggy user code are high for ICDA
applications, and should give serious pause to
users.

C. Several annoying aspects mar the interface.
For example, in the access methods, every
value returned to the server needs to be
strongly typed, then loaded into a “pdatum”
structure and sent to the server. This is slow,
due to the server communication requirements,
and messy since we do not know the type of a
particular mesh variable ahead of time.

D. There were a host of distracting bugs,
including a broken qualification evaluation
routine, incorrect specifications for the various
machine architectures (that lead to database-
corrupting crashes), and faulty type evaluation
code.

8. The extent of new options that are opened to the
users is bewildering.
For the IUS, data can be stored with relational
tables consisting of a variety of standard and
extended types. Each of these options has a unique
set of capabilities and limitations attached to them,
such as query flexibility, bulk loading capability,
different access methods and indexing options.
They have varying degrees of self-description, ease
of use, and potential performance.

Myths
9. “ Saves time”

At this point, utilizing the OR aspect of the system
to provide access to ICDA data is so difficult, that
the time might be better spent amortized over
smaller projects focused at extending legacy ICDA
systems to allow ad hoc queries, indexes, etc.

10. “ OO-level modeling”
Full object-oriented models are not yet supported.
Furthermore, in building the external data into the
relational interface, much of the object-oriented
aspect of that data is lost. SQL, the relational
DBMS interface, is still the primary interface to the
data, with the result being a somewhat less
satisfying middle-ground than one could hope for.

11. “ More flexible”
In building the OO data into the relational system,
several restrictions are placed on the object – views
if you like. The views limit the flexibility that
might otherwise exist in the object. Furthermore,
the access methods created to support the external
object will only be effective under certain rigid
usage patterns.
This myth has a more uncertain status than others.
We have argued that the number of options open to
the developer is so large, that it is nearly
overwhelming. But each of these options carries
its own set of limitations, and the end result is that
the current OR integration approach introduces
limits on the overall data model. Given a good
design, the ORDBMS interface should provide

very flexible access to the underlying ICDA data.
Unfortunately, the question of how to create a good
object-relational design is largely unexplored
territory. This is one of the most significant, and
yet subtle dangers for the ORDBMS community.
Powerful, but overly complex and hard-to-use
technology is a niche commodity at best.

ORDBMS Summary
The potential for this technology is striking in terms of
performance, flexibility, and ties to the business
marketplace. This technology is only a few years old,
and exhibits several issues, stemming primarily from
the novelty of the approach, which remain to be worked
out. The main danger for ORDBMSs is failure of the
approach due to the complexity of using it.

5. Future Directions and Conclusions
One point became very clear during this evaluation:
three prerequisites must be met simultaneously in
ICDA applications. Unfortunately, every approach to
data management seems able to support only two of the
requirements concurrently. The prerequisites are: (1)
small storage costs; (2) standards-based ad hoc query
support; and (3) reasonable throughput (Mb/s)
performance. Most combinations of two actually seem
to be supported. For example, blobs do not consume
much overhead storage, and have reasonable
throughput performance, but do not provide good SQL
access into the file. Alternatively, by keeping a copy of
the data (thereby doubling or tripling storage
requirements) in the original flat-file format outside the
DBMS, legacy applications such as visualization will
not see a performance degradation, and will get the ad
hoc query capability on the data stored in the DBMS.
Current legacy systems support low storage costs with
great performance, but do not support ad hoc queries
against the data.

To support ICDA applications, the best case scenario
would be to have a large, stable vendor who provides
an operational query engine on top of a data server with
flat-file like performance. This (hypothetical) system
would have features such as:
1. Large, multi-dimensional array data stored outside

the DBMS storage manager. This way, external
applications could use the data without taking a
performance hit, and without the large storage
overheads.

2. Mechanisms to plug this data into the query
engine, in a way that queries could combine data
stored in the DBMS with data external to it. If the
standard SQL interface were to be used, this might
require being able to create relational views of the
external data, and then populating the views on the

fly when a query hits the external data. Population
would allow passing large collections of data from
the external access methods.

3. Avoidance of as much of the DBMS code path as
possible. To protect the performance gains, have
the hooks in #2 be inserted so as to avoid as many
of the following as possible: locking, alignment,
transaction management, tuple management, page
management, insert and delete facilities. These
features are much less interesting when there are
few users on WORM data that is stored outside of
the DBMS.

ORDBMS vendors are beginning to close in on these
targets, and may be viable options for supporting ICDA
applications within 5-7 years. Technologies and trends
worth watching include:
1. ORDBMS technology, as currently this is closest

to fulfilling ICDA requirements.
2. The response of the ODBMS vendors to the new

ORDBMS competition. They might be pushed
into a new design cycle that leapfrogs current
ORDBMS status.

3. The datacube and multi-dimensional database
approaches to OLAP, data mining and other
business intelligence applications. Datacube and
MDDB approaches work on large multi-
dimensional data that can be numeric or text. They
may eventually provide much of the functionality
needed for ICDA.

4. The progress of underlying scientific data models
and formats to a common standard, such as the
vector bundle model. A common underlying data
model alone might be enough to be able to easily
make use of commercial scientific visualization
packages like EnSight, and others that share that
model. While this won’ t realize all the potential
benefits of being able to use commercial business
DBMS technology, it would be a good start.

Acknowledgments
This work has benefited tremendously through
discussions with Mark Miller.

Bibliography

[CGM98] T. Critchlow, M. Ganesh, R. Musick, K.
Fidelis, and T. Slezak. DataFoundry:
Information Management for Scientific
Data. Submitted to IEEE Transaction on
Information Technology in Biomedicine,
1999.

 [GC97] S. Goil, and A. Choudhary. High
Performance OLAP and Data Mining on

Parallel Computers. Data Mining and
Knowledge Discovery Journal , 1:4, 1997.

[Gra93] J. Gray, editor. The Benchmark
Handbook for Database and Transaction
Processing Systems, Morgan Kaufmann,
San Francisco, 1993.

[HDF98] HDF home page can be found at:
http://hdf.ncsa.uiuc.edu/

[MM97] D. Malone and E. May. Critical Database
Technologies for High Energy Physics. In
Proceedings of the 23rd International
Conference on VLDB, Athens, Greece,
1997.

[Mus99] R. Musick. Supporting Large-Scale
Computational Science. Lawrence
Livermore National Laboratory. Tech
Report UCRL-ID-129903

[OLA98] OLAP Council Benchmarks found at
http://www.olapcouncil.org/
research/bmarkly.htm

[RDE93] R. Rew, G. Davis and S. Emmerson.
NetCDF User’s Guide, An Interface for
Data Access, Version 2.3. Unidata
Program Center, Boulder, CO 1993.

[Sha92] D. Shasha. “Database Tuning, a
Principled Approach” . Prentice Hall, NJ,
1992.

[SM96] M. Stonebraker with D. Moore. “Object-
Relational DBMSs: the Next Great
Wave” , Morgan Kaufmann, San
Francisco, 1996.

[TD96] R. Tanler and K. Drost. Multidimensional
Analysis of Warehoused Data. “Data
Warehousing: Strategies, technologies and
techniques” , Rob Mattison. McGraw-
Hill, New York, 1996.

[TPC98] Transaction Processing Council
benchmarks found at http://www.tpc.org.

