
DERIVATION AND APPLICATION OF A METHOD FOR FIRST-ORDER ESTIMATION 

OF PLANETARY AERIAL VEHICLE POWER REQUIREMENTS


Jarret M. Lafleur


Georgia Institute of Technology, Daniel Guggenheim School of Aerospace Engineering

270 Ferst Drive, Atlanta, Georgia 30332-0150, United States of America 


Email: jarret.m.lafleur@gatech.edu


ABSTRACT 

One of the most fascinating options for the future of 
unmanned planetary exploration is the use of planetary 
aerial vehicles. From the perspective of endurance, it is 
preferable for such vehicles to rely on non-chemical 
forms of propulsion, meaning that power requirements 
estimation becomes particularly important in design. 

Presented here is a primarily analytical (as opposed to 
empirical) method for first-order estimation of power 
requirements for planetary airplanes and rotorcraft. 
Equations are derived and applied to examples which 
provide an approximate basis for comparing difficulties 
of flying on Venus, Earth, Mars, and Titan. Results 
indicate a two-order-of-magnitude difference in power 
requirement between Mars and Titan aerial vehicles 
and at least a factor of two difference in power 
requirement between rotorcraft and airplanes in general. 
Highlighted is the importance of the planet-dependent 
parameter g1.5/ρ0.5. System implications for solar, 
radioisotope thermoelectric generator, and battery 
power options are also considered. 

1. INTRODUCTION 

Over the past few years, successes of planetary orbiters 
and landers have drawn considerable attention to 
unmanned planetary exploration. The future holds 
promise for unmanned exploration, and one of the most 
exciting options for the future is the use of planetary 
aerial vehicles. Whereas planetary orbiters are limited 
in the detail they gather and traditional landers are 
limited in range from their landing sites, aerial vehicles 
offer the unique combination of regional-scale range 
and detailed scientific measurements. 

One aerial vehicle proposal, NASA Langley’s ARES 
design [1], utilizes a rocket to power its flight. 
However, as designs become increasingly ambitious, it 
is likely that rocket propulsion will be replaced by 
electric propulsion due to the expendable nature of 
rocket propellant. An airplane powered by solar or 
nuclear energy, for example, could have a lifetime only 

limited by the wear and tear of its components. As soon 
as electricity is used in lieu of chemical energy, power 
consumption becomes as large a design issue as mass 
and volume constraints. 

This paper presents a method for the first-order 
estimation of power requirements for planetary 
airplanes and rotorcraft. One method proposed by [2] 
has already detailed such power estimation based on 
purely empirical considerations. Presented here is a 
more analytical approach to the problem, originally 
developed as part of a study on Titan aerial vehicles in 
the Georgia Tech Space Systems Design Lab. 

2. AIRPLANE POWER ESTIMATION 

2.1. Airplane Power Equation 

In this method, necessary installed power for an 
airplane is estimated using the condition of steady and 
level flight. For this condition, thrust power required is 
given by Eq. 1. [3] Here, D is drag and V is velocity: 

=Pthrust DV   (1) 

Clearly, this relationship alone is not sufficient to 
estimate the power requirement for a planetary aerial 
vehicle:  Drag is entirely unknown and velocity may be 
any of a range of values. In addition, margin, efficiency 
effects, and non-propulsive terms are omitted. 

Incorporating the terms Pother (for the non-propulsive 
power requirement), Rp (margin to account for power 
losses due to conversion and wire resistances), Rm 
(safety margin), and η (propulsive efficiency, including 
propeller, motor, and gearbox power losses): 

Prequired = (1 + Rm )(1 + Rp )
⎡ Pthrust + Pother 

⎤ 
(2)⎢ η ⎥

⎣ ⎦ 

Also note that the following substitutions can be made 
for the terms of Pthrust (here, m is airplane mass, g is the 



gravitational constant, L/D is the steady flight lift-to
drag ratio, lw is cruise wing loading, CL is lift 
coefficient, ρ is atmospheric density, and S is wing 
planform area): 

D = mg 
L

D


  (3) 
2l 2mgwV = = 

CL ρ SCL ρ 

In the end, required power for a planetary airplane can 
be estimated with Eq. 4: 

2mg 
+ P ⎥

⎤   (4) Prequired = (1+ Rm )(1 + Rp )⎢
⎡ mg

L SCL ρ other 
⎦⎣η D 

Note that if drag or cruise velocity are known from the 
outset of a project, they can be substituted for their 
respective representations in Eq. 4. Also, it may 
occasionally prove more convenient to use the velocity 
expression involving wing loading as shown in Eq. 3. 

2.2. Application of the Airplane Power Equation 

Unfortunately, the equations developed here cannot be 
truly demonstrated since no airplanes have flown on 
other worlds to date. However, their results can be 
checked for reasonability, especially against the results 
predicted by [2]. To do so, power requirements will be 
estimated for a notional 300 kg aerial vehicle on Venus, 
Earth, Mars, and Titan. 

2.2.1. Baseline Vehicle Parameter Estimation 

The first step to sizing the airplane for this application 
is to determine wing parameters. If low-speed flight is 
assumed, educated guesses for certain wing parameters 
for this generic 300 kg airplane will lead to definitions 
of S, L/D, and CL. If it is assumed that this airplane has 
a wing planform area (S) of 20 m²,1 a reasonable wing 
aspect ratio (AR) of 7,2 and a reasonable cruise lift 
coefficient (CL) of 0.8, then the induced drag 
coefficient CDi can be calculated (as in Eq. 5 from [3]) 
and lift-to-drag ratio (L/D) can be roughly estimated if 

1 This is the same as the  wing area of an early design 

for a 300 kg Mars airplane in [4].

2 While a large aspect ratio would indeed be desirable,

this estimate is somewhat conservative to account for 

anticipated aeroshell packaging constraints which will

likely be present for any missions in the near future. 


it is assumed that parasitic drag is equal to induced 
drag3 plus a modest 25% margin. The calculation of 
induced drag also depends on the spanwise efficiency 
factor e, which will be taken as 0.98.4 

CDi = 
CL 

2 

(5) 
π ⋅ AR ⋅ e 

Making the assumptions above, CDi is 0.0297, CDp is 
found to be 0.0371, and thus L/D is found to be 12.0. 

The final assumptions that need to be made are those of 
the efficiency and margin factors in Eq. 4 and the non-
propulsive power requirement. Here, a propulsive 
efficiency factor of 0.70 is assumed (that is, if 0.90 is 
taken as motor efficiency [5], if 0.90 is taken as 
gearbox efficiency [5], and if 0.87 is taken as propeller 
efficiency [6]), power loss margin is taken as 25% 
(which includes losses due to power converters and 
wiring [7]), power safety margin is taken at a realistic 
50%, and the non-propulsive power requirement (for 
flight computers, sensors, payloads, etc.) is assumed to 
be 150 W for this class of vehicle5. 

A summary of these assumptions is shown in Table 1. 
Recall that most of these parameters use notional 
values for a vehicle that is hardly defined (in fact the 
only thing defined at the outset was its mass). If further 
information is known about a given design problem, 
the appropriate parameters can certainly be replaced. 
Here, the information will be used to make 
comparisons between flight power requirements on 
different worlds and, later, to determine the difference 
between rotorcraft and airplane power requirements. 

3 Essentially, this assumes that the airplane is cruising 
at the speed for minimum drag; in other applications, it 
may be desirable to estimate parasitic drag 
independently based on the airplane geometry as 
described in [3]. For applications requiring high-speed 
flight (such as with Mars), drag due to compressibility 
would also need to be accounted for. In this paper, this 
rough drag assumption is made for the purposes of 
demonstration and rough comparison. 
4 Reference [3] indicates that this factor is typically 
between 0.98 and 1.00 for unswept wings of most 
practical planforms. 
5 This 150 W estimate is a variant of a non-propulsive 
power budget for a 300 kg Titan helicopter designed by 
the Georgia Tech Space Systems Design Lab. Here, 50 
W is notionally allotted for payload, 60 W for attitude 
determination and control, and 40 W for 
communications and command and data handling. 
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Table 1. Example Airplane 
Parameter Assumptions. 

m 300 kg Rm 0.50 
L/D 12.0 Rp 0.25 
S 20 m² η 0.70 
CL 0.8 Pother 150 W 

2.2.2. Power Requirements on Different Worlds 

Now the only parameters missing from the equation are 
density and gravitational constant, which vary with the 
planet or moon in question. This data is shown in Table 
2. For purely the purposes of comparison, flight is 
assumed to occur at an altitude of 500 m on all worlds. 

Table 2. Conditions at 500 m Altitude 
on Different Worlds. Superscripts 

indicate source of given data. 

Venus Earth Mars Titan 
Density (kg/m³) 63.2[5] 1.17[8] 0.015[9] 5.34[10] 

Gravity (m/s²) 8.93[5] 9.81 3.73[5] 1.35[5] 

When these final values, plus the values in Table 1, are 
plugged into Eq. 4, final power requirements are 
generated. These data are shown by the dark bars in Fig. 
1. The light bars represent the purely empirical results 
of applying the appropriate equation from [2].6 
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Figure 1.  Approximate Power Requirements for 
300 kg Airplanes. 
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6 To apply the proper equation from [2], velocity must 
be known and is given by Eq. 3. The variable n in the 
Ref. [2] equation is set to 0 to represent no changes in 
propeller efficiency due to density (i.e. propeller disk 
area is scaled to compensate for density changes). 

While the values differ somewhat between the two 
estimates (recall again that there are no real data points 
to verify either), it is clear that the trends are the same. 
The important fact to recall is that the estimate from [2] 
is purely empirical based on Earth aircraft (plus 
adjustments for gravity and atmospheric density) and 
the estimate from Eq. 4 is based on an analytical 
equation. Thus, with Eq. 4, the engineer has complete 
insight into the factors controlling the power estimate, 
whereas with [2], many factors are “black-boxed” by 
the method’s empirical nature. 

3. ROTORCRAFT POWER ESTIMATION 

3.1. Rotorcraft Power Equation 

With this methodology, necessary installed power for 
rotorcraft is estimated based on ideal actuator disk 
theory [3][11] for hover conditions. According to ideal 
actuator disk theory, the power required by a rotor is: 

TPthrust = T 2ρA   (6) 

In Eq. 6, T is thrust, ρ is density, and A is disk area.  
Substituting ¼ π  d² for A (where d is rotor diameter) 
and fulfilling the hover condition with T = mg (where 
m is mass and g is gravitational acceleration): 

mg 2mg= (7) Pthrust d ρπ 

While this is a reasonable estimate for required hover 
power, it is recognized that the desired installed power 
estimate will also consist of non-propulsive power 
requirements, propulsive cruise power, and margin. 
Since the factor of propulsive cruise power is not as 
simple to estimate for rotorcraft as it is for airplanes, 
the final assumption in this rotorcraft methodology is 
an empirical one: According to [2], “Most conventional 
helicopters appear to have installed powers ~100% 
larger than predicted [by actuator disk theory applied to 
hover], the difference being due to rotor drag, fuselage 
blockage, and tail rotor power requirements, and that 
practical aircraft must do more than merely hover.” 
This observation is accurate based on the data in [2] on 
64 rotorcraft, shown in Fig. 2. To be more precise, this 
data yields a mean ratio of installed power to ideal 
hover power of 2.36. 
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30 Using the 64 data points provided in [2], the best-fit 
constant K is found to be 0.449 m/kg0.4. About 72% of 

25 the historical data points fall within a K-value of 0.40
0.55 m/kg0.4 (see Fig. 3).  Based on the best-fit K, the 20 

diameter d is chosen as 4.4 m for this vehicle. Note that 
15 based on the typical range of K mentioned above, rotor 

diameters of 3.9 - 5.4 m may also be reasonable. Of 
10 course, if rotor diameter is known up-front for a 

particular design, it may be entered into Eq. 8 and this 
5 empirical rotor diameter estimation can be bypassed. 
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Thus, multiplying the estimate of Eq. 7 by the 
empirical factor B, taken here as 2.36: 

mg 2mg = 2.36 mg 2mg 
ρπ  (8) Prequired = B d ρπ d 
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3.2. Application of the Rotorcraft Power Equation 
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Figure 3.  Historical Helicopter Rotor Diameter vs. 
Vehicle Mass. [2] 

3.2.2. Power Requirements on Different Worlds 

Using the 300 kg mass and 4.4 m rotor diameter 
assumption, the only parameters missing are density 
and gravitational constant, which are given in Table 2. 
In Fig. 4, dark bars indicate the results of applying Eq. 
8, and light bars indicate the results of the same vehicle 
evaluated using the appropriate equation from [2]. 

140,000 

As before, the equations developed here cannot be truly 
verified since no rotorcraft have flown on other worlds 
to date. However, they can be checked for reasonability, 
especially against the results predicted by [2]. To do so, 
power requirements will be estimated for a 300 kg 
rotorcraft on Venus, Earth, Mars, and Titan. 

3.2.1. Baseline Vehicle Parameter Estimation 

Compared to Eq. 4, Eq. 8 involves few parameters. The 
mass of the rotorcraft is defined up front in this 
application, and g and ρ are properties of the world on 
which the craft flies. Thus, the only parameter that 
requires discussion is d, or rotor diameter. 

Estimate based on Eq. 8Clearly there are structurally-driven upper bounds to Estimate based on [2]120,000 
the diameter of a rotor; however, Eq. 8 lends no insight 
into those bounds. If Eq. 8 is taken alone, required 100,000 
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80,000 diameter to infinity. What is desired is some 
relationship between rotor diameter and vehicle mass. 
This is provided in part by [2]: “Regression indicates 
that the rotor diameter scales as m0.4”. In symbols (in 

60,000 

40,000 

which K is a proportionality constant): 
20,000 

7,500 6,300 
1,500 1,300 

0d = Km0.4   (9) 

Figure 4.  Approximate Power Requirements for 
300 kg Rotorcraft. 



While the values differ between the two estimates, it is 
clear that the trends are the same. Again, the estimate 
from [2] is purely empirical based on Earth aircraft and 
the estimate from Eq. 8 is based on a more analytical 
equation. Here, Eq. 8 has “un-black-boxed” the 
parameter of rotor diameter. 

4. IMPLICATIONS 

4.1. Comparison of Flight on Different Worlds: 
The Importance of g1.5/ρ0.5 

In Figs. 1 and 4, clear trends exist in regards to power 
requirements on different worlds. Whether the vehicle 
is an airplane or rotorcraft or whether the estimation is 
analytical or empirical, the trends are remarkably 
similar: At 500 m on Venus, required power is about 
14% of that required on Earth. On Mars, required 
power is about 190% of that on Earth, and on Titan the 
number is 3.2%. From a power standpoint, Mars is the 
worst choice for flight and Titan the best (to the extent 
that Titan is nearly 60 times easier than Mars). 

The reason for this consistency in power differences 
among worlds is evident upon inspection of Eqs. 4 and 
8. As Pthrust grows much larger than Pother in Eq. 4, 
airplane power varies as g1.5/ρ0.5. From inspection of Eq. 
8, it is clear that rotorcraft power also varies as g1.5/ρ0.5. 
Very similar relationships are present in [2].  On Mars, 
atmospheric density is about 1% that of Earth’s, but 

Note, of course, that certain practical factors are not 
taken into consideration in the estimates in Fig. 1 and 
Fig. 4. For example, the temperature at 500 m altitude 
on Venus is about 460 degrees Celsius5 and the 
pressure is about 88 times that at sea level on Earth. 
This is not to say that flight on Venus is impossible; in 
fact, more recent Venus airplane designs have sought 
to fly at altitudes of 71-76 km [12]. At such altitudes, 
the quotient of g and ρ would be much higher due to 
the decreased density and virtually unchanged 
gravitational constant. The flight conditions would 
effectively become more Earth-like. 

To illustrate the fact that a range of g1.5/ρ0.5 values exist 
on any world with an atmosphere, Fig. 6 shows the 
relationship between g1.5/ρ0.5 and altitude on Venus, 
Earth, Mars, and Titan.7  As can be seen, to reach an 
Earth-sea-level-like power requirement on Venus, an 
aerial vehicle must fly at about 55 km altitude. 
Interestingly, on Titan, such a power requirement is not 
reached until 185 km altitude (not shown in Fig. 6). 
Mars-like power requirements could be simulated on 
Earth at an altitude of approximately 13 km. 
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Common sense suggests (correctly) that it generally 
takes less power to fly an airplane than a helicopter. 
The thrust-to-weight ratio of a helicopter is necessarily 

20.00 

10.00 greater than one, while, in contrast, the installed thrust 

0.00 
Venus Earth Mars Titan 7 Density profiles for Venus, Earth, Mars, and Titan are 

from [13], [3], [9], and [10], respectively.  Though Figure 5.  Magnitude of g1.5/ρ0.5 at 500 m Altitude small, gravity variation with altitude is also included. 



to weight ratio of a Boeing 747-400 is approximately 
0.27 [14]. Figs. 1 and 4 allow benefits of planetary 
airplanes versus rotorcraft to be quantified. 

As is clear from Fig. 7, differences exist between this 
paper’s method and [2] in the calculation of the relative 
advantage of airplanes over rotorcraft. However, in 
both cases it is clear a significant advantage exists: In 
almost every instance, the rotorcraft requires at least 
twice as much power as the airplane. In some scenarios 
this may mean the difference between using a battery 
for limited-duration flights and using solar power for 
continuous flight. In others it may mean an airplane 
flying twice as long as a rotorcraft on the same battery. 

As before, however, a design must be based on more 
than power requirements. An airplane will raise 
operational problems involved with landings and 
takeoffs that a rotorcraft could easily solve. The 
designer must weigh the alluring power advantage of 
an airplane against its operational disadvantages. 

unit, regulators and converters, and wiring.  Solar 
arrays are sized taking into account solar intensity 
differences due to distance from the Sun and 
atmospheric opacity. 8  An optimistic 15% solar cell 
efficiency is assumed as well as an optimistic end-of
life specific performance of 47 W/kg [7]. In the cases 
of Earth and Mars, airplanes and rotorcraft both require 
regulator and converter systems which are much more 
massive than the vehicle itself.  In the case of Titan, 
power requirements are very small, but the required 
solar array areas are on the order of a football field (see 
Fig. 8).  Only in the case of Venus is a solar power 
solution nearly feasible; however, the prohibitive solar 
array size due to the very low 500 m altitude selected 
prevents this case from proving truly feasible.  It 
should be noted, however, that in the case of Venus, 
higher altitudes may be selected which may increase 
the solar intensity by a factor more than the increase in 
g1.5/ρ0.5.  For example, flight at 20 km altitude increases 
g1.5/ρ0.5 by about 77% but increases solar flux by 
approximately 226% relative to the 500 m values. 
Higher altitudes on Venus also afford a more benign 

6.0 thermal environment, which was not taken into account 
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Continuous Solar Operation.


4.3.2. RTG Option 

The sizing of the RTG power system option accounts 
for RTGs, radiators, regulators and converters, and 
wiring. The end-of-life output of the high-performance 

8 Solar intensity data is derived from [13], [16], [17], 
[18], and [19]. 

A valuable perspective to this study is that of what the 
power requirements estimated here mean in terms of 
the requirements and capabilities associated with the 
planetary aerial vehicle system.  To put the example 
300 kg aerial vehicle requirements into perspective, 
solar, radioisotope thermoelectric generator (RTG), and 
battery power subsystem options are sized using mass 
relationships from [7] and [15]. 

4.3.1. Solar Power Option 

The sizing of the solar power option involves 
accounting for solar arrays, batteries, a power control 

9260 



second-generation SRG (Stirling RTG) is assumed, and 
mass and power data is taken from [15]. As with the 
solar power option, airplanes and rotorcraft on Earth 
and Mars require regulator and converter systems more 
massive than the vehicle itself.  For Venus, the number 
of RTGs required for continuous operation exceeds the 
vehicle mass for both airplane and rotorcraft.  For Titan, 
however, it is found that an airplane is feasible and a 
rotorcraft is nearly feasible on RTG power alone.  The 
power system mass breakdown for the airplane is 
shown in Table 3.  Batteries are not included in this 
first-order mass budget since the vehicle can fulfill its 
power needs via RTGs alone.  Additionally, a 50% 
safety margin is included in the original power estimate, 
and the seven SRGs actually provide 70 W more than 
the estimated requirement.  The rotorcraft is considered 
nearly feasible on RTG power because its total power 
system mass is found to be 280.4 kg.  It will be shown 
that this mass can be reduced via the use of batteries. 

Table 3.  RTG-Powered Titan Airplane 

Power System Mass Breakdown.


Component Mass (kg) 
RTGs (7 SRGs) 98.0 
Radiator (20.8 m² area) 13.9 
Regulators and Converters 14.8 
Wiring 6.0 
Total Power System Mass 132.7 

4.3.3. Battery Options 

In this final analysis, batteries are considered in 
combination with RTG and solar options to determine 
whether mission capabilities may be enhanced.  Power 
system mass is limited to 150 kg (half the vehicle 
mass) and battery life is assessed.  Nickel-hydgrogen 
batteries are assumed with a 100% depth of discharge 
and 45 W-hr/kg ratio of battery capacity to mass. [7] 

As with the solar-only and RTG-only power options, 
airplanes and rotorcraft on Earth and Mars require 
regulator and converter systems more massive than the 
vehicle itself. Thus, regardless of battery mass, no 300 
kg Earth or Mars aerial vehicle with the specifications 
given earlier will result in a closed design. 

In the case of Venus, it is found that a battery-powered 
rotorcraft is infeasible.  However, an airplane is found 
to be feasible, and a batteries-only power system 
outperforms solar-plus-battery and RTG-plus-battery 
systems.  The resulting maximum duration for this 
system is found to be 90 minutes with a 12.5 km range. 
The mass breakdown of this power system is in Table 4. 

Table 4.  Battery-Powered Venus Airplane 

Power System Mass Breakdown.


Component Mass (kg) 
Batteries (3710 W-hr cap.) 82.4 
Regulators and Converters 61.6 
Wiring 6.0 
Total Power System Mass 150.0 

In the case of Titan, it is found that a battery-only 
power system is feasible for both airplane and 
rotorcraft.  This results in a 3.5 hour rotorcraft duration 
and 9.8 hour airplane duration (with an 81.4 km range). 
These vehicles’ power system mass breakdowns are 
shown in Tables 5 and 6.  In both cases, it is found that 
the addition of solar arrays has a positive but negligible 
(less than 0.4%) effect on mission duration due to the 
low solar intensity at Titan.  The addition of RTGs 
drives the airplane to the RTG-only solution but drives 
the rotorcraft to the battery-only solution shown below. 

Table 5.  Battery-Powered Titan Airplane 

Power System Mass Breakdown.


Component Mass (kg) 
Batteries (5810 W-hr cap.) 129.2 
Regulators and Converters 14.8 
Wiring 6.0 
Total Power System Mass 150.0 

Table 6.  Battery-Powered Titan Rotorcraft 

Power System Mass Breakdown.


Component Mass (kg) 
Batteries (4920 W-hr cap.) 109.3 
Regulators and Converters 34.7 
Wiring 6.0 
Total Power System Mass 150.0 

5. CONCLUSIONS 

The prime goal of this paper has been the presentation 
of a method for prediction of planetary aerial vehicle 
power requirements. While at least one comprehensive 
method has been published [2], it leaves many design 
parameters hidden because of its empirical roots. This 
paper attempts to “un-black-box” those parameters so 
the engineer may more fully understand the 
relationships involved in power estimation. The 
reduction of empirical considerations may also help the 
engineer avoid potential bias introduced from 
necessarily Earth-based empirical data. 



In the case of airplane power estimation, this method 
has succeeded in removing all empirical variables: Eq. 
4 is based solely on efficiencies, margins, and variables 
with physical meaning. For rotorcraft, empirical data is 
still used, but the design engineer can now observe the 
effect of rotor diameter in addition to that of mass, 
gravity, and density variations. Ideally, the rotorcraft 
equation would also avoid such empirical parameters. 

The power estimation equations derived here represent 
a simple but useful method for conducting top-level 
studies and comparisons of planetary aerial vehicles. 
Two of the most important results that can be drawn 
from these equations involve the quantification of the 
power advantages to using airplanes instead of 
rotorcraft and to flying on Titan instead of Mars, Earth, 
or Venus. Unlike purely empirical equations, these 
equations are flexible in the sense that the designer has 
the freedom to change vehicle parameters to essentially 
adjust his vehicle design to modify his power 
requirement. From this power requirement, power 
sources can be selected, battery life can be determined, 
and mission capabilities can be estimated. This adds 
notably to the tools available to the engineer involved 
in preliminary planetary aerial vehicle design. 
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