Genomics of *Ciona intestinalis*

- David N. Keys
 - dnkeys@lbl.gov
- Joint Genome Institute
 - DOE LBNL LLNL
 - Walnut Creek, CA
 - www.jgi.doe.gov

Genomics of *Ciona intestinalis*

Joint Genome Institute LBNL - LLNL - DOE

Paramvir Dehal Jarrod Chapman Chris Detter

Dan Rokhsar Paul Richardson Trevor Hawkins University of California Berkeley

> Anna Di Gregorio Mike Levine

Kyoto University

Yutaka Satou Nori Satoh

A Functional Genomics Approach to Developmental Genetics

Joint Genome Institute LBNL - LLNL - DOE

University of California Berkeley

Byung-in Lee Chris Detter Stephan Trong	Syvia Ahn Dave Engle Orsalem Kahsai	Naoe Harafuji Anna Di Gregorio Mike Levine	
Dan Rokhsar Paul Richardson Trevor Hawkins	Maria Shin Joann Wang Mei Wang		
-	0	-	

Body plan simplicity Represents the ancestral chordate?

Experimental Tractability

Disadvantage No true genetics Advantages Easy transgenics Scorable phenotypes Availability

Functional Genomics

- Studying large sets of genes in parallel rather than single genes
- Experimental, not observational or modeled
- Invent new hypothesis testing experiments
- Scale traditional hypothesis testing experiments to the entire genome

Results Catalog a large number of functionally defined *cis*-regulatory elements

- Design, implementation and results of a small scale pilot screen of random genomic DNA 11
- Design, implementation and results of an exhaustive screen of a medium size (250kb) genomic domain
- Design, implementation of an on going large scale screen of random genomic DNA

Drosophila transformation

- Collect naturally laid eggs
- Dechorionation
- Transform by single embryo microinjection
- Individually rear to 2nd generation
- Screen
- Total Time: month(s)

Traditional Enhancer Characterization

- Targeted
- Slow/Labor intensive
 - Building specific DNA constructs
 - Transforming into animals
 - Maintaining/screening animals

Ciona intestinalis transformation

- Collect eggs & sperm via dissection
- Dechorinonation
- Mix embryos with plasmid DNA (100ug)
- Transform by batch electroporation of single cell embryos
- Incubate 1-24 hours
- Stain (GFP/lacZ/in situ) & visually screen
- Total time: 24hours

Standard *Ciona* Enhancer Characterization

- Targeted
- Slow/Labor intensive
 - Building specific DNA constructs
- Fast/Not labor intensive
 - Transforming into animals
 - Screening animals

Pilot Genomic Screen

- Construct:
 - Ciona Forkhead basal promoter
 - lacZ marker detected by beta-Gal activity
 - Random genomic Sau3AI frags, 1.7kb average
- Prediction:
 - Will find cis-regulatory DNA
 - Gene density = 1 gene per 10kb. Therefore could find 1 enhancer every 10kb

Prediction: Gene density = 1 gene per 10kb Therefore could find 1 enhancer every 10kb Results: 1 detectable element every 23-31 kb 1 detectable element every 2-3 genes

Potential Issues

- Promoter specificity
- Insulators & repressors
- Enhancer Polarity
- Promoter competition
- Enhancers fragmented during cloning
- Timing
- Insufficient detection strength

- Transforming into animals
- Screening animals
- Building random DNA constructs
- Limiting factors
 - DNA preps (50-100ug plasmid)
 - Transformation window (single cell embryos)
 - Imaging

Limiting Factors

- DNA preps (50-100ug plasmid)
 - Qiagen Midipreps up to 48 constructs per day
- Transformation window (single cell embryos)
 - 24 separate constructs per batch
- Imaging
 - Quality trade offs Tough decisions

Ciona Hox Complex

- Should be a single *Hox Complex* – Correct
- Should be a single domain
 - Wrong, at least 4 separable domains
- Predictable expression patterns

Ciona Hox Complex

- Should be a single *Hox* Complex Correct
- Should be a single domain
 - Wrong, At least 4 separable domains
- Predictable expression patterns
 - Correct, Nested CNS
 - Unexpected, Nested Epidermis

Limiting Factors

- DNA preps (50-100ug plasmid)
 - Qiagen Midipreps up to 48 plasmids per day
- Transformation window (single cell embryos)
 - -24 separate constructs per batch
- Imaging
 - Quality trade offs Tough decisions

Limiting Factors DNA preps (50-100ug plasmid) Rolling Circle Amplification Transformation window (single cell embryos) 24 separate constructs per batch 480 constructs per week Imaging Quality trade offs - Tough decisions Automation??

Scale Up			
• XPA28186	All epidermis	Hypotheical 109.7 kDa protein	
• XPA28213	Tail Muscle	Serine/Threonine Kinase MASK	
• XPA28241	Ventral Mid Brain	Homolog to cDNA FLJ10540	
• XPA28134	Notochord	Low Sequence quality	
• XPA30404	Tail Muscle	RAR Related Steroid Receptor	
• XPA30769	Dorsal Brain, Neural Tube Arginine tRNA protein transferase		
• XPA30770	Muscle & Notochord	Proline Oxidase 1	
• XPA31107	Post Tail Epidermis	Wnt-2	
• XPA28831	All CSN & Epidermis	MORN motif containing	
• XPA28492	Single Cell in Brain	unknown but conserved protein	
• XPA28855	Post brain & Neural Tube	Protein kinase Ck2-beta	
• XPA29631	Neural Tube, All Gut	unknown but conserved protein	
• XPA25239	Unknown cells in head	MEC-8 like	

Genomic Integration

- For most random constructs, 2 end runs will
 - Identify entire subcloned sequence
 - Identify both flanking ORFs
 - Tie into EST in situ project

Potential Issues

- Promoter specificity
- Insulators & repressors
- Enhancer Polarity
- Promoter competition
- Enhancers fragmented during cloning
- Timing
- Insufficient detection strength

