HOx isotopes

Thomas F. Hanisco, Jason St. Clair, E. J. Moyer, F. N. Keutsch, D. S. Sayres, J. R. Spackman, R. Lockwood E. M. Weinstock, James G. Anderson

Aura Validation Meeting Pasadena, CA March 3, 2005

HOx isotopes: Photolysis - Fluorescence detection of HDO/H₂O

Radical vs. Molecular Sampling

Molecular water exchanges with walls. OH and OD radicals are lost irreversibly

Preliminary Flight Results

Residual Water During Ascent

Water source = $4x10^{4}$ ppmv s $H_{2}O \times 150 \text{ cm}^{3}/\text{s}$ flow = 6 cm³ $H_{2}O$ = 1.5x10²⁰ Inlet: A = 100 cm², 1 ML = 1x10¹⁵ cm² \rightarrow 1000 ML $H_{2}O$

Potential Water sources

- 8
- Nearest neighbors:
- Total water inlet
- Landing gear
- Fuselage

In this stratospheric leg the measurement demonstrates a fast time response and good signal to noise

Uncontaminated Profile

Contaminated Ascent

20 ppm Offset Added to Both H_2O and HDO

Summary

- Flight data high points:
 - Hoxotope worked as well in flight as in the lab
 - Fast time constant in H2O and HDO sampling
 - Absence of unexplained artifacts
 - Good accuracy
 - Reasonable signal to noise (HDO \pm 250 pptv/4s)
- Post flight schedule:
 - Calibration: 5% (50 per mil)
 - Sensitivity: factor of 5 for moderate effort
- Thanks to NASA IIP, NASA WB57, Harvard Engineering

Laboratory Time Constant

Test flight 050108 Comparison to Lyman- α

Test Flight 050108 H₂O and HDO

Motivation I: Water isotopes are valuable in situ tracers

- HDO condenses more readily than H₂O
- Rainout leads to HDO depletion
- Ice injection can make the stratosphere "Heavy"
- In situ water isotope measurements can offer a tracer for the condensation history of air parcels

Motivation II: In situ water isotope instruments require validation

- We expect instrument artifacts to contaminate water measurements.
 - Sampling
 - Optical
 - Software analysis
- Independent measurements can help identify artifacts.

Data acquisition

- OD and OH lines are scanned alternately (4 s) with background (2 s)
- OD and OH line positions are determined from real-time fits
- Post flight analysis:
 - Least squares fit of each line to get [OD] and [OH]
 - Multiply by cal factor to get [HDO] and [H₂O]

