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Abstract

This paper examines the public health consequences of the regulatory subsidy given to light trucks. The empirical
challenge is to disentangle the causal effects of light trucks from the selection bias that may occur due to drivers
sorting into different vehicle types depending on their unobservable characteristics. I address this by using state
variation of snow depth as an instrumental variable for vehicle miles traveled of light trucks and cars. This
instrument has strong first-stage explanatory power. Since snow depth is likely a direct determinant of crashes,
I meet the exclusion criteria by restricting the dependent variable to those crashes that occurred in the summer.
My findings suggest that, given a crash, light trucks are more dangerous to others but less dangerous for those
driving them. However, I also find that light trucks are more likely to crash than cars, which neutralizes the safety
advantage to those who drive them. My estimates for aggregate fatalities suggest that a world of light trucks leads
to substantially more fatalities than a world of cars.
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There is currently a regulatory discrepancy between light trucks (i.e., sport-utility vehicles,
minivans, and pickups) and passenger cars. Table 1 documents these regulations for new
cars and light trucks from 1991 through 1998. The federal government regulates the tailpipe
exhaust emissions of nonmethane hydrocarbons, carbon monoxide, nitrogen oxide, and
particulates.1 It regulates fuel economy through corporate average fuel economy (CAFE)
standards and through a gas-guzzler tax on consumers.2 As can be seen from the table,
light trucks face a laxer regulatory burden for both emission standards and fuel economy
standards.3 This favorable regulatory treatment effectively represents an implicit relative
subsidy for light trucks.

If light trucks pose greater external risks than cars, then efficiency would be achieved
through levying a relative tax on light trucks rather than a relative subsidy.4 However, while
reducing or eliminating the favorable regulatory treatment of light trucks may improve
efficiency, it is not a priori clear whether this would reduce the number of traffic fatalities.
In fact, there is some evidence to suggest that such a change would indeed increase fatalities.
The reasoning is straightforward: while light trucks might pose greater risks to others than
cars, they might also provide greater safety to those who drive them. Crandall and Graham
(1989) use similar reasoning in their study of fuel economy standards. They find that such
standards led to smaller cars and that smaller cars led to more fatalities, since a crash
between two small cars is expected to lead to more fatalities than a crash between two big
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Table 1. Federal emission and fuel economy regulations for cars and trucks.

CAFE Gas guzzler tax Gas guzzler tax
Vehicle type Year NMHC CO NOx Particulates standard (0–12.5 mpg) (22.0–22.5 mpg)

Passenger cars 1991–1993 0.41 3.4 1.0 0.20 27.5 $7,700 $1,000

1994–1998 0.25 3.4 0.4 0.08 27.5 $7,700 $1,000

Light-duty trucks
(under 5,750 lbs.)

1991 0.80 10.0 1.7 0.13 20.2 $0 $0

1992 0.80 10.0 1.7 0.13 20.2 $0 $0

1993 0.80 10.0 1.7 0.13 20.4 $0 $0

1994 0.80 10.0 1.7 0.13 20.5 $0 $0

1995 0.80 10.0 1.7 0.13 20.6 $0 $0

1996 0.46 6.4 0.98 0.10 20.7 $0 $0

1997 0.32 4.4 0.7 0.10 20.7 $0 $0

1998 0.32 4.4 0.7 0.10 20.7 $0 $0

Light-duty trucks
(over 5,750 lbs.)

1991 0.80 10.0 1.7 0.13 20.2 $0 $0

1992 0.80 10.0 1.7 0.13 20.2 $0 $0

1993 0.80 10.0 1.7 0.13 20.4 $0 $0

1994 0.80 10.0 1.7 0.13 20.5 $0 $0

1995 0.80 10.0 1.7 0.13 20.6 $0 $0

1996 0.56 7.3 1.53 0.12 20.7 $0 $0

1997 0.39 5.0 1.1 0.12 20.7 $0 $0

1998 0.39 5.0 1.1 0.12 20.7 $0 $0

Notes. NMHC stands for Nonmethane hydrocarbons, CO stands for carbon monoxide, and NOx stands for nitrogen
oxide. The emission standards are measured in grams per mile, the corporate average fuel economy (CAFE)
standards are measured as a harmonic-weighted fleet averages in miles per gallon.
Sources. For the gas guzzler tax, see 26 U.S.C.S. 4064. For the emission regulations, see 40 C.F.R. 80. For CAFE
standards, see 49 U.S.C.S. 32902.

cars. This line of reasoning has led many to oppose getting rid of the regulatory subsidy for
light trucks, claiming that it would result in more fatalities. For example, the Wall Street
Journal cites a study by Douglas Coate and James VanderHoff in which they claim, “The
increased safety to occupants of light trucks outweighs the potential increases in fatalities
to occupants of other vehicles.” During the recent Congressional debate on the regulatory
discrepancy, Senator Trent Lott opposed stiffening the regulatory burden for light trucks
since, “Many studies have pointed to the enhanced safety of sturdier, full-framed vehicles
like trucks and SUVs.”

These claims that light trucks result in fewer fatalities are based on fatality estimates
given that a crash occurs, and they do not consider whether light trucks are more likely
than cars to get into crashes in the first place. The pertinent policy concern is not fatalities
given a crash, but rather aggregate fatalities that result from different vehicle types. In this
paper I estimate the aggregate fatalities resulting from different vehicle types, and I also
separately estimate fatality risk given a crash and crash frequencies. Estimating both of
these contributors to fatalities presents a complete picture of whether the light truck subsidy
is efficient and whether it improves public health.
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The main difficulty with estimating relative crash frequencies (and aggregate fatalities)
is that the observational nature of the data makes it difficult to make strong causal claims.
For example, if riskier, more reckless drivers are more likely to select to drive light trucks,
then the regression coefficients would over-estimate the likelihood of light trucks crashing.
I address this selection problem by exploiting cross-sectional state variation of snow depth,
which I show is strongly correlated with the vehicle miles traveled (VMT) of light trucks
and cars, even after conditioning on regional fixed effects. For state snow depth to be a valid
instrument, it must also be orthogonal to unobservable determinants of crashes. Since snow
depth is likely to directly contribute to crash frequencies (by affecting road safety conditions
during the winter), I restrict the outcome variable to crashes that occur during summer, when
snow depth is not a contributing factor in crash outcomes. The thought experiment here is
that snow depth variation across states leads to exogenous variation in the amount of miles
driven of light trucks relative to cars throughout a year, but it does not directly influence the
number of crashes in the summer (non-snow) months of that year. By this innovation, I can
examine how relative differences in light truck versus car driving (in which the variation
comes about by exogenous snow depth variation) influences non-snow related crashes (in
which road conditions and other state-specific unobservables are unchanged). One sign
that snow depth may be a valid instrument is that I find that it is uncorrelated with other
observable covariates. I also find that snow depth is uncorrelated with alternative outcome
measures that may be related to unobserved population characteristics but that should not
be directly affected by the state’s vehicle-type mix.

The results suggest that, given a crash, light trucks pose significantly higher risk to other
drivers than do cars. For example, a car driver is 1.50 to 1.88 times more likely to die given
a crash with a light truck relative to a crash with another car. However, given a crash, light
trucks provide more safety to the driver than does driving a car. For example, a light truck
driver is 0.30 to 0.50 times as likely as a car driver to die given a crash with a car. Using
cross-sectional variation in snow depth as an instrument for VMT, the results suggest that
light trucks are 2.63 to 4.00 times more likely to crash than cars. This neutralizes the safety
advantage that light trucks provide to their drivers. Combining fatality risk given a crash
with the crash risk indicates that aggregate fatalities are higher in a world of light trucks
relative to a world of cars.

The rest of the paper is organized as follows. In the next section, I describe the identi-
fication strategies I use to estimate the relative fatality risks given a crash and the relative
crash frequencies, and I also discuss the data sources. In Section 3, I present the estimates of
fatality risk given a crash, relative crash frequencies, and aggregate fatality risk. Section 3
also discusses the first-stage explanatory power of the IV estimation, as well as the implied
aggregate fatalities given different ratios of light trucks to cars on the road. Section 4 offers
validity checks on the IV framework, and Section 5 concludes.

1. Identification strategies and data description

1.1. Estimating fatality risk given a crash

Recall that Crandall and Graham (1989) studied the effect of CAFE standards on car size
and contended that lighter cars would lead to more fatalities since a crash between two small
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cars results in more deaths than a crash between two large cars. I re-examine this question
with respect to light trucks versus cars. That is, I estimate the probability of dying given
that a crash has occurred, for drivers of different vehicle types and conditional on crashing
into different vehicle types. For simplicity, the analysis focuses on the probability of driver
death given a two-vehicle crash. For this analysis, I use driver-level data from 1991 through
1998 from the Fatal Analysis Reporting System (FARS), which is a census of all the crashes
in the United States that involved a fatality.5 FARS contains detailed information on the
characteristics of the crash, the characteristics of each vehicle involved in the crash, and the
characteristics of each person involved in the crash.

The analysis considers only the crashes that involve cars, sport-utility vehicles, van-
based light trucks, and pickups.6 This excludes crashes that involve buses, trucks greater
than 10,000 pounds, motorcycles, mopeds, all-terrain vehicles, all-terrain cycles, as well as
other small vehicles such as snowmobiles and go-carts. That leaves 103,056 drivers involved
in two-vehicle crashes from 1991 through 1998 in which at least one of the drivers died.
Table 2 reports the number of such crashes by types of vehicles involved, as well as the
number of driver fatalities for each vehicle, by vehicle-type pair. The top number in each
cell is the number of fatalities of drivers in Type I vehicles who died in a crash with a Type II
vehicle. The bottom number in parentheses is the total number of crashes involving Type I
and Type II vehicles in which at least one of the drivers died.

One can obtain a sense of the relative risk given a crash of each vehicle type by comparing
the symmetrical, off-diagonal cells. Since the goal of this analysis is to analyze the risk
differential between cars and light trucks, of particular interest is the comparison between
the off-diagonal cells of the first column and their symmetrical cells in the first row. For

Table 2. The number of fatalities of drivers in Type I vehicles in crashes with Type II vehicles (1991–1998).

Type II

Car Utility Van Pickup

Type I

Car 21728 3990 4414 13225 43357

(40152) (4749) (5074) (15895) (65870)

Utility 945 164 190 598 1897

(4749) (296) (326) (1091) (6462)

Van 882 158 234 586 1860

(5074) (326) (432) (1213) (7045)

Pickup 3496 598 721 2979 7794

(15895) (1091) (1213) (5480) (23679)

27051 4910 5559 17388 54908

(65870) (6462) (7045) (23679) (103056)

Notes. The top number in each cell reports the number of fatalities of drivers in Type I vehicles in crashes with
Type II vehicles. The bottom number in parentheses reports the total number of two-vehicle fatal crashes that
occurred between vehicles of Type I and Type II. The data are from the Federal Analysis Reporting System
(FARS) from 1991 through 1998.
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example, there were 4,749 crashes between a car and a sport-utility vehicle in which at least
one driver died. Of these crashes, 945 sport-utility vehicle drivers died, while 3,990 car
drivers died. This suggests that, given such a fatal crash, the driver of the car is 4.2 times as
likely to be the one who dies than is the sport-utility vehicle driver. Similarly, given a fatal
crash between a van and a car, the driver of the car is 5.0 times as likely to be the one who
dies; and given a fatal crash between a pickup and a car, the driver of the car is 3.8 times as
likely to be the one who dies.

Comparing non-symmetrical cells can be misleading. The naı̈ve method would be to
divide the number of fatalities by the number of fatal crashes to obtain a risk measure
to compare to other cells. For example, from Table 2 one finds that, given a fatal crash
between a car and a sport-utility vehicle, 84% of the drivers of cars died. Similarly, given
a fatal crash between a car and a van, 87% of the drivers of the cars died. But one cannot
directly compare these numbers since doing so neglects possible sample selection bias from
the omission of data on non-fatal crashes. For example, assume that vans and sport-utility
vehicles are equally likely to get into a crash and that sport-utility vehicles are less of a threat
to car drivers than are vans. In this case, a sport-utility vehicle crashing into a car would be
less likely to result in a fatality, and such crashes would be excluded from the data set. In
other words, the denominator (4,749) for sport-utility crashes would be under-represented
relative to the denominator for vans (5,074). This would result in an upward bias of the risk
that sport-utility vehicles pose to cars. However, the direction of the bias is unclear. If the
less-threatening sport-utility vehicles are more dangerous to those who drive them (relative
to vans), then the sport-utility denominator would be over-represented, and there would be
a resulting downward bias of the risk that sport-utility vehicles pose to cars.7

The sample selection problem exists because there are no reliable data on non-fatal
crashes. As part of the Department of Transportation’s Crash Outcome Data Evaluation
System (CODES), some states have linked (or are currently linking) crash data (for fatal
and non-fatal crashes) with injury and cost data. Unfortunately, this data are not helpful for
my study for a number of reasons. First, the data contain a sample of crashes rather than a
census. This poses a sample selection problem of its own since the crashes in which injuries
occurred are more likely to be reported. Additionally, the reporting rules vary by state:
some states only include crashes in which an injury has occurred, some include non-injury
crashes in which damages were above $500, some include non-injury crashes in which
damages were above $1,000, etc. Another problem with these data is that, relative to the
FARS data, there are a limited number of observations. That is, most of the states have only
recently started collecting the data, so their availability is limited only to one or two years.
The biggest problem with the CODES data with respect to my study is that most states that
collect the data do not keep separate classifications for the vehicle types. For the few states
that do classify the vehicle types involved in the crashes, the classifications vary greatly
across states. Given that these crash data do not clearly distinguish among vehicle types, I
instead rely on the FARS data for my analysis.

Relying on the FARS data introduces a potential sample selection problem both in the
estimation of fatality risk given a crash and the estimation of differential crash frequencies.
In order to address the possible sample selection problem inherent in FARS, I exploit
information on pedestrian fatalities in the data set.8 For crash risk, a simple logit model
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using the FARS data gives an estimate of the probability a driver of a vehicle of Type i
dies given a fatal crash with a vehicle of Type j (with i and j equal to car, sport-utility
vehicle, van, or pickup). From this estimate, one could derive an estimate of the predicted
number of deaths to drivers of vehicle Type i given a fatal crash with drivers of vehicle
Type j , conditional on the other covariates. The problem is that without knowledge of the
total number of crashes (fatal and non-fatal) involving Type i and Type j vehicles, one
cannot estimate the probability that a driver of a vehicle of Type i dies given a crash with a
vehicle of Type j . The FARS data set does, however, contain the number of vehicle crashes
in which a pedestrian dies. Under a set of reasonable assumptions (discussed below),9 the
product of pedestrian fatalities by vehicle types is proportionate to the number of crashes
of the same vehicle types, and the proportionality is constant across different vehicle type
combinations. I re-weight the predicted probabilities by these products to obtain unbiased
relative risk estimates. Later on in the paper, I estimate aggregate fatalities by vehicle
type, which—since it combines fatality risk given a crash with crash frequency—does not
suffer from the sample selection bias, and thus does not rely on the assumptions needed to
justify the use of pedestrian fatalities. Comparing the estimates of aggregate fatalities to the
estimates implied by the component estimates provides a credible consistency test.

Using the product of pedestrian fatalities by vehicle types as a proxy for total crashes by
vehicle types is valid given that three assumptions are met. For notational convenience, let
yi j equal the number of two-vehicle crashes involving Type i and Type j vehicles, and let yi

equal the total number of crashes involving Type i vehicles. Let pi j equal the probability that
a given two-vehicle crash involves vehicles of Type i and j , and let pi equal the probability
that a given crash involves one vehicle of Type i . Let wi equal the number of crashes of
vehicles of Type i into a pedestrian, and let w

f
i equal the number of crashes of vehicles of

Type i into a pedestrian in which the pedestrian dies. Finally, let Y equal the total number
of two-vehicle crashes.

Assumption 1. pi j = pi p j .

This assumption is that the probability that one of the vehicles in a given two-vehicle
crash is of a certain type is independent of the probability that the other vehicle is of a
certain type. This seems reasonable, since there are no clear reasons why different types of
vehicles would cluster in crashes disproportionately more than other types.10 Although not
reported in the paper, the empirical results are robust after stratifying the samples by urban
vs. rural in order to control for potential vehicle clustering within these road-types.

Assumption 2. yi = α1wi and y j = α1w j , for all i and j .

This assumption is that the total number of crashes of a certain type of vehicle is pro-
portional to the total number of crashes of that type of vehicle into a pedestrian, and this
proportion is the same across vehicle types. In other words, certain types of vehicles do not
hit pedestrians disproportionately.

Assumption 3. wi = α2w
f

i and w j = α2w
f
j , for all i and j .
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This assumption is that the number of pedestrian crashes involving a certain type of
vehicle is proportional to the number of crashes in which the same type of vehicle kills the
pedestrian, and this proportion is the same across vehicle types. This means, for example,
that a sport-utility vehicle hitting a pedestrian is as likely to kill the pedestrian as is a car
hitting a pedestrian. This assumes that there exists a threshold vehicle mass above which the
probability of a pedestrian fatality given a crash remains constant (and that cars and light
trucks are all above this threshold). This seems reasonable because even the lightest car is
considerably heavier than a pedestrian, so the forces acting on the pedestrian are relatively
independent of vehicle mass.11 Note that increased pedestrian fatality risk due to the greater
dimensions of light trucks (as opposed to the greater mass) would not bias the results.

Assumption 3 is the most restrictive of the three assumptions, since it assumes that a
pedestrian hit by a light truck is as likely to die as a pedestrian hit by a car. It is important to
note that in what follows, violation of this assumption will lead to an underestimate of the
external fatality risk of light trucks relative to cars given that a crash has occurred, and it will
result in an overestimate of the relative crash frequency of light trucks compared to cars.
However, combining the component estimates of fatality risk and crash frequency leads
to very similar estimates of aggregate fatalities as does the combined analysis (discussed
later), suggesting that these assumptions lead to valid results.

Implications of Assumptions. Given these three assumptions, let us examine what we
know about the total number of two-vehicle crashes involving a vehicle of Type i and a
vehicle of Type j .

(1) pi j = pi p j → By Assumption 1
(2) yi j/Y = (yi/Y )(y j/Y ) → By Definition
(3) yi j = yi y j/Y → Rearranging Terms
(4) yi j = (α1wi )(α1w j )/Y → By Assumption 2
(5) yi j = (α1α2w

f
i )(α1α2w

f
j )/Y → By Assumption 3

(6) yi j = kw
f

i w
f
j → Where k = (α1α2)2

Y

Note that the constant term, k, is the same for all values of i and j . This is due to the
second and third assumptions. The result is that once one uses the FARS data to estimate
the predicted number of drivers of vehicle Type i that died in crashes with drivers of vehicle
Type j , then this value can be divided by w

f
i w

f
j , which is a constant proportion of the number

of crashes involving these types of vehicles (and which is obtainable from the FARS data).
By doing this for all the vehicle-type crash combinations, one obtains an unbiased estimate
of the relative probability of a driver in a Type i vehicle dying given a crash with a Type j
vehicle.

1.2. Estimating relative crash frequencies

The model of vehicle crashes is given by the following equations:

yjst = X ′
jstβ j + δ j VMTjst + εjst

(1)
VMTjst = X ′

jstπ j + ηjst,
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where yjst is the number of crashes of vehicle type j (with j equal to either light trucks or
cars) in state s in year t , Xjst is a vector of observed characteristics, VMTjst is the vehicle
miles traveled of vehicle-type j , and εjst and ηjst are the unobservable determinants of vehicle
crashes and vehicle miles traveled, respectively. The coefficient δ j captures the impact of
VMT on crashes for each vehicle type, and thus the ratio of these coefficients for each
vehicle type yields the relative crash frequency of light trucks versus cars.

Again, since there are no reliable data on crashes by vehicle type on a state by year level,
I use as a proxy the number of crashes of a given vehicle type in which a pedestrian was
killed. Based on Assumptions 2 and 3, this is a valid proxy, because yjst = α1α2w

f
jst, for all

j . Note that if these assumptions hold, the pedestrian fatality proxy allows for an estimate of
the relative crash frequencies of light trucks versus cars, not the absolute crash frequencies.

Consistent estimation of Eq. (1) requires that E(εjst, ηjst) = 0. This assumption is likely
to be violated since VMT across vehicle types is not randomly assigned. That is, states
with more reckless or more risky drivers (characteristics that are unobservable) might have
greater selection into certain types of vehicles. (Since I assume that all drivers select either
cars or light trucks, if unobservable characteristics of drivers lead them to drive more light
trucks, this will also lead to fewer VMT of cars in the state.) Thus, a change in unobservable
reckless driving in a state will both influence VMT (of both vehicle types) and will directly
influence crashes; this leads to biased estimation of the impact of VMT on crashes.12

Instrumental estimation can eliminate this bias if there is a variable, Zst, that is correlated
with VMT of each vehicle type but otherwise independent of crashes. Essentially, the
instrumental variable offers exogenous variation that approximates random assignment. I
use state snow depth as an instrumental variable. There are two conditions that must be
met for consistent estimation. The first is that the snow depth must be correlated with
the endogenous variable. As I will show later, cross-sectional variation in snow depth is
correlated with VMT of both light trucks and cars, and it affects these measures differentially
(i.e., an increase in snow depth is associated with a decrease in car and light truck driving,
but a greater decrease in the former relative to the latter). The second condition is that
the instrument must be independent of the number of crashes (conditional on the other
covariates). This is not likely to be met, since more snow depth would likely lead to more
crashes. I address this problem by restricting the crash measure to include only those
crashes in the state that occurred in the summer (i.e., months June, July, and August). Thus,
instead of estimating Eq. (1), I replace yjst with ȳjst, where the latter measures the crashes
by vehicle type j in state s that took place in the summer months of year t . Whereas
E(Z , εjst | Xjst) �= 0, the identifying assumption of my analysis is that E(Z , ε̄jst | Xjst) = 0,
where ε̄jst captures the unobservable characteristics of summertime crashes. I examine the
validity of this assumption later in the paper.

The data for the VMT of light trucks and cars comes from the Department of Trans-
portation’s Highway Statistics Series for 1994 through 1998. (Before 1994, the data do not
distinguish between light trucks and cars.) Each cell is on the state by year by road-type
level, where the road-type categories are designated as rural and urban.13 Unfortunately,
the data combine all information on sport-utility vehicles, vans, and pickups into one “light
truck” category, so I am unable to test whether crash frequencies vary by specific types of
light trucks.
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I obtained the snow depth measure used as the instrumental variable from the National
Climatic Data Center’s “Surface Summary of the Day” file. This file contains weather
conditions for each weather station in the country. Using this data set, I computed two
different state-by-year measures of snow depth. The first is the average daily snow depth (in
inches) across all weather stations for days in January, February, March, October, November,
and December. I computed this by summing all the daily snow depth measures across
all weather stations (for January, February, March, October, November, and December
only) and then dividing by the number of days. For the second measure, I calculate the
maximum daily snow depth for each weather station over the entire year. I then averaged
these maximum values across weather stations. In other words, this measures the maximum
daily snow depth averaged across weather stations.

Tables 3(a) and (b) present the snow depth of each state from 1994 through 1998, listed
by census divisions (there are four census regions and nine census divisions). Within each
census division, the states are sorted by average snow depth over this period. Table 3(a)
lists the average daily snow depth (in inches) across January, February, March, October,
November, and December. Table 3(b) lists the maximum daily snow depth (in inches)
averaged across all of the states’ weather stations. Both these tables indicate that there
is substantial variation in snow depth across census divisions. In order for snow depth to
serve as a valid instrument for VMT, it must be orthogonal to unobservable determinants of
crashes. This assumption may be violated if snow depth is simply a proxy for unobservable
regional characteristics that also affect driving and other risky behaviors.

However, as can be seen in Tables 3(a) and (b), there is substantial variation in snow
depth within census regions and even within census divisions. Even within the East South
Central division, there is a difference of more than two orders of magnitude between the
state with the highest and lowest average daily snow depth and maximum daily snow depth
(both averaged across years). In fact, I show below that my findings are robust to including
census division fixed effects, suggesting that the instruments are not being driven solely by
across-region variation.

Note also from these two tables that there is little variation within states over time
in snow depth. For example, whereas there is substantial variation in snow depth across
states, the average daily snow depth averaged over all states (shown in the bottom row
of each table) varies from only 1.27 to 2.20 inches over time. For the maximum daily
snow value the range is from 6.21 to 10.72 inches. As a result, using state fixed effects in
the first-stage regressions absorbs all of the snow depth variation, thus leaving very weak
first-stage explanatory power. The IV estimates are thus driven by cross-sectional variation
in snow, which raises the possibility of confounding influences from unobservable state
heterogeneity. I address this potential problem in a number of ways in what follows.

2. Results

2.1. Relative driver fatality risk given a two-vehicle crash

Table 4 reports the estimation results of driver fatality risk for each vehicle type of driver,
conditional on opposing vehicle type. I stratify the sample by the type of vehicle that the
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Table 3(a). State by year snow depth by census division (average in inches for Jan, Feb, March, October,
November, December).

State mean
Census divisions 1994 1995 1996 1997 1998 Snow depth

Northeast region

New England

Rhode Island 2.42037 0.73257 2.20333 0.31625 0.12400 1.15930

Connecticut 3.10252 1.03191 2.07259 0.34622 0.17589 1.34583

Massachusetts 4.09800 1.47267 3.17287 0.75872 0.70289 2.04103

New Hampshire 8.34453 4.19066 5.52323 5.47541 4.62255 5.63128

Vermont 10.31725 5.28225 5.61839 7.21530 5.87592 6.86182

Maine 8.42267 6.76766 5.21848 8.24113 7.36037 7.20206

Middle Atlantic

New Jersey 1.55854 0.69400 1.50106 0.11025 0.04518 0.78181

Pennsylvania 4.11805 1.39552 1.91165 0.69688 0.34877 1.69418

New York 6.97515 2.77392 2.81225 2.46738 1.43300 3.29234

Midwest region

East North Central

Indiana 0.40159 0.39372 0.63023 0.35689 0.11644 0.37977

Illinois 0.63873 0.43222 0.33600 0.57008 0.25379 0.44616

Ohio 0.83931 0.79767 0.81125 0.17463 0.06695 0.53796

Wisconsin 3.74445 2.48532 5.41483 5.15338 1.99596 3.75879

Michigan 4.27910 4.00023 4.75049 5.13977 2.12403 4.05873

West North Central

Missouri 0.09762 0.19407 0.13493 0.25886 0.04866 0.14683

Kansas 0.13008 0.20021 0.07273 0.27146 0.11377 0.15765

Nebraska 0.87944 0.47114 0.52007 0.57193 0.48973 0.58646

Iowa 2.24079 0.94352 1.28061 1.43061 0.67589 1.31429

South Dakota 3.01149 0.94785 3.10867 4.30679 1.04857 2.48468

North Dakota 5.37961 2.82660 5.29528 5.77231 2.16025 4.28681

Minnesota 4.92799 3.64537 7.68513 8.62977 2.16964 5.41158

South region

South Atlantic

Florida 0.00037 0.00000 0.00000 0.00000 0.00000 0.00007

Georgia 0.00019 0.00089 0.00347 0.00132 0.00113 0.00140

South Carolina 0.00054 0.00012 0.01022 0.00173 0.00066 0.00266

North Carolina 0.03192 0.02703 0.14763 0.03306 0.11553 0.07103

Virginia 0.17541 0.16565 0.81851 0.13741 0.14335 0.28806

Delaware 0.18408 0.12460 0.81441 0.03906 0.00559 0.37436

Maryland 0.92410 0.33810 1.31479 0.18212 0.10838 0.57350

West Virginia 1.18979 0.95095 1.30661 0.36172 0.45597 0.85301

District of Columbia NA NA NA NA NA NA

(Continued on next page.)
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Table 3(a). (Continued.)

State mean
Census divisions 1994 1995 1996 1997 1998 Snow depth

East South Central

Alabama 0.00000 0.00104 0.00383 0.00107 0.00013 0.00122

Mississippi 0.00116 0.00252 0.00933 0.00249 0.00473 0.00405

Tennessee 0.06393 0.04505 0.19355 0.05476 0.09338 0.09013

Kentucky 0.19115 0.04846 0.22174 0.03890 0.11582 0.12322

West South Central

Louisiana 0.00000 0.00000 0.00028 0.00038 0.00023 0.00018

Texas 0.00598 0.00453 0.00674 0.01817 0.00323 0.00773

Arkansas 0.02507 0.01198 0.02995 0.03199 0.00100 0.02000

Oklahoma 0.02141 0.05150 0.02937 0.05594 0.01072 0.03379

West region

Mountain

Arizona 0.23276 0.32386 0.11853 0.41692 0.33632 0.28568

New Mexico 0.30303 0.25962 0.17047 0.57420 0.22151 0.30577

Nevada 0.52940 0.34671 0.85274 0.45663 0.62624 0.56234

Montana 2.06889 1.26069 3.20945 2.55755 1.41586 2.10249

Utah 2.36829 1.82518 2.61960 3.03577 2.71013 2.51179

Colorado 2.37428 2.18225 2.99326 3.79142 2.44865 2.75797

Wyoming 2.79609 2.38886 3.79142 3.76865 3.43137 3.23528

Idaho 3.80625 2.17144 4.20037 4.52905 3.37963 3.61735

Pacific

Hawaii 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

California 0.67097 0.87680 0.53090 0.50896 0.87740 0.69301

Oregon 1.01954 0.68555 1.14015 0.87705 1.21510 0.98748

Washington 2.04710 1.71375 2.96140 3.25648 1.80336 2.35642

Alaska 13.01603 11.82305 10.44126 12.02777 10.78633 11.61889

Annual mean 2.19950 1.38618 1.96028 1.93848 1.27058

driver is in, which is represented in the separate columns of Table 4. Each column rep-
resents the results of a logit model in which the dependent variable equals one if the
driver died, and equals zero otherwise. The variables of interest are a series of dum-
mies denoting the type of vehicle that the driver crashed into (i.e., car, sport-utility, van,
pickup, with the car dummy withheld as the comparison group). As discussed previ-
ously, I use pedestrian fatalities by vehicle type to adjust for the sample selection bias.
Keep in mind that this method yields predicted probabilities within a proportionality
factor.

Though not listed in the table, the regression includes covariates for both drivers and
for crash conditions. The drivers’ covariates are age, age squared, sex, whether an air bag
was deployed, whether the driver was wearing a seat belt, whether the driver was drunk,
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Table 3(b). State by year snow depth by census division (maximum daily in inches averaged across state’s
weather stations).

State mean
Census divisions 1994 1995 1996 1997 1998 Snow depth

Northeast region

New England

Connecticut 13.55882 9.03125 16.03030 5.58621 2.52000 9.34532

Rhode Island 16.42857 7.33333 20.80000 13.00000 3.00000 12.11238

Massachusetts 17.84848 11.53846 24.95238 14.82143 6.16364 15.06488

New Hampshire 25.02128 18.75000 25.58333 17.95745 16.45833 20.75408

Vermont 29.70833 20.91304 26.37778 19.93333 20.57778 23.50205

Maine 25.46667 23.77632 24.80000 22.64103 22.75949 23.88870

Middle Atlantic

New Jersey 10.56250 6.82979 16.59575 4.43478 1.83333 8.05123

Pennsylvania 18.68132 11.71038 21.29474 6.90270 5.43889 12.80561

New York 21.53478 13.14027 19.06635 11.66990 9.65686 15.01363

Midwest region

East North Central

Illinois 7.18571 4.59009 5.01333 6.85281 3.75431 5.47925

Indiana 5.98077 4.46584 9.11392 5.14024 4.81595 5.90335

Ohio 8.20000 6.68794 10.52857 2.56738 2.17808 6.03239

Michigan 16.29054 13.68027 14.12418 15.91250 10.05917 14.01333

Wisconsin 14.80000 10.17778 17.51955 16.40556 11.24731 14.03004

West North Central

Missouri 3.44898 4.22959 3.40306 5.00529 2.01075 3.61954

Kansas 3.08856 3.49265 2.45455 5.70968 4.09929 3.76894

Nebraska 7.60494 6.49796 5.05714 8.50800 7.48810 7.03123

Iowa 11.53333 7.73810 11.05952 9.72189 7.92941 9.59645

South Dakota 11.01899 9.36076 13.34591 15.11321 8.50000 11.46777

North Dakota 14.43046 7.90667 13.21088 15.93793 9.60959 12.21911

Minnesota 16.43386 12.52941 20.24176 21.78889 10.33702 16.26619

South region

South Atlantic

Florida 0.05714 0.00000 0.00000 0.00000 0.00000 0.01143

Georgia 0.01961 0.09396 0.27891 0.12925 0.10884 0.12611

South Carolina 0.04082 0.02083 0.48000 0.13131 0.05155 0.14490

North Carolina 0.88679 0.83544 3.59873 1.65385 2.25949 1.84686

Virginia 4.21094 3.67669 14.21805 4.26357 3.64567 6.00298

Delaware 3.85714 3.28571 11.14286 2.00000 0.60000 6.09524

Maryland 5.906977 5.95455 19.45238 4.25000 2.41861 8.01888

West Virginia 13.07692 8.18269 18.97143 7.95283 8.27193 11.29116

District of Columbia NA NA NA NA NA NA

(Continued on next page.)
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Table 3(b). (Continued.)

State mean
Census divisions 1994 1995 1996 1997 1998 Snow depth

East South Central

Alabama 0.00000 0.11628 0.26154 0.12698 0.01527 0.10401

Mississippi 0.10294 0.28467 0.49286 0.32857 0.51049 0.34391

Tennessee 1.31579 1.96117 4.57692 2.65455 2.28319 2.55832

Kentucky 5.02439 1.54601 6.36145 1.64780 5.29375 3.97468

West South Central

Louisiana 0.00000 0.00000 0.02454 0.06433 0.02326 0.02242

Texas 0.42080 0.21361 0.50154 0.67077 0.33489 0.42832

Arkansas 1.23288 0.97333 1.36184 1.88742 0.09032 1.10916

Oklahoma 1.99539 2.43396 1.66038 2.30516 0.79412 1.83780

West region

Mountain

Arizona 2.02273 2.23256 1.64706 4.37423 2.23781 2.50288

New Mexico 3.33793 3.71329 4.07303 7.82955 3.41437 4.47363

Nevada 4.70192 3.16822 6.41667 3.88350 5.20755 4.67557

Montana 8.40329 6.78571 13.84100 10.44770 7.68465 9.43247

Utah 8.82353 8.96970 12.10119 12.85714 11.69461 10.88923

Colorado 10.15714 11.04673 11.46729 17.10314 10.97273 12.14941

Idaho 11.36364 8.30303 17.51111 13.29688 11.79845 12.45462

Wyoming 11.59231 10.90909 14.27692 14.74803 13.87597 13.08046

Pacific

Hawaii 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

California 3.22922 4.36935 3.44529 2.52632 4.25064 3.56416

Oregon 5.16114 3.93365 6.94231 4.07882 6.08654 5.24049

Washington 7.77564 6.83117 16.95333 11.74830 8.71429 10.40455

Alaska 29.67832 30.51449 23.43750 22.36420 21.75333 25.54957

Annual mean 8.86444 6.89472 10.72138 8.14152 6.20877

and whether the driver had any major or minor traffic incidents within three years before
the crash. Major incidents are accidents, DWI convictions, suspensions and revocations of
license. Minor incidents are speeding and other moving violations. The variables describing
the crash conditions are the road condition (wet or dry), the type of road (rural interstate,
rural non-interstate, urban interstate, or urban non-interstate), the speed limit, the time of
day (four six-hour dummy variables), and the year.

Heteroskedastic-consistent standard errors are reported in parentheses beneath the coef-
ficient estimate, and the mean predicted probabilities for each opposing vehicle type are
reported in brackets. These bracketed predicted probabilities are the estimates without ad-
justing for the possible sample selection bias, and thus offer a means of comparison with
the adjusted estimates. The sample-selection adjusted predicted probabilities are reported
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Table 4. Estimated logit models for driver fatality risk, by vehicle type (with sample selection adjustment,
two-vehicle crashes, 1991–1998).

Independent variables Driver in car Driver in utility vehicle Driver in van Driver in pickup

Intercept −0.0432 −0.9023b −2.0467a −1.2447a

(0.1227) (0.3941) (0.4314) (0.2106)

[0.5418] [0.1981] [0.1731] [0.2201]

{1.0000} {0.4417} {0.2972} {0.4964}
Opposing vehicle is a

utility vehicle
1.2780a 1.4896a 1.3019a 1.2982a

(0.0461) (0.1667) (0.1428) (0.0785)

[0.8419] [0.5588] [0.4839] [0.5490]

{1.8771} {0.7932} {0.5452} {0.8680}
Opposing vehicle is a van 1.6490a 1.7330a 1.6811a 1.5841a

(0.0491) (0.1490) (0.1297) (0.0767)

[0.8717] [0.5806] [0.5394] [0.5938]

{1.4966} {0.6541} {0.5804} {0.7522}
Opposing vehicle

is a pickup
1.4191a 1.6290a 1.5653a 1.4442a

(0.0286) (0.0930) (0.0928) (0.0429)

[0.8323] [0.5471] [0.4833] [0.5431]

{1.8770} {0.8650} {0.6123} {1.3034}
Pseudo-R2 0.3097 0.3198 0.3126 0.3020

Number of observations 62,395 6,167 6,661 22,703

Number of missing obs. 3,475 295 384 976

Notes. The sample consists of all two-vehicle crashes from 1991 through 1998 in which at least one driver died.
Each column pulls from this sample those observations involving drivers of the type of vehicle listed in the
column heading. The dependent variable of the logit model equals one if the driver of the vehicle died. The driver
covariates are for both drivers. They include age, age squared, sex, air bag deployment, seat belt use, drunk driver,
and previous major and minor traffic incidents. The crash covariates are the road condition, type of road, speed
limit, time of day, and year. Heteroskedastic consistent standard errors are reported in parentheses. The predicted
probabilities given a crash with each opposing vehicle are reported in brackets. These probabilities are adjusted
for sample selection bias and standardized, and the values are reported in braces.
aSignificant at 1% level, two-sided test; bSignificant at 5% level, two-sided test.

in braces. For the results reported in the tables, I used total counts of pedestrian fatalities
by vehicle types to adjust for the sample selection. For robustness, I also used year-specific
pedestrian fatality counts to weight each predicted probability. These latter results are not
reported in the paper since they are nearly identical to the reported estimates. Since the
sample selection adjustment yields relative risks across vehicle types, I standardized the
predicted probabilities so that the probability of a car driver dying given a crash with another
car driver is one.

The results strongly suggest that no matter what type of vehicle one drives, crashing into
a sport-utility vehicle, van, or pickup poses a greater risk than does crashing into a car.
The results also suggest that no matter what type of vehicle one crashes in to, one is at a
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significantly greater risk if one is in a car rather than a light truck. The sample-selection
adjusted results do suggest a different ordering than the unadjusted results of the risks among
the different light trucks. The unadjusted estimates suggest that it is less risky to crash into
a pickup than it is to crash into a sport-utility vehicle, and that it is less risky to crash into
a sport-utility vehicle than it is to crash into a van. The results after correcting for sample-
selection bias indicate that in a crash, vans tend to pose less risk to others than do sport-utility
vehicles, and pickups tend to pose the greatest risk to others. These discrepancies suggest
that the fatality crash data over-represent the risk posed by vans relative to the risk posed
by sport-utility vehicles and pickups.

For ease of exposition, Panel A of Figure 1 reports the predicted relative probabilities of
a driver dying given a crash with different types of vehicles. The x-axis groupings are for
each possible vehicle choice of the driver, and the vertical bars show the probability of dying
conditional on a crash with each type of vehicle. Each x-axis grouping is standardized so
that the probability of dying given a crash with a car is equal to one. Thus, only comparisons
within each grouping are possible.

The results of Panel A indicate that, given a crash, light trucks pose significantly higher
risks to other drivers than do cars. For example, relative to crashing into a car, a car driver
is 1.88 times as likely to die if the opposing vehicle is a sport-utility vehicle, 1.50 times as
likely to die if the opposing vehicle is a van, and 1.88 times as likely to die if the opposing
vehicle is a pickup. The results are similar across the driver’s vehicle designation. No matter
what vehicle the driver drives, pickups pose the highest external risks in a crash. And for
car, sport-utility, and pickup drivers, crashing into a sport-utility is riskier than crashing into
a van.

Panel B of Figure 1 reports the predicted relative probabilities of dying depending
on the type of vehicle the driver is driving. The x-axis groupings are for each type of
opposing vehicle, and the vertical bars show the probability of dying, given a crash,
depending on the driver’s vehicle type. Each x-axis grouping is standardized so that the
probability of a car driver dying is one. Thus, only comparisons within each grouping are
possible.

The results of Panel B indicate that driving a light truck is significantly safer for a driver
than is driving a car. For example, given a crash with a car, a sport-utility vehicle driver
is 0.44 times as likely to die than is a car driver, a van driver is 0.30 times as likely to die
than is a car driver, and a pickup driver is 0.50 times as likely to die than is a car driver.
The results are similar across the different types of opposing vehicle. No matter what the
opposing vehicle, driving a van poses the lowest risk to the driver in the event of a crash,
driving a sport-utility vehicle is the next safest, and driving a pickup is the least safe among
the light trucks.

These results are consistent with the implications of Crandall and Graham (1989). That
is, while light trucks pose a greater fatality risk to others in a crash, this is dominated by
the safety advantage they give to those who drive them (I show the exact net effects later).
However, these risk estimates are conditional on crashes having occurred and ignore the
possibility that crash frequencies might differ across vehicle types. To the extent that light
trucks are more prone to crash than cars, both the internal and external risk estimates for
them will increase. We now turn to the crash frequency results.
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Panel A: Relative Drive Risk Given Opposing Vehicle Type
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Figure 1. Relative external and internal driver risk in a two-vehicle crash.

2.2. OLS results of relative crash frequencies

For purposes of comparison, I first estimate the relative crash frequencies of Eq. (1) using
ordinary least squares. I stratify the sample to estimate the gradient of crashes with respect
to VMT for both light trucks and cars. I then divide the estimated light truck gradient by
the estimated car gradient to arrive at the crash frequency of light trucks relative to cars.14
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An examination of the raw aggregate ratio of pedestrian fatalities caused by light trucks
(per VMT of light trucks) divided by the ratio of pedestrian fatalities caused by cars (per
VMT of cars) indicates that light trucks are 25 percent more likely to crash for a given mile
driven. Of course, this raw ratio ignores both confounding factors (such as time trends, speed
limit, etc.) and selection bias. As a first step, I perform two sets of OLS regressions. The first
includes different combinations of state fixed effects, year indicators, and a state-specific
linear time trend. These controls should help alleviate the possible selection bias, since they
will absorb any mean shifts in unobservable determinants of crashes across years or states,
and will also absorb any unobservable determinants of crashes that track linearly over time
within states. The second set of regressions uses more flexible controls of year by road-type
indicators and a state by road-type specific linear time trend. Each one of these controls
passes an F-test in which the restricted model of comparison does not include road-type
specific controls. The variables should further alleviate the selection bias since they control
for mean shifts over time within road-types, as well as for trends in crash determinants
occurring over time within each state’s road-types. Each specification also controls for the
road-type, the state’s unemployment rate, the legal speed limit, the proportion of the state’s
population that is young (15–29) and male, young and female, old (65 and up) and male,
and old and female. The reported standard errors (in parentheses) adjust for error clustering
within states.

Table 5(a) lists the OLS results for the car and the light truck specifications for the first
set of specifications. The first set of rows is for the car specifications, and the next set of
rows is for the light truck specifications. The results suggest that more VMT in a state for
cars and light trucks increases the number of crashes by these respective vehicle types.
Each coefficient estimate is highly statistically significant. Most notably, the gradient with
respect to light trucks is greater than the gradient with respect to cars. The final row of
Table 5(a) takes the ratio of the gradients and suggests that light trucks are between 2.57
to 3.03 times more likely to crash than are cars.

Table 5(b) lists the OLS results for the more flexible OLS specifications (i.e., allowing
the year indicators and the state-specific linear time trend to vary by road-type). Once again,
the results suggest that an increase in VMT is associated with an increase in crashes, for
both cars and light trucks. The coefficient estimates are all statistically significant within
the one-percent level. As with the other specifications, the light truck gradient is larger than
the car gradient. The last row takes the ratio of the two and suggests that light trucks are
2.14 to 3.02 times more likely to crash than are cars. The results across specifications in
Tables 5(a) and (b) are rather robust. However, these OLS estimates may suffer from the
selection bias discussed earlier. We now turn to the IV results as a means of addressing this
problem.

2.3. First-stage explanatory power of IV estimation of crash frequencies

I examine the first-stage IV regression to check the explanatory power of the instrumental
variable. If the instrumental variable has weak explanatory power in the first stage, then the
IV coefficient estimates will have large standard errors.15 Bound, Jaeger, and Baker (1995)
recommend using an F-test of the joint significance of the instruments in the first-stage
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Table 5. (a) Estimated OLS models for pedestrian fatalities, by vehicle type.

(1) (2) (3) (4) (5) (6)

Cars

Vehicle miles traveled (millions) 0.00198a 0.00223a 0.00198a 0.00223a 0.00217a 0.00225a

(0.00016) (0.00020) (0.00017) (0.00020) (0.00019) (0.00021)

R-squared 0.8871 0.9371 0.8877 0.9372 0.9235 0.9436

Light trucks

Vehicle miles traveled (millions) 0.00517a 0.00672a 0.00517a 0.00674a 0.00557a 0.00681a

(0.00112) (0.00173) (0.00111) (0.00174) (0.00142) (0.00185)

R-squared 0.7411 0.8878 0.7428 0.8888 0.8437 0.8943

State fixed effects No Yes No Yes No Yes

Year indicators No No Yes Yes Yes Yes

State-specific linear time trend No No No No Yes Yes

Light truck crash frequency 2.61 3.01 2.61 3.02 2.57 3.03
relative to car crash frequency

(b) Estimated OLS models for pedestrian fatalities, by vehicle type (less restrictive controls).

Cars

Vehicle miles traveled (millions) 0.00224a 0.00260a 0.00198a 0.00223a 0.00223a 0.00260a

(0.00024) (0.00030) (0.00017) (0.00020) (0.00025) (0.00030)

R-squared 0.9529 0.9759 0.8889 0.9385 0.9534 0.9762

Light trucks

Vehicle miles traveled (millions) 0.00479a 0.00592a 0.00517a 0.00673a 0.00479a 0.00592a

(0.00117) (0.00195) (0.00111) (0.00173) (0.00116) (0.00196)

R-squared 0.9199 0.9601 0.7437 0.8893 0.9225 0.9608

State fixed effects No Yes No Yes No Yes

Year by roadtype indicators No No Yes Yes Yes Yes

State by roadtype-specific linear time trend Yes Yes No No Yes Yes

Light truck crash frequency 2.14 2.27 2.61 3.02 2.15 2.28
relative to car crash frequency

Notes. For the first equation in each panel the independent variable of interest is the VMT by cars, and the dependent
variable is the number of pedestrian fatalities caused by cars. For the second equation the independent variable
of interest is the VMT by light trucks, and the dependent variable is the number of pedestrian fatalities caused by
light trucks. Each model contains roadtype indicators, and each controls for the state unemployment rate, the legal
speed limit, the proportion of the population that is male and 65 years old and older, the proportion that is female
and 65 years old and older, the proportion that is male and 15–29 years old, and the proportion that is female and
15–29 years old. Consistent standard errors allowing for error clustering within states are reported in parentheses.
The data set is on a state by year by roadtype level. There are fifty-one states (including DC), and the years of
available data for VMT distribution by vehicle type are from 1994 through 1998. The two roadtypes are rural and
urban. This yields 510 observations; however, 116 observations either have not availabe data or did not have any
vehicle travel within the roadtype (e.g., DC rural). Thus, the car and truck regressions contain 394 observations,
and the single regression equation contains 788 (394 × 2) observations.
aSignificant at 1% level, two-sided test.
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regression to assess the fit.16 As they also recommend, I report the partial R2 (which is
the R2 of the first-stage regression with the instruments partialled out), in addition to the
F-statistic. Staiger and Stock (1997) suggest that instruments should be declared weak if
the first-stage F-statistic is less than ten.

Tables 6(a) and (b) show the first-stage regression results of the endogenous explanatory
variable (VMT) against the instrument (snow depth) for both light trucks and cars. Each
regression includes the other exogenous covariates, which are the road-type indicators, the
state unemployment rate, the legal speed limit, and the age by sex variables as a proportion of
the population. The different columns represent specifications with different combinations
of year by road-type indicators, a state by road-type linear time trend variable, and census
division indicators. As mentioned earlier, I include the census division indicators in some
specifications as a way of addressing the concern that the instrument is only picking up
regional unobservable determinants of crashes. Table 6(a) shows the first-stage results
when the average daily snow depth is used as the instrument, and Table 6(b) shows the
first-stage results when the maximum daily snow depth for the year is used as the instrument.

The first-stage results listed in Tables 6(a) and 6(b) indicate that a state’s snow depth is
negatively correlated with both VMT of cars and VMT of light trucks. What’s more, since
this analysis is interested in exogenous variation of VMT of light trucks relative to cars, it is
noteworthy to see that the first-stage gradient for light trucks has a lower magnitude than the
gradient for cars. That is, while greater snow depth leads to fewer miles driven, the decline
is greater for cars than for light trucks. Relatively speaking, worse weather conditions leads
to a shift towards light trucks. The last row in each table shows how many millions of miles
more of light truck driving occurs relative to car driving given a 1-inch increase in average
snow depth (Table 6(a)) and maximum daily snow depth (Table 6(b)). Thus, an increase in
the average daily snow depth of one inch leads to a relative shift towards light truck driving
of between 1,105 and 2,142 million miles. And an increase of one inch in the maximum
daily snow depth (averaged across weather stations) leads to a relative shift towards light
truck driving of between 285 and 601 million miles.

The bracketed terms under the coefficient estimates report the F-statistics for the instru-
mental variable, and the terms in braces reports the partial R2. For all the specifications
in Tables 6(a) and (b), the fit of the first-stage regressions seems rather strong, with an
F-statistic greater than ten. The first-stage results therefore suggest that the instruments are
strongly correlated with the endogenous variable.

2.4. IV results

Table 7(a) presents the second-stage IV results when the instrument is the average daily
snow depth in the state (in January, February, March, October, November, and December),
and Table 7(b) presents the second-stage IV results when the instrument is the maximum
daily snow depth averaged across weather stations. For each specification, the dependent
variable is restricted to pedestrian fatalities that occurred in summer months (June, July, and
August). Each specification contains road-type indicators, state unemployment rate, speed
limit, and age by sex controls. The various specifications use different combinations of year
by road-type indicators, a state by road-type specific linear time trend, and census division
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Table 6. First-stage coefficient estimates of IV models.
(a) Instrument = Average daily snow depth in Jan, Feb, March, Oct, Nov, Dec.

(1) (2) (3) (4) (5) (6)

Cars

First-stage snow coefficient estimate −1417.98 −2065.79 −1546.04 −1650.34 −2619.47 −1877.26

[15.95] [29.27] [16.38] [13.98] [28.66] [15.25]

{0.0510} {0.0724} {0.0536} {0.0461} {0.0724} {0.0515}
Light trucks

First-stage snow coefficient estimate −312.39 −509.14 −368.83 −266.27 −477.63 −324.81

[23.36] [53.79] [28.57] [11.76] [30.51] [14.97]

{0.0729} {0.1254} {0.0900} {0.0391} {0.0768} {0.0499}
Census division indicators No No No Yes Yes Yes

Year by roadtype indicators No Yes Yes No Yes Yes

State by roadtype-specific
linear time trend

Yes No Yes Yes No Yes

Million miles more of truck
VMT relative to car VMT given
additional inch of avg. snow depth

1105.59 1556.65 1177.21 1384.07 2141.84 1552.45

(b) Instrument = Maximum daily snow depth in a year averaged across weather stations.

Cars

First-stage snow coefficient estimate −372.07 −547.18 −399.95 −465.73 −714.44 −525.91

[12.86] [20.86] [12.30] [11.59] [17.46] [11.81]

{0.0415} {0.0527} {0.0408} {0.0386} {0.0454} {0.0403}
Light trucks

First-stage snow coefficient estimate −86.52 −141.65 −101.16 −74.31 −113.75 −89.08

[17.37] [30.28] [17.91] [17.03] [23.09] [19.08]

{0.0657} {0.1000} {0.0764} {0.0320} {0.0366} {0.0374}
Census division indicators No No No Yes Yes Yes

Year by roadtype indicators No Yes Yes No Yes Yes

State by roadtype-specific
linear time trend

Yes No Yes Yes No Yes

Million miles more of truck
VMT relative to car VMT given
additional inch of avg. snow depth

285.55 405.53 298.79 391.42 600.69 436.83

Notes. For the top panel, the first-stage regressions use as an instrument the average snow depth in a given day
(in January, February, March, October, November, December) over all reporting weather stations in a state for a
given year. For the bottom panel, the first-stage regressions use as an instrument the maximum snow depth in a
year (averaged across all weather stations in the state). The IV variables instrument for VMT of light trucks and
cars. Each model contains roadtype indicators, and each controls for the state unemployment rate, the legal speed
limit, the proportion of the population that is male and 65 years old and older, the proportion that is female and
65 years old and older, the proportion that is male and 15–29 years old, and the proportion that is female and
15–29 years old. Consistent F-statistics for the excluded instrument (allowing for error clustering within states)
are reported in brackets, and the partial-R2 are reported in braces.
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Table 7. Estimated IV models for crash frequencies.
(a) Instrument = Average daily snow depth in Jan, Feb, March, Oct, Nov, Dec.

Pedestrian deaths in summer months

Dependent variable (1) (2) (3) (4) (5) (6)

Cars

Vehicle miles traveled (millions) 0.00035a 0.00034a 0.00034a 0.00040a 0.00037a 0.00042a

(0.00008) (0.00005) (0.00008) (0.00009) (0.00006) (0.00008)

Light trucks

Vehicle miles traveled (millions) 0.00121a 0.00101a 0.00112a 0.00160a 0.00139a 0.00151a

(0.00035) (0.00015) (0.00027) (0.00044) (0.00029) (0.00037)

Census division indicators No No No Yes Yes Yes

Year by roadtype indicators No Yes Yes No Yes Yes

State by roadtype-specific Yes No Yes Yes No Yes
linear time trend

Light truck crash frequency 3.45 2.93 3.29 4.00 3.76 3.60
relative to car crash frequency

(b) Instrument = Maximum daily snow depth in a year averaged across weather stations.

Cars

Vehicle miles traveled (millions) 0.00040a 0.00040a 0.00037a 0.00048a 0.00043a 0.00048a

(0.00008) (0.00006) (0.00009) (0.00010) (0.00006) (0.00009)

Light trucks

Vehicle miles traveled (millions) 0.00116a 0.00105a 0.00108a 0.00146a 0.00167a 0.00142a

(0.00032) (0.00018) (0.00026) (0.00036) (0.00043) (0.00032)

Census division indicators No No No Yes Yes Yes

Year by roadtype indicators No Yes Yes No Yes Yes

State by roadtype-specific Yes No Yes Yes No Yes
linear time trend

Light truck crash frequency 2.90 2.63 2.92 3.04 3.88 2.96
relative to car crash frequency

Notes. For the top panel, I use as an instrument the average snow depth in a given day (in January, February,
March, October, November, December) over all reporting weather stations in a state for a given year. For the
bottom panel, I use as an instrument the maximum snow depth in a year (averaged across all weather stations in
the state). The IV variables instrument for VMT of light trucks and cars. In order to meet the exclusion restriction,
I restrict the dependent variable to the number of pedestrian fatalities that occurred only during June, July, and
August. Each model contains roadtype indicators, and each controls for the state unemployment rate, the legal
speed limit, the proportion of the population that is male and 65 years old and older, the proportion that is
female and 65 years old and older, the proportion that is male and 15–29 years old, and the proportion that is
female and 15–29 years old. Consistent standard errors allowing for error clustering within states are reported in
parentheses.
aSignificant at 1% level, two-sided test.
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indicators. The reported standard errors (in parentheses) adjust for error clustering within
states.

The top set of rows of Table 7(a) suggests that there is a positive gradient of car crashes
with respect to VMT of cars. All of the estimated coefficients are statistically significant at
the one-percent level. The next set of rows indicates that there is also a positive gradient
of light truck crashes with respect to VMT of light trucks. These, too, are all significant at
the one-percent level. Of particular interest are the relative magnitudes of the light truck
versus the car gradient. The bottom row of Table 7(a) takes the ratios of these coefficient
estimates and finds that light trucks are 2.93 to 4.00 times more likely to crash than are cars
for a given amount of VMT. These ratios are fairly robust across specifications.

The results in Table 7(b) also suggest a positive gradient of crashes with respect to VMT,
for both cars and for light trucks. The various specifications are all statistically significant
at the one-percent level. The bottom set of rows shows the ratios of the light truck gradient
relative to the car gradient, and these estimates suggest that light trucks are 2.63 to 3.88
times more likely to crash than are cars. These ratios are fairly robust across specifications.

The OLS and IV results therefore suggest that light trucks are considerably more likely to
crash than cars. Given that the IV estimation correctly controls for unobservable behavioral
differences among drivers, the main remaining hypothesis on why light trucks crash more
frequently than cars has to do with their physical design. In order to receive the regulatory
advantage of being a light truck, regulatory officials require that light trucks be “capable
of off-highway operation.” As reported by Easterbrook (2002), the test for this essentially
became whether the vehicle is tall enough to provide ground clearance. This gave automakers
an incentive to make their light trucks tall, which, among other things, increases the glare
of their headlights to oncoming drivers, diminishes their sight-lines to other drivers, and
makes them more likely to roll over. Additionally, light trucks are all built on stiffer, heavier
frames than are cars, which also makes them more difficult to handle, and thus more prone
to crashing. The greater crash frequency of light trucks could also be due to changes in
driver behavior due to the (mis)perception that they offer greater safety to the drivers. Lave
and Weber (1970) and Peltzman (1975) hypothesized that the safer drivers feel, the more
reckless may be their driving. Thus, the combination of physical construction and behavioral
changes could both contribute to greater crash frequencies of light trucks.

2.5. Aggregate fatalities given different vehicle-type compositions

As mentioned before, previous studies have indicated that a crash involving two lighter
vehicles tends to result in fewer expected deaths than a crash involving two heavier vehicles.
Those who oppose increasing the regulatory burdens of light trucks use this evidence to
claim that such a change in policy would lead to more fatalities. However, this is potentially
misleading, since one must consider whether crash frequencies vary by vehicle type in order
to get an accurate estimate of the expected number of traffic fatalities given different ratios
of light trucks to cars on the road.

Suppose that there are N vehicles in the world, that the number of cars equals C , and
the number of light trucks equals T . Also assume that C + T = N . Let γi j equal the
probability that a driver of vehicle type i is killed by a driver of vehicle type j , conditional
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on a crash between the two vehicles. Let βi j equal the probability of vehicle type i crashing
with vehicle type j . Then the probability (Pc) of a car driver being killed in a two-vehicle
crash, and the probability (PT ) of a light truck driver being killed in a two-vehicle crash are
given as follows:

PC = γCCβCCC + γCTβCT T
(2)

PT = γTCβTCC + γTTβTT T .

The expected number of traffic fatalities (E) is PC C+PT T . Let us examine three different
cases. Case 1 is a world in which all vehicles are cars (i.e., C = N , T = 0). Case 2 is
a world in which all vehicles are light trucks (i.e., C = 0, T = N ). Case 3 is a world in
which half the vehicles are cars and half are light trucks (i.e., C = N/2, T = N/2). The
expected number of traffic fatalities in each state is given as follows:

E1 = γCCβCC N 2

E2 = γTTβTT N 2 (3)

E3 =
(

N 2

4

)
(γCCβCC + γTTβTT + γCTβCT + γTCβTC).

This paper has estimated the following: (1) the relative probability of a driver dying
conditional on the type of vehicle he or she is driving and the type of vehicle of the opposing
driver, and (2) the relative crash frequency of light trucks versus cars. By coupling these
results, I have estimates of the ratios of the gammas and betas in Eq. (3). Thus, I can use
the empirical estimates to compute the number of fatalities in one state of the world relative
to another state of the world (i.e., E3/E1 and E2/E1). The top panel of Table 8 presents
the estimates of the relative expected number of fatalities given that crash frequencies do
not vary across vehicle types (i.e., the betas are assumed constant). According to these
results, a world with only sport-utility vehicles or vans (or 50 percent of each) is indeed a
world with fewer traffic fatalities than is a world with only cars. This supports the claims
of those opposed to increasing the regulatory burden of light trucks. However, given the IV
results for crash frequencies, if one chooses a conservative estimate of 2.5 for the greater
crash probability of light trucks relative to cars, the results change dramatically. Panel B
of Table 8 presents the expected number of fatalities relative to a world in which everyone
drives cars, given the crash frequency adjustment. The results suggest that a world in which
everyone drives sport-utility vehicles would result in 4.96 times more fatalities than a world
in which everyone drives cars. A world of vans would result in 3.63 times more fatalities
than a world of cars. A world of pickups would result in 8.15 times more fatalities than a
world of cars. The off-diagonal cells give estimates in which half the vehicles are of each
respective vehicle type, and also indicate that these states lead to more fatalities than a world
with only cars. Minimization of traffic fatalities results when all vehicles are cars.

The primary goal of this paper is to examine both fatality risk given a crash and crash
frequencies in order to determine how they both contribute to aggregate fatalities. Of course,
the results are contingent on the validity of the assumptions that justify using pedestrian
fatalities by vehicle type as a proxy for crashes by vehicle type. Another way to estimate
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Table 8. The expected relative number of fatalities.
(Cell [i, j] represents vehicle composition of 50% i and 50% j vehicles).

Car Utility Van Pickup Light truck

Panel A: Assuming constant crash frequencies

Car 1.00 1.03 0.84 1.17

Utility 0.79 0.64 0.96

Van 0.58 0.81

Pickup 1.30

Panel B: Combining fatality risk with estimated variable crash frequencies

Car 1.00 2.94 2.14 3.77

Utility 4.96 4.02 5.98

Van 3.63 5.08

Pickup 8.15

Panel C: Using IV estimates with driver fatalities by vehicle type as outcome measure

Car 1.00 2.45–5.69

Light truck 3.90–10.37

aggregate relative fatalities due to vehicle types is to re-estimate the IV equations using
driver fatalities by vehicle types as the outcome measure (instead of the pedestrian fatality
measure). This has the advantage of focusing on the outcome of greatest policy interest—
fatalities—without involving the assumptions justifying the use of pedestrian fatalities as a
proxy variable for crashes.

Tables 9(a) and (b) present these estimates and suggest that light trucks result in 3.90
to 10.37 times more driver fatalities than cars. These estimates are a near perfect match to
the product of the fatality risk given a crash estimates and the crash frequency estimates,
suggesting that relying on the pedestrian fatality assumption does not bias the results. For
comparison, the third panel of Table 8 uses these IV results to estimate the relative aggregate
fatalities (by taking the ratios in Eq. (3)). Again, the results suggest a world of light trucks
would result in 3.90 to 10.37 times more fatalities than a world of all cars, and a world of
half cars and half light trucks would result in 2.45 to 5.69 times more fatalities than a world
of all cars. The results are very similar to the results presented in Panel B. Once again, while
light trucks offer a safety advantage to those who drive them in case of a crash, they also
offer a substantially greater risk to others and are substantially more likely to crash. The net
result is that they lead to more fatalities than do cars.

3. Validity tests

As mentioned earlier, the validity of the IV results rests on the assumption that the instru-
mental variable is orthogonal to the unobservable determinants of the dependent variable.
Researchers frequently test (as a standard diagnostic) whether the excluded instruments are
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Table 9. Estimated IV models for total driver fatalities in two-vehicle crashes.
(a) Instrument = Average daily snow depth in Jan, Feb, March, Oct, Nov, Dec.

Total driver deaths in two-vehicle crashes in summer months

Dependent variable (1) (2) (3) (4) (5) (6)

Cars

Vehicle miles traveled (millions) 0.00059b 0.00071a 0.00067b 0.00035b 0.00048a 0.00041a

(0.00029) (0.00020) (0.00029) (0.00016) (0.00010) (0.00014)

Light trucks

Vehicle miles traveled (millions) 0.00431a 0.00338a 0.00403a 0.00364a 0.00272a 0.00321a

(0.00126) (0.00050) (0.00097) (0.00105) (0.00036) (0.00068)

Census division indicators No No No Yes Yes Yes

Year by roadtype indicators No Yes Yes No Yes Yes

State by roadtype-specific
linear time trend

Yes No Yes Yes No Yes

Light truck crash frequency 7.31 4.75 6.04 10.37 5.73 7.77
Relative to car crash frequency

(b) Instrument = Maximum daily snow depth in a year averaged across weather stations.

Cars

Vehicle miles traveled (millions) 0.0009396b 0.0009888a 0.0010911b 0.00056a 0.00062a 0.00064a

(0.00043) (0.00099) (0.00052) (0.00020) (0.00014) (0.00019)

Light trucks

Vehicle miles traveled (millions) 0.00483a 0.00386a 0.00458a 0.00422a 0.00320a 0.00373a

(0.00165) (0.00075) (0.00145) (0.00149) (0.00075) (0.00107)

Census division indicators No No No Yes Yes Yes

Year by roadtype indicators No Yes Yes No Yes Yes

State by roadtype-specific
linear time trend

Yes No Yes Yes No Yes

Light truck crash frequency 5.14 3.90 4.20 7.60 5.18 5.84
relative to car crash frequency

Notes. For the top panel, I use as an instrument the average snow depth in a given day (in January, February,
March, October, November, December) over all reporting weather stations in a state for a given year. For the
bottom panel, I use as an instrument the maximum snow depth in a year (averaged across all weather stations in
the state). The IV variables instrument for VMT of light trucks and cars. In order to meet the exclusion restriction,
I restrict the dependent variable to the number of pedestrian fatalities that occurred only during June, July, and
August. Each model contains roadtype indicators, and each controls for the state unemployment rate, the legal
speed limit, the proportion of the population that is male and 65 years old and older, the proportion that is
female and 65 years old and older, the proportion that is male and 15–29 years old, and the proportion that is
female and 15–29 years old. Consistent standard errors allowing for error clustering within states are reported in
parentheses.
aSignificant at 1% level, two-sided test; bSignificant at 5% level, two-sided test.



128 GAYER

Table 10. Sample means by high vs. low snow depth (1998 cross section of states).

Average daily snow depth Maximum daily snow depth

Below Above Below Above
State variable median median t-statistic median median t-statistic

State unemployment rate 4.4480 4.2280 0.7582 4.5400 4.1360 1.4126

(0.1726) (0.2332) (0.1735) (0.2274)

Rural speed limit 70 or over 0.4800 0.6000 0.8402 0.5600 0.5200 0.2782

(0.1020) (0.1000) (0.1013) (0.1020)

Proportion male and 65 and over 0.0528 0.0529 0.0319 0.0530 0.0527 0.1194

(0.0015) (0.0017) (0.0016) (0.0016)

Proportion female and 65 and over 0.0761 0.0725 1.0287 0.0756 0.0730 0.7380

(0.0020) (0.0028) (0.0020) (0.0028)

Proportion male and 15–29 years old 0.1046 0.1062 0.7813 0.1047 0.1060 0.6256

(0.0012) (0.0017) (0.0013) (0.0017)

Proportion male and 15–29 years old 0.1030 0.1033 0.1282 0.1026 0.1038 0.5231

(0.0014) (0.0017) (0.0014) (0.0017)

uncorrelated with the error term by using an over-identification test. However, in this paper
there is only one excluded instrument, thus precluding an over-identification test.

A more informal analysis of the validity of an excluded instrument is to examine the re-
lationship between the instrument and other observable covariates. In the ideal case where
the instrument is randomly assigned, the instrument would be uncorrelated with both the
observable and unobservable determinants of the outcome variable. Examining the rela-
tionship between the instrument and the observable determinants serves as a guide to how
much selection there is on the unobservables (see Altonji, Elder, and Taber, 2001a, 2001b).
Table 10 shows the mean values of each of the observable covariates partitioned by whether
the state was above or below the median level of snow depth. The columns on the left use
the average daily snow depth measure, and the columns on the right use the maximum
daily snow depth measure. The means are for 1998, but given that there is little variation in
snow depth over time within states, the implications are the same for the other years. The
t-statistics for the difference in means suggests that the observable covariates are balanced
for states with high and low snow depth, which offers some evidence that the instrument is
exogenous.

As another test of the exogeneity of the snow depth instrument, I re-estimate the IV mod-
els substituting the state unemployment rate for the dependent variable in the model. If the
instrument is correlated with VMT yet orthogonal to other determinants, then the coefficient
estimate in the second-stage equation should be insignificant when unemployment rate is
the outcome variable. Tables 11(a) and (b) confirm this for the most part. Of the twelve
specifications, only specification four using the maximum snow depth instrument shows a
statistically significant relationship (at the ten-percent level) between VMT and unemploy-
ment rate. Again, this serves as an informal check of the validity of the instrument, since
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Table 11. Testing IV models using unemployment rate as outcome variable.
(a) Instrument = Average daily snow depth in Jan, Feb, March, Oct, Nov, Dec.

Dependent variable: State by year unemployment rate

(1) (2) (3) (4) (5) (6)

Cars

Vehicle miles traveled (millions) 0.00002 0.00004 0.00006 −0.00007 −0.00004 −0.00002

(0.00004) (0.00003) (0.00004) (0.00005) (0.00003) (0.00004)

Light trucks

Vehicle miles traveled (millions) 0.00011 0.00018 0.00026 −0.00042 −0.00021 0.00010

(0.00021) (0.00015) (0.00019) (0.00033) (0.00016) (0.00022)

Census division indicators No No No Yes Yes Yes

Year by roadtype indicators No Yes Yes No Yes Yes

State by roadtype-specific
linear time trend

Yes No Yes Yes No Yes

(b) Instrument = Maximum daily snow depth in a year averaged across weather stations.

Cars

Vehicle miles traveled (millions) 2.92E-06 0.00005 0.00005 −0.00010c −0.00006 −0.00004

(0.00005) (0.00004) (0.00005) (0.00006) (0.00004) (0.00005)

Light trucks

Vehicle miles traveled (millions) 0.00001 0.00019 0.00021 −0.00060c −0.00034 −0.00023

(0.00022) (0.00016) (0.00021) (0.00036) (0.00024) (0.00028)

Census division indicators No No No Yes Yes Yes

Year by roadtype indicators No Yes Yes No Yes Yes

State by roadtype-specific
linear time trend

Yes No Yes Yes No Yes

Notes. For the top panel, I use as an instrument the average snow depth in a given day (in January, February,
March, October, November, December) over all reporting weather stations in a state for a given year. In the bottom
panel, I use the maximum snow depth in year (averaged across all weather stations in the state). These variables
instrument for VMT of light trucks and cars. I use state unemployment rate as the outcome variable. Each model
contains roadtype indicators, the legal speed limit, the proportion of the population that is male and 65 and over, the
proportion that is female and 65 and over, the proportion that is male and 19–25 years old, and the proportion that
is female and 19–25 years old. Consistent standard errors allowing for error clustering within states are reported
in parentheses.
cSignificant at the 10% level, two-sided test.

the lack of a relationship between the instrument and the observable variables increases our
confidence that the instrument is also not correlated to unobservable determinants.

It is conceivable that the instrument is orthogonal to observables but is correlated with
an unobservable characteristic of the state that contributes to pedestrian fatalities. For ex-
ample, Ruhm (2000) finds that a state’s economic conditions are correlated with numerous
health outcomes. It could be that my instrument is picking up unobservable state economic
conditions that affect pedestrian fatalities, thus biasing my coefficient estimate. As a test for
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this potential bias, I substitute the state level fatality risk of chronic liver disease and cirrho-
sis for my outcome variable. If the instrument is picking up unobservable state economic
effects that influence overall health outcomes, then one would expect this to be captured in
the coefficient estimate for the cirrhosis model. Tables 12(a) and (b) present the coefficient
estimates (for VMT) for the different specifications. Of the twelve specifications, only the
two that omit the census division indicators and the year by road-type indicators show

Table 12. Testing IV models using chronic liver and cirrhosis death rate (per 100,000) as outcome variable.
(a) Instrument = Average daily snow depth in Jan, Feb, March, Oct, Nov, Dec.

Dependent variable state by year
chronic liver and cirrhosis death rate

(1) (2) (3) (4) (5) (6)

Cars

Vehicle miles traveled (millions) 0.00013c 0.00008 0.00011 0.00007 0.00005 0.00007

(0.00007) (0.00005) (0.00007) (0.00006) (0.00005) (0.00006)

Light trucks

Vehicle miles traveled (millions) 0.00057c 0.00032 0.00045 0.00043 0.00025 0.00038

(0.00032) (0.00020) (0.00028) (0.00036) (0.00026) (0.00034)

Census division indicators No No No Yes Yes Yes

Year by roadtype indicators No Yes Yes No Yes Yes

State by roadtype-specific Yes No Yes Yes No Yes
linear time trend

(b) Instrument = Maximum daily snow depth in a year averaged across weather stations.

Cars

Vehicle miles traveled (millions) 0.00012c 0.00007 0.00010 0.00007 0.00004 0.00005

(0.00007) (0.00005) (0.00007) (0.00005) (0.00005) (0.00006)

Light trucks

Vehicle miles traveled (millions) 0.00054c 0.00029 0.00040 0.00043 0.00027 0.00030

(0.00032) (0.00019) (0.00028) (0.00035) (0.00031) (0.00034)

Census division indicators No No No Yes Yes Yes

Year by roadtype indicators No Yes Yes No Yes Yes

State by roadtype-specific Yes No Yes Yes No Yes
linear time trend

Notes. For the top panel, I use as an instrument the average snow depth in a given day (in January, February,
March, October, November, December) over all reporting weather stations in a state for a given year. In the bottom
panel, I use the maximum snow depth in the year (averaged across all weather stations in the state). These variables
instrument for VMT of light trucks and cars. I use state by year chronic liver and cirrhosis death rate as the outcome
variable. Each model contains roadtype indicators, the legal speed limit, the proportion of the population that is
male and 65 and over, the proportion that is female and 65 and over, the proportion that is male and 19–25 years
old, and the proportion that is female and 19–25 years old. Consistent standard errors allowing for error clustering
within states are reported in parentheses.
cSignificant at the 10% level, two-sided test.
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a statistically significant relationship (at the ten-percent level) between VMT and death
from cirrhosis and chronic liver disease. The results in these tables again suggest that the
instrument is exogenous for most of the specifications.

Finally, my IV research design rests on the assumption that variation in light truck versus
car driving due to snow depth persists throughout the year, including in the summer months.
That is, the VMT measures are for the entire year, whereas the outcome crash and aggregate
fatality measures are for the summer months. This could lead to biased results if, for example,
people own both a light truck and a car, and shift to driving the former in the winter and the
latter in the summer. My IV estimation would pick up annual variation in light truck driving
due to snow depth, but this variation would not persist in the summer months, which is
when I measure the crash outcome variable. If the variation in light truck versus car driving
does not exist in the summer months, my exclusion restriction of using summer crashes
would not be valid. As a check, I re-estimated the IV equations using only those crashes
that occurred in conditions of clear roads and clear skies throughout the entire year (i.e.,
when snow would not directly contribute to crashes). Though not reported in this paper, the
results are virtually identical to the estimates using the summer months’ restriction.

4. Conclusion

The current regulatory framework for motor vehicles was developed in the 1970s and
the early 1980s. The Clean Air Act Amendments of 1970 established tailpipe emission
standards, the Energy Policy and Conservation Act of 1975 established fuel economy stan-
dards for the manufacturers of new vehicles, and the 1980 gas-guzzler tax created a tax
on consumers who buy vehicles with poor gas mileage. At the time these regulations were
established, there were only 20 million light trucks on the road, and most of them were
commercial vehicles. In an attempt to protect industry, the regulations placed on light trucks
were considerably more lax than those placed on cars. But in 1984, Chrysler introduced
the mini-van, and since it was partly based on a pickup design, it was able to convince
regulators to categorize it as a light truck. Since then, the number of light trucks driven for
non-commercial purposes has increased dramatically. Today, light trucks make up nearly
half of all family vehicles sold, and there are an estimated 63 million light trucks on the
road (see U.S. Dept. of Transportation, 1997).

The regulatory differences create an implicit relative subsidy for light trucks. This subsidy
is inefficient, given that light trucks cause more externalities than cars. Opponents of doing
away with the subsidy argue that light trucks result in fewer fatalities since moving people
from light trucks to cars will increase the risk to the drivers by more than it will decrease
the risk to other drivers. However, this claim assumes that light trucks and cars crash with
equal frequency. In this paper I first confirm that a regulatory-induced shift away from light
trucks would lead to more fatalities, given constant crash frequencies. I then use cross-
sectional variation in snow depth as an exogenous instrument for VMT of light trucks and
cars in order to estimate the relative crash frequencies. The IV results suggest that light
trucks crash between 2.63 to 4.00 times more than do cars. While in the event of a crash,
light trucks present a safety advantage to their drivers that dominates the extra risk they
pose to the opposing drivers, once one adjusts for the greater frequency of crashes by light
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trucks, the aggregate risk they pose substantially dominates the risk from cars. Indeed,
a world of light trucks would lead to three to ten times more fatalities than a world of
cars. Thus, eliminating the regulatory subsidy of light trucks would improve efficiency by
reducing the relative external risk, and it would also reduce the total number of motor vehicle
fatalities.
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Notes

1. For the specific regulations, see Title 40 of the Code of Federal Regulations, Subchapter C, Part 86. For
a summary of the regulations, see AAMA (1996). The federal government does not directly regulate the
non-stationary emissions of carbon dioxide, a greenhouse gas that contributes to climate change.

2. CAFE standards, which are standards for harmonic-weighted fleet averages for miles per gallon, were estab-
lished by the Energy Policy and Conservation Act of 1975 (see Public Law 94–163). The CAFE standards
are codified in Title 49 of the U.S. Code, section 32902. The gas-guzzler tax was created by Congress in 1980
and is codified in Title 26 of the U.S. Code, section 4064.

3. The regulatory discrepancy for nitrogen oxide is scheduled to be phased out by 2007, but the other discrepancies
will remain.

4. Gabler and Hollowell (1998) present evidence that light trucks inflict greater damages in crashes than do cars.
5. The fatality must occur within 30 days of the crash in order to be included in the data set. FARS was started

in 1975 by the Department of Transportation’s National Highway Traffic Safety Administration (NHTSA).
6. For this paper, “pickups” include all light conventional trucks that have a gross vehicle weight range (GVWR)

below 10,000 lbs.
7. Levitt and Porter (2001) discuss the sample selection inherent in FARS in their analysis of seat belt and air

bag effectiveness.
8. I include cyclists among pedestrians, but the results are robust if cyclists are excluded.
9. See Evans (1985) for a discussion of these assumptions pertaining to passenger car sizes.

10. This assumption could be violated if certain types of vehicles present conflicting visibility conditions. For
example, the greater height of sport-utility vehicles with respect to the height of cars could lead to a dispro-
portionate number of crashes between these two types of vehicles.

11. There is limited credible evidence of whether or not this assumption is valid. Some studies have examined
whether increasing vehicle mass (focusing on cars only) leads to more pedestrian fatalities. Evans (1984)
found mixed results of the relationship. A more recent study by NHTSA (1997) using aggregate data found a
slightly positive relationship between vehicle mass (of cars) and pedestrian fatalities. However, the dependent
variable in this analysis was fatality rates by make, model, and model year. Although the study included
a number of controls, it most likely suffers from selection bias since the choice of vehicle model is likely
correlated to unobservable characteristics of the drivers. For example, heavier cars may be more likely to be
driven by less aggressive middle-aged or older drivers, thus biasing the results.

12. Note that this identifying assumption is not violated if the type of vehicle changes driving behavior, a phe-
nomenon first discussed by Lave and Weber (1970) and further advanced by Peltzman (1975).



THE FATALITY RISKS OF LIGHT TRUCKS RELATIVE TO CARS 133

13. Urban refers to geographic areas with populations over 5,000 people, and rural refers to all other areas. In an
unreported part of my analysis, I obtained virtually identical results using four different road-type categories:
rural interstate, rural non-interstate, urban interstate, and urban non-interstate.

14. Although not presented in this paper, I obtained similar results for the OLS and later IV estimation by pooling
the data and estimating a single equation that contains an interaction variable that multiplies VMT by a dummy
variable that indicates if the observation pertains to light trucks or cars.

15. Bound, Jaeger, and Baker (1995) show that with weak instruments, even a weak correlation between the
instruments and the error in the original equation can lead to a large inconsistency in the IV results, even when
the sample is very large (as in Angrist and Krueger, 1991).

16. I use only one instrument in my analysis, so one could equivalently use a t-test; however, for comparability
with other studies I compute the F-test.

References

Altonji, Joseph G., Todd E. Elder, and Christopher R. Taber. (2001a). “An Evaluation of Instrumental Variable
Strategies for Estimating the Effects of Catholic Schools,” NBER Working Paper Series, Working Paper 9358.

Altonji, Joseph G., Todd E. Elder, and Christopher R. Taber. (2001b). “Selection on Observed and Unobserved
Variables: Assessing the Effectiveness of Catholic Schools,” NBER Working Paper Series, Working Paper 7831.

American Automobile Manufacturers Association (AAMA). (1996). Motor Vehicle Facts and Figures.
Angrist, Joshua D. and Alan B. Krueger. (1991). “Does Compulsory School Attendance Affect Schooling and

Earnings?” Quarterly Journal of Economics 106, 979–1014.
Automotive News Market Data Book. (1991–1999). Detroit: Crain Communications, Inc.
Bound, John, David A. Jaeger, and Regina M. Baker. (1995). “Problems with Instrumental Variables Estimation

When the Correlation Between the Instruments and the Endogenous Explanatory Variable is Weak,” Journal of
the American Statistical Association 90(430), 443–450.

Crandall, Robert W. and John D. Graham. (1989). “The Effect of Fuel Economy Standards on Automobile Safety,”
Journal of Law and Economics 32(1), 97–118.

Easterbrook, Gregg. (2002). “Axle of Evil: America’s Twisted Love Affair with Sociopathic Cars,” The New
Republic, January 20, 2003.

Evans, Leonard. (1984). “Driver Fatalities versus Car Mass Using a New Exposure Approach,” Accident Analysis
and Prevention 16, 19–36.

Evans, Leonard. (1985). “Car Size and Safety: Results from Analyzing U.S. Accident Data,” The International
Technical Conference on Experimental Safety Vehicles, 548–560.

Gabler, Hampton C. and William T. Hollowell. (1998). “NHTSA’s Vehicle Aggressivity and Compatibility Re-
search Program,” U.S. National Highway Traffic Safety Administration, Paper No. 98-S3-O-01.

Lave, Lester B. and Warren E. Weber. (1970). “A Benefit-Cost Analysis of Auto Safety Features,” Applied Eco-
nomics 2(4), 265–275.

Levitt, Steven D. and Jack Porter. (2001). “Sample Selection in the Estimation of Air Bags and Seat Belt Effec-
tiveness,” Review of Economics and Statistics 83(4), 603–615.

National Highway Traffic Safety Administration (NHTSA). (1997). “Relationship of Vehicle Weight to Fatality
and Injury Risk in Model Year 1985–93 Passenger Cars and Light Trucks,” Summary Report Number DOT HS
808 569.

Peltzman, Sam. (1975). “The Effects of Automobile Safety Regulation,” Journal of Political Economy 83, 677–725.
Ruhm, Christopher J. (2000). “Are Recessions Good for Your Health?” Quarterly Journal of Economics 115(2),

617–650.
Staiger, Douglas and James H. Stock. (1997). “Instrumental Variables Regression with Weak Instruments,” Econo-

metrica 65(3), 557–586.
U.S. Department of Transportation. (1997). “Federal Highway Cost Allocation Study.”






