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  Geolytics (2001; 2002a) provided the 1990 and 2000 census data.1
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APPENDIX C

POPULATION FORECASTING FOR
BENEFITS ANALYSIS

This appendix summarizes the steps used to estimate 2020 and 2030 population.  In
addition, we include a table with age-specific population estimates by state for the years 2000,
2020, and 2030.

Population Grid Cells

BenMAP calculates health impacts at the level of U.S. counties as well as for a variety of
grid structures used in air quality modeling (e.g.,, REMSAD, and CAMx).  In this description,
we use the term “population grid-cells” to refer to counties or the cells within an air quality
modeling grid.  The foundation for calculating the population level in the population grid-cells is
the 2000 Census block data.   A separate application developed by Abt Associates, called1

“PopGrid,” combines the Census block data with any user-specified set of population grid-cells,
so long as they are defined by a GIS shape file.

If the center of a Census block falls within a population grid-cell, PopGrid assigns the
block population to this particular population grid-cell.  Note that the grid-cells in air quality
model, such as REMSAD and CAMx, may cross multiple county boundaries.  To account for
this, PopGrid keeps track of the total number of people by county within a particular populatin
grid-cell.  Keeping track of the total number of people in a county is useful in the estimation of
adverse health effects, where the calculation of premature mortality depends on county-level
mortality rates.  It is also useful in the presentation of health benefits, when users may want
estimates at the state- and county-level, as opposed to estimates by, say, the area covered by an
air quality model.

Within any given population grid-cell, BenMAP has 256 demographic variables,
including 180 unique racial-gender-age groups: 19 age groups by gender by 5 racial groups
(19*2*5=180).  In addition there is an Hispanic ethnicity variable, which includes a number of
different racial groups, as well as a number of variables that aggregate the population by race
and gender.  Exhibit C-1 presents the 256 population variables available in BenMAP.  As
discussed below, these variables are available for use in developing age estimates in whatever
grouping desired by the user.
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Exhibit C-1.  Demographic Groups and Variables Available in BenMAP

Racial/Ethnic Group Gender Age # Variables

White, African American, Asian, Female, 0-1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 228
American Indian, Other, Male 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74,  75-79,
Hispanic 80-84, 85+

All – 0-1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 19
40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74,  75-79,
80-84, 85+

All Female, – 2
Male

White, African American, Asian, – – 6
American Indian, Other,
Hispanic

All – – 1

Census Data 2000

In addition to forecasting post-2000 population levels based on the 2000 Census,
BenMAP also allows the user to estimate the impacts for 1991-1999 by interpolating between
the results of the 1990 and 2000 Census.  As a result, we have developed a consistent set of
demographic variables, based on the 1990 Census, which provides somewhat less detail than the
2000 Census.

The 2000 Census allows respondents to choose more than one racial category, unlike the
1990 Census, which allowed only one choice.  As a result there are seven racial categories in the
2000 Census versus five in the 1990 Census (Exhibit C-2).  To make the 2000 Census data
consistent with the 1990 Census, we reduced the seven racial groups to the five used in the 1990
Census.

The initial data set at the block level includes 368 demographic groups: seven racial
groups and Hispanic ethnicity, by 23 pre-defined age groups by gender (Exhibit C-2).  Because
the 2000 Census includes somewhat different age groupings than that for the final set generated
for the 1990 Census.  Age variables 15-17 and 18-19 are combined, 20, 21, and 22-24 are
combined, 60-61 and 62-24 are combined, and 65-66 and 67-69 are combined at the block level. 
One variable, under 5 years, must be split into two variables (Under 1 and 1-4 years).  Assuming
that the population is uniformly distributed within age groups, we apply a factor of 1/5 to create
the 0-1 age group and 4/5 to create the 1-4 age group.
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Exhibit C-2.  Race, Ethnicity and Age Variables in 2000 Census Block Data

Race / Ethnicity Gender Age

Initial White Alone, Black Alone, Native Male, 0-5, 5-10, 10-14, 15-17, 18-19, 20,
Variables American Alone, Asian Alone, Pacific Female 21, 22-24, 25-29, 30-34, 35-39, 40-

Islander / Hawaiian Alone, Other Alone, 44, 45-49, 50-54, 55-59, 60-61, 62-
Two or More Alone, Hispanic (Non- 64, 65-66, 67-69, 70-74, 75-79, 80-
Exclusive) 84 85+

Final White, African American, Asian & Pacific Female, 0-1, 1-4, 5-9, 10-14, 15-19, 20-24,
Variables Islander, American Indian, Other, Male 25-29, 30-34, 35-39, 40-44, 45-49,
(identical to Hispanic 50-54, 55-59, 60-64, 65-69, 70-74, 
1990 75-79, 80-84, 85+
variables)

Source: Geolytics (2002a).  Note: Some population values were errors in the original Census data (e.g., values of a
billion or more). Following personal communication with Geolytics, these were set to zero. 

Matching Racial Categories in the 1990 and 2000 Censuses

Unlike the 1990 Census, respondents in the 2000 Census respondents could check more
than one box for race, so the reported results included a grouping of individuals that had checked
two or more racial categories.  In addition, the 2000 Census separately reported the categories
“Pacific Islander / Hawaiian Along” and “Asian Alone.”  To make the racial groupings
comparable with the 1990 Census, we first combined Pacific Islander / Hawaiian Alone with the
Asian Alone category to form the category Asian and Pacific Islander category.  Then we
divided the category Two-or-More between the remaining five racial categories.

Exhibit C-3 presents the estimated percentage of the national population by five racial
groups: (1) American Indian or Alaska Native, (2) Asian or Pacific Islander, (3) Black, (4)
White, and (5) Other, as well as for four combinations:  (1) American Indian or Alaska Native
(AIAN)/White, (2) Asian or Pacific Islander (API)/White, (3) Black/White, and (4) Other
combinations.  Slightly over 98 percent of individuals chose a single racial category, with 1.45
percent choosing three AIAN/White, API/White, and Black/White, and 0.30 choosing other
combinations (e.g., Black/Asian).  Exhibit C-3 also presents the estimated primary racial
affiliation of individuals in these subcategories if they were to choose a single racial affiliation.



May 12, 2003

C-4

Exhibit C-3.  Distribution of Racial Groups

Racial Category U.S.
% of Total

Population  a

% of Population in Sub-Groups by Primary Racial Affiliation b

AIAN API Black White Other All

American Indian or Alaska 0.85 100 – – – – 100
Native (AIAN)

Asian or Pacific Islander (API) 3.35 – 100 – – – 100

Black 12.07 – – 100 – – 100

White 79.72 – – – 100 – 100

Other race 2.25 – – – – 100 100

AIAN/White 0.89 12.4 – – 80.9 6.7 100

API/White 0.30 – 34.6 – 46.9 18.4 100

Black/White 0.26 – – 48.2 25.2 26.6 100

Other combinations 0.30 – – – – 100.0 100c

Two-or-More Sub-Total 1.75 6.3 5.9 7.2 52.9 27.7 100d

 All percentages weighted to be nationally representative.  Percentages taken from Parker and Makuc (2001, Table 2),a

who cited the National Health Interview Survey 1993-1995, APPENDIX: Percent Distribution (Standard Error) of
Primary Racial Identification for Selected Detailed Race Groups.

 Primary racial affiliation based on survey results from Parker and Makuc (2001, Appendix).b

 Parker and Makuc (2001) did not provide an estimate of the primary racial affiliation for “Other combinations, so wec

assume that it belongs to the “Other” category.  Note that they did provide the primary racial affiliation for a fourth
group “Black/AIAN:” 85.4% Black, 7.0% AIAN, and 7.6% Other.  However, we do not have an estimate of the relative
abundance of Black/AIAN in the general population, so we have dropped it from further consideration.

 As described in the text below, we calculated the percentages in this row from the percentages in the previous fourd

rows for AIAN/White, API/White, Black/White, and Other combinations.

To estimate how to assign a single racial group for individuals that chose two or more
racial groups, we used the results of Exhibit C-3 for the three main categories for which we an
estimate of the primary racial affiliation: AIAN/White, API/White, and Black/White.  To
account for the 0.30 percent of the population in other combinations, we  For each Census block,
we assume that .89 / (.89+.30+.26+.30) = 50.8% of respondents in the Two or More category
will fall into the AIAN / White category, and of these, 80.9% would primarily identify
themselves as White if they were to choose a single racial category, 12.4% would primarily
identify themselves as American Indian or Alaska Native, and 6.7% would primarily identify
themselves as Other.  Thus 0.508 * .809 = 41% of Two or More we will call White, 10% we
identify as Native American, and 5% as Other.  

We did not attempt to predict what respondents in the ‘Other Combinations’ category
would have selected if they were to choose a single racial category, so we assume they are part
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of the “Other” category.  To estimate the number of individuals in each of the five races, we
performed the following calculations:
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This then reduces to:

Estimating Population Levels in Alternative Age Groups

In calculating the population in age groups that may include a portion of one of the pre-
specified demographic groups in Exhibit C-1, BenMAP assumes the population is uniformly
distributed in the age group.  For example, to calculate the number of children ages 3 through 12,
BenMAP calculates:

Estimating Population Levels in Non-Census Years

To forecast population levels beyond 2000, BenMAP scales the 2000 Census-based
estimate with the ratio of the county-level forecast for the future year of interest over the 2000
county-level population level.  Woods & Poole (2001) provides the county-level population
forecasts used to calculate the scaling ratios.

In the simplest case, where one is forecasting a single population variable, say, children
ages 4 to 9 in the year 2010, CAMPS calculates:

where the g  population grid-cell is wholly located within a given county.th
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In the case, where the g  grid-cell includes “n” counties in its boundary, the situation isth

somewhat more complicated.  BenMAP first estimates the fraction of individuals in a given age
group (e.g., ages 4 to 9) that reside in the part of each county within the g  grid-cell.  BenMAPth

calculates this fraction by simply dividing the population all ages of a given county within the gth

grid-cell by the total population in the g  grid-cell:th

Multiplying this fraction with the number of individuals ages 4 to 9 in the year 2000 gives an
estimate of the number of individuals ages 4 to 9 that reside in the fraction of the county within
the g  grid-cell in the year 2000:th

To then forecast the population in 2010, we scale the 2000 estimate with the ratio of the county
projection for 2010 to the county projection for 2000:

Combining all these steps for “c” counties within the g  grid-cell, we forecast the population ofth

persons ages 4 to 9 in the year 2010 as follows:

In the case where there are multiple age groups and multiple counties, BenMAP first
calculates the forecasted population level for individual age groups, and then combines the
forecasted age groups.  In calculating the number of children ages 4 to 12, BenMAP calculates:
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Since the Woods and Poole (2001) projections only extend through 2025, we used the
existing projections and constant growth factors to provide additional projections.  To estimate
population levels beyond 2025, BenMAP linearly extrapolates from the final two years of data. 
For example, to forecast population in 2030, BenMAP calculates:

Exhibit C-4 summarizes the forecasted age-stratified, state-level populations for 2020
and 2030.  In addition, to provide a point of comparison, it includes population levels for year
2000.
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Exhibit C-4.  State-Level Population Estimates by Age Group

2000 2020 2030
State 0-18 18-64 65+ 0-18 18-64 65+ 0-18 18-64 65+
AL 1,126,337 2,740,965 579,798 1,212,702 3,057,540 909,065 1,284,828 3,069,518 1,195,921

AZ 1,371,099 3,091,693 667,839 1,832,737 4,351,254 1,309,943 2,117,749 4,708,843 1,812,966

AR 681,003 1,618,378 374,019 769,208 1,821,876 557,233 832,285 1,861,954 698,259

CA 9,254,212 21,021,768 3,595,658 10,105,474 25,308,061 5,717,329 10,895,067 26,084,324 7,681,464

CO 1,101,772 2,783,415 416,073 1,321,930 3,359,731 954,691 1,498,688 3,453,808 1,370,557

CT 839,051 2,096,330 470,183 821,773 2,110,504 588,222 845,210 1,991,695 728,973

DE 195,997 485,877 101,726 213,375 571,224 149,015 227,024 574,497 204,731

DC 120,659 381,502 69,898 95,389 337,146 103,401 93,833 305,565 123,728

FL 3,643,004 9,531,774 2,807,597 4,466,384 12,098,406 4,472,647 5,026,785 12,483,019 5,933,620

GA 2,176,259 5,224,918 785,275 2,600,100 6,296,967 1,328,722 2,851,139 6,620,751 1,778,194

ID 369,522 778,515 145,916 451,473 980,346 282,616 507,776 1,045,592 374,826

IL 3,247,904 7,671,362 1,500,025 3,286,653 8,148,579 2,069,429 3,425,612 7,962,757 2,669,430

IN 1,581,993 3,745,661 752,831 1,691,800 4,113,510 1,087,932 1,800,717 4,096,828 1,421,006

IA 737,415 1,752,696 436,213 734,433 1,820,333 593,034 766,374 1,750,358 755,945

KS 714,371 1,617,818 356,229 760,573 1,795,227 499,065 814,382 1,778,859 653,139

KY 998,042 2,538,933 504,793 1,077,101 2,762,379 801,696 1,154,120 2,750,564 1,052,988

LA 1,221,651 2,730,396 516,929 1,247,161 2,952,038 850,018 1,318,748 2,917,899 1,116,293

ME 299,691 791,830 183,402 284,880 852,466 289,399 297,507 807,626 394,873

MD 1,350,517 3,346,661 599,307 1,453,726 3,868,715 926,465 1,559,338 3,877,266 1,256,566

MA 1,508,818 3,980,116 860,162 1,533,618 4,071,543 1,144,857 1,604,543 3,871,104 1,469,089

MI 2,596,118 6,123,307 1,219,018 2,587,563 6,590,540 1,798,905 2,703,858 6,417,627 2,366,125

MN 1,285,100 3,040,113 594,266 1,413,120 3,525,458 948,035 1,547,597 3,524,435 1,298,319

MS 779,939 1,721,196 343,523 826,142 1,912,067 513,412 867,469 1,926,497 667,632

MO 1,428,853 3,410,978 755,379 1,526,846 3,830,433 1,062,471 1,631,969 3,798,554 1,404,065
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2000 2020 2030
State 0-18 18-64 65+ 0-18 18-64 65+ 0-18 18-64 65+
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MT 228,916 552,330 120,949 234,129 612,736 241,971 258,376 604,179 322,696

NE 450,372 1,028,696 232,195 483,340 1,148,129 329,112 522,703 1,142,368 426,556

NV 510,633 1,268,694 218,929 757,488 1,921,749 477,249 904,840 2,150,250 654,589

NH 309,490 778,326 147,970 321,958 906,776 236,489 346,320 897,774 329,510

NJ 2,074,020 5,227,192 1,113,136 2,126,538 5,560,594 1,507,553 2,222,228 5,402,892 1,949,786

NM 506,558 1,100,262 212,225 583,389 1,372,898 412,394 644,935 1,420,580 572,907

NY 4,696,232 11,831,869 2,448,352 4,487,417 11,815,310 3,179,326 4,540,245 11,246,710 3,953,934

NC 1,977,387 5,102,877 969,048 2,399,345 6,081,807 1,588,246 2,646,039 6,337,401 2,079,430

ND 162,017 385,705 94,478 152,979 407,052 152,185 160,056 387,072 203,240

OH 2,889,207 6,956,175 1,507,757 2,894,902 7,316,549 2,031,922 3,021,197 7,084,923 2,597,112

OK 894,531 2,100,173 455,950 968,204 2,255,616 685,395 1,037,634 2,249,445 865,166

OR 846,233 2,136,988 438,177 1,028,841 2,593,792 824,166 1,161,142 2,731,400 1,065,084

PA 2,930,189 7,431,699 1,919,165 2,807,320 7,589,422 2,473,482 2,879,828 7,112,827 3,152,928

RI 252,438 643,479 152,402 248,650 664,840 185,270 253,697 626,436 236,588

SC 1,017,627 2,509,052 485,333 1,125,147 2,936,359 879,310 1,217,702 2,989,589 1,188,398

SD 202,496 444,217 108,131 209,379 498,258 159,468 222,092 487,168 215,460

TN 1,402,958 3,583,013 703,311 1,614,405 4,118,556 1,147,546 1,759,007 4,213,846 1,513,183

TX 5,891,741 12,887,542 2,072,532 7,108,830 15,994,222 3,802,007 7,929,363 16,840,990 5,236,651

UT 724,466 1,318,481 190,222 989,440 1,826,327 368,454 1,120,100 2,046,412 497,421

VT 147,949 383,368 77,510 137,590 414,505 138,315 144,053 397,442 190,941

VA 1,743,459 4,542,721 792,333 1,955,331 5,201,333 1,308,689 2,132,729 5,295,036 1,734,954

WA 1,511,831 3,720,140 662,148 1,785,937 4,644,371 1,174,213 2,006,978 4,857,761 1,581,410

WV 404,484 1,126,965 276,895 388,379 1,094,529 403,851 404,280 1,038,496 488,364

WI 1,369,215 3,291,907 702,553 1,413,693 3,680,062 1,070,942 1,511,982 3,612,218 1,450,806

WY 128,585 307,504 57,693 124,005 314,574 117,862 132,595 301,356 154,460
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Woods & Poole Data

Woods & Poole (2001) developed county-level forecasts for each year from 2000
through 2025, for three racial groups “Black,” “White,” and “Other,” and by age and by gender. 
For the Hispanic ethnic group, Woods and Poole developed forecasts just for the total
population, and not by age and gender.  As discussed in the section on population forecasts,
BenMAP uses these forecasts to simply scale the 2000 Census block data, in order to estimate
the population in the population grid-cells for any given year after 2000.

Aligning Woods & Poole FIPS Codes with BenMAP FIPS Codes

The county geographic boundaries used by Woods & Poole are somewhat more
aggregated than the county definitions used in the 2000 Census (and BenMAP), and the FIPS
codes used by Woods and Poole are not always the standard codes used in the Census.  To make
the Woods and Poole data consistent with the county definitions in BenMAP, we disaggregated
the Woods and Poole data and changed some of the FIPS codes.  Exhibit C-5 lists the
discrepancies in the county definitions between Woods & Poole and those used in BenMAP.

To assign the population in the more aggregated Woods & Poole county definitions to the
more disaggregated definitions used in BenMAP (and the U.S. Census), we used the total county
population from the 2000 U.S. Census.  We then assumed that the age and racial groups were
distributed uniformly across the BenMAP counties contained within a Woods & Poole county
definition.  For example, in estimating the population of children ages 4-9 in county “c”
contained within a more broadly defined Woods & Poole county, we would do the following:

After this factor was applied, we rounded the estimates to the nearest integer so as to
avoid having data with “partial people.”
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Exhibit C-5.  Linkage Between Woods & Poole County Definitions and BenMAP County
Definitions

Woods and Poole Counties (FIPS) Counties in BenMAP (FIPS)

Northwest Arctic Borough, AK Kobuk, AK (02140)
(02188)

Remainder of Alaska, AK (02999) Aleutian Islands, AK (02010), Aleutian Islands East Borough, AK (02013),
Aleutian Islands West Census Area, AK (02016), Bethel Census Area, AK
(02050), Denali Borough, AK (02068), Dillingham Census Area, AK (02070),
Haines Borough, AK (02100), Kenai Peninsula Borough, AK (02122), Lake
and Peninsula Borough, AK (02164), North Slope Borough, AK (02185),
Prince of Wales-Outer Ketchikan, AK (02201), Sitka Borough, AK (02220),
Skagway-Yukatat-Angoon, AK (02231), Skagway-Hoonah-Angoon Census
Area, AK (02232), Southeast Fairbanks Census Area, AK (02240), Valdez-
Cordova Census Area, AK (02261), Wrangell-Petersburg Census Area, AK
(02280), Yakutat Borough, AK (02282), Yukon-Koyukuk, AK (02290)

Yuma + La Paz, AZ (04027) La Paz, AZ (04012), Yuma, AZ (04027)

Miami-Dade, FL (12086) Dade, FL (12025)

Maui + Kalawao, HI (15901) Kalawao, HI (15005), Maui, HI (15009)

Fremont, ID (16043) Fremont, ID (16043), Yellowstone Park, ID

Park, MT (30067) Park, MT (30067), Yellowstone Park, MT (30113)

Valencia + Cibola, NM (35061) Cibola, NM (35006), Valencia, NM (35061)

Halifax, VA (51083) Halifax, VA (51083), South Boston City, VA (51780)

Albemarle + Charlottesville, VA Albemarle, VA (51003), Charlottesville City, VA (51540)
(51901)

Alleghany + Clifton Forge + Alleghany, VA (51005), Clifton Forge City, VA (51560), Covington City, VA
Covington, VA (51903) (51580)

Augusta + Staunton + Waynesboro, Augusta, VA (51015), Staunton City, VA (51790), Waynesboro City, VA
VA (51907) (51820)

Bedford + Bedford City, VA (51909) Bedford, VA (51019), Bedford City, VA (51515)

Campbell + Lynchburg, VA (51911) Campbell, VA (51031), Lynchburg City, VA (51680)

Carroll + Galax, VA (51913) Carroll, VA (51035), Galax City, VA (51640)

Dinwiddie + Colonial Heights + Dinwiddie, VA (51053), Colonial Heights City, VA (51570), Petersburg City,
Petersburg, VA (51918) VA (51730)

Fairfax + Fairfax City + Falls Church Fairfax, VA (51059), Fairfax City, VA (51600), Falls Church City, VA
City, VA (51919) (51610)

Frederick + Winchester, VA (51921) Frederick, VA (51069), Winchester City, VA (51840)

Greensville + Emporia, VA (51923) Greensville, VA (51081), Emporia City, VA (51595)

Henry + Martinsville, VA (51929) Henry, VA (51089), Martinsville City, VA (51690)

James City + Williamsburg, VA James City County, VA (51095), Williamsburg City, VA (51830)
(51931)
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Montgomery + Radford, VA (51933) Montgomery, VA (51121), Radford City, VA (51750)

Pittsylvania + Danville, VA (51939) Pittsylvania, VA (51143), Danville City, VA (51590)

Prince George + Hopewell, VA Prince George, VA (51149), Hopewell City, VA (51670)
(51941)

Prince William + Manassas + Manassas Prince William, VA (51153), Manassas City, VA (51683), Manassas Park
Park, VA (51942) City, VA (51685)

Roanoke + Salem, VA (51944) Roanoke, VA (51161), Salem City, VA (51775)

Rockbridge + Buena Vista + Rockbridge, VA (51163), Buena Vista City, VA (51530), Lexington City, VA
Lexington, VA (51945) (51678)

Rockingham + Harrisonburg, VA Rockingham, VA (51165), Harrisonburg City, VA (51660)
(51947)

Southampton + Franklin, VA (51949) Southampton, VA (51175), Franklin City, VA (51620)

Spotsylvania + Fredericksburg, VA Spotsylvania, VA (51177), Fredericksburg City, VA (51630)
(51951)

Washington + Bristol, VA (51953) Washington, VA (51191), Bristol City, VA (51520)

Wise + Norton, VA (51955) Wise, VA (51195), Norton City, VA (51720)

York + Poquoson, VA (51958) York, VA (51199), Poquoson City, VA (51735)

Shawano (includes Menominee), WI Menominee, WI (55078), Shawano, WI (55115)
(55901)

Age, Gender, Race, and Ethnicity

We generated the same 38 age and gender categories developed from the 1990 and 2000
Census data.  Since these projections are available for every year of age, it is a simple matter to
sum the individual years to get the same age categories used by BenMAP.

However, the only racial categories available are “White,” “Black,” and “Other.”  Since
we do not have an Asian or Native American group, or an Other group which is consistent with
the definition used by the 1990 and 2000 Census data, we assume that projection data’s Other
category is representative of all 3 groups, and that they move together over time.

The county projections only forecast the Hispanic population of all ages, and does not
have separate gender and age forecasts.  Lacking further information, we use the ratio of future-
year all age population to the year 2000 all age population when forecasting any particular age
group of Hispanics.  In effect, we assume for all forecast years the same distribution of age and
gender as found in the 2000 Census.
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Creating Growth Ratios from Absolute Population Values

For each year from 2000 through 2025 and for each of the 256 demographic groups listed
in Exhibit C-1, BenMAP stores the ratio of the future-year to year 2000 county-level population
projections.  As described below, these ratios are used to forecast population levels in the
population grid-cells used by BenMAP to health effects.

Note that there are a small number of cases were the 2000 county population for a
specific demographic group is zero, so the ratio of any future year to the year 2000 data is
undefined.   In these relatively rare cases, we set the year 2000 ratio and all subsequent ratios to
1, assuming no growth.

There are an even smaller number of cases where a total population variable dwindles
from some non-zero number to zero, creating ratios of zero.  Variables which represent a
subpopulation of the first variable may not be zero, however.  In these cases, we set all subset
population variables for that year to zero.  

For instance, if a county only had one person in it for the year 2000 - a 79 year old black
male - we set all variables (excluding total variables and BlackMale75to79) to a ratio of 1,
because their 2000 values of 0 produce undefined ratios.  If the man dies at age 82, the total
black population variable for years 2003 and beyond is calculated as 0/1 = 0.  Thus for each of
those years where the total black population is listed as zero, we go back and set all black
population variables to zero, to reflect the knowledge that the block is empty.  For all variables
except the BlackMale75to79 age group (already zero), 1 becomes 0.    
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APPENDIX D

PARTICULATE MATTER AND OZONE CONCENTRATION-RESPONSE
FUNCTIONS

In this Appendix, we present the concentration-response (C-R) functions used to estimate
adverse health effects related to PM and ozone.  First, we discuss the concentration response
functions for particulate matter, then we discuss then concentration response functions for ozone. 
Each sub-section has an Exhibit with a brief description of the C-R function and the underlying
parameters.  Following each Exhibit, we present a brief summary of each of the studies and any
items that are unique to the study. Also, note that each citation in the text includes a numbered
reference to a database that facilitates updating the citations.  

Particulate Matter Concentration Response Functions

Long-term Mortality

There are two types of exposure to PM that may result in premature mortality.  Short-
term exposure may result in excess mortality on the same day or within a few days of exposure. 
Long-term exposure over, say, a year or more, may result in mortality in excess of what it would
be if PM levels were generally lower, although the excess mortality that occurs will not
necessarily be associated with any particular episode of elevated air pollution levels.  In other
words, long-term exposure may capture a facet of the association between PM and mortality that
is not captured by short-term exposure.
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Exhibit D-1  Concentration-Response (C-R) Functions for Particulate Matter and Long-Term Mortality

Endpoint Name Pollutant Author Year Location Age Race Gender Beta Std Error NotesOther Averaging Functional
Pollutants Time Form

All Cause PM Krewski et al. 2000 63 cities 30+ All All None Annual Avg 0.004626 0.001205 Log-linear ACS reanalysis2.5

All Cause PM Krewski et al. 2000 50 cities 30+ All All None Annual Median 0.005348 0.001464 Log-linear ACS reanalysis2.5

All Cause PM Krewski et al. 2000 nationwide 30+ All All None Annual Median 0.010394 0.002902 Log-linear2.5
ACS reanalysis; RE
Ind Cities

All Cause PM Krewski et al. 2000 nationwide 30+ All All None Annual Median 0.006058 0.003383 Log-linear2.5
ACS reanalysis; RE
Reg Adj

All Cause PM Krewski et al. 2000 6 cities 25+ All All None Annual Avg 0.013272 0.004070 Log-linear Six Cities reanalysis2.5

All Cause PM Pope et al. 1995 50 cities 30+ All All None Annual Median 0.006408 0.001509 Log-linear2.5

All Cause PM Dockery et al. 1993 6 cities 25+ All All None Annual Avg 0.012425 0.004228 Log-linear2.5

All Cause PM Pope et al. 2002 61 cities 30+ All All None Annual Avg 0.004018 0.001642 Log-linear '79-'83 exposure2.5

Cardiopulmonary PM Pope et al. 2002 61 cities 30+ All All None Annual Avg 0.005733 0.002167 Log-linear '79-'83 exposure2.5

Lung Cancer PM Pope et al. 2002 61 cities 30+ All All None Annual Avg 0.007881 0.003463 Log-linear '79-'83 exposure2.5

Infant PM 1997 86 cities <1 All All None Annual Avg 0.003922 0.001221 Logistic10
Woodruff et
al.
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Mortality - Mean, All Cause [Krewski, 2000 #1805] - Reanalysis of Pope et al. [, 1995 #81]

The Krewski et al. [2000 #1805] reanalysis of Pope et al. [ 1995 #81] used a Cox
proportional hazard model to estimate the impact of long-term PM exposure.  The original
investigation followed 295,223 individuals  ages 30 and over in 50 cities from September 1,1

1982 to December 31, 1989, and related their survival to median PM  concentrations for 19792.5
to 1983.  Krewski et al. [2000 #1805] independently estimated city-specific annual mean values
from EPA’s Inhalable Particle Monitoring Network (IPMN) for the same years (1979-1983). 
Krewski et al. [2000 #1805] followed Pope et al. [ 1995 #81, Table 2] and reported results for
all-cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary deaths (ICD-9 codes: 401-440
and 460-519), and “all other” deaths,  and found that mean PM  is significantly related to all-2

2.5
cause and cardiopulmonary mortality.  Krewski et al. included only PM, so it is unclear to what
extent it may be including the impacts of ozone or other gaseous pollutants.

Pope et al. [ 1995 #81] is the better of the two published prospective cohort studies: it has
a larger population and includes more cities than the prospective cohort study by Dockery et al. [
1993 #20].  Pope et al.’s study has several further advantages.  The population followed in this
study was largely Caucasian and middle class, decreasing the likelihood that interlocational
differences in premature mortality were due in part to differences in race, socioeconomic status,
or related factors.  In addition, the PM coefficient in Pope et al. is likely to be biased downward,
counteracting a possible upward bias associated with historical air quality trends discussed
earlier.  One source of this downward bias is the generally healthier and study population, in
comparison to poorer minority populations.  Krewski et al. [2000 #1805, Part II - Table 52]
found that educational status was a strong effect modifier of the PM - mortality relationship in
both studies, with the strongest effect seen among the less educated.  In fact, much of the
differences in magnitude of effect between the studies was made up when assessing risk across
comparable levels of educational attainment.

Another source of downward bias is that intercity movement of cohort members was not
considered in the original study and therefore could not be evaluated in the reanalysis. 
Migration across study cities would result in exposures of cohort members being more similar
than would be indicated by assigning city-specific annual average pollution levels to each
member of the cohort.  The more intercity migration there is, the more exposure will tend toward
an intercity mean.  If this is ignored, differences in exposure levels, that are proxied by
differences in city-specific annual average PM levels, will be exaggerated, and will result in a
downward bias of the PM coefficient (because a given difference in mortality rates is being
associated with a larger difference in PM levels than is actually the case).  
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Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.12) and 95%
confidence interval (1.06-1.19) associated with a change in annual mean PM  exposure of 24.52.5
µg/m  (based on the range from the original ACS study) [Krewski, 2000 #1805, Part II - Table3

31].

Functional Form: Log-linear
Coefficient: 0.004626
Standard Error: 0.001205
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

Mortality - Median, All Cause [Krewski, 2000 #1805] - Reanalysis of Pope et al. [ 1995 #81]

Krewski et al. [ 2000 #1805] performed an analysis of Pope et al. [ 2000 #1805] using
independently estimated city-specific annual median values as well.  Fine particle estimates were
obtained from EPA’s Inhalable Particle Monitoring Network (IPMN) for the years 1979-1983
for the same 50 cities.  Overall, the estimates showed good agreement with the median values
used in the original investigation with one exception.  The median fine particle concentration for
Denver dropped from 16.1 to 7.8 µg/m , resulting in a larger range between the least and most3

polluted cities and a reduced relative risk.  Since the original estimate could not be audited,
Denver is included in the subsequent C-R function as there is no reason to believe that the
monitoring data is invalid.

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.14) and 95%
confidence interval (1.06-1.22) associated with a change in annual median PM  exposure of2.5
24.5 µg/m  (based on the range from the original ACS study) [Krewski, 2000 #1805, Part II -3

Table 31].

Functional Form: Log-linear
Coefficient: 0.005348
Standard Error: 0.001464
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

Mortality - Median, Random Effects with Regional Adjustment [Krewski, 2000 #1805] -
Reanalysis of Pope et al. [ 1995 #81]

Krewski et al. [ 2000 #1805] also performed an analysis of Pope et al. [ 2000 #1805]
using a random effects model to estimate a regionally-adjusted relative risk.  The authors used an
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indicator variable representing seven regions of the U.S.  The regionally-adjusted estimate was
comparable with the results from the standard Cox Proportional Hazards Model, which assumes
that all observations are statistically independent.   

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.16) and 95%
confidence interval (0.99-1.37) associated with a change in annual median PM  exposure of2.5
24.5 µg/m  (based on the range from the original ACS study) [Krewski, 2000 #1805, Part II -3

Table 46].

Functional Form: Log-linear
Coefficient: 0.006058
Standard Error: 0.003383
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

Mortality - Median, Random Effects with Independent Cities [Krewski, 2000 #1805] -
Reanalysis of Pope et al. [ 1995 #81]

Krewski et al. [ 2000 #1805] also performed an analysis of Pope et al. [ 2000 #1805]
using a random effects approach to estimate an independent cities model.  This approach
incorporates between-city variation into second-stage modeling weights, thereby avoiding the
assumption of independent observations.  However, potential regional patterns in mortality may
be overlooked, because the approach assumes that city-specific mortality rates are statistically
independent.  The independent cities estimate is considerably larger than the standard Cox
Proportional Hazards Model, which assumes that all observations are statistically independent.   

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.29) and 95%
confidence interval (1.12-1.48) associated with a change in annual median PM  exposure of2.5
24.5 µg/m  (based on the range from the original ACS study) [Krewski, 2000 #1805, Part II -3

Table 46].

Functional Form: Log-linear
Coefficient: 0.010394
Standard Error: 0.002902
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older
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Mortality  [Krewski, 2000 #1805] - Reanalysis of Dockery et al. [1993 #20]

Krewski et al. [2000 #1805] performed a validation and replication analysis of Dockery
et al. [ 1993 #20].  The originial investigators examined the relationship between PM exposure
and mortality in a cohort of 8,111 individuals aged 25 and older, living in six U.S. cities.  They
surveyed these individuals in 1974-1977 and followed their health status until 1991.  While they
used a smaller sample of individuals from fewer cities than the study by Pope et al., they used
improved exposure estimates, a slightly broader study population (adults aged 25 and older; a
higher proportion without a high school education), and a follow-up period nearly twice as long
as that of Pope et al. [1995 #81].  Krewski et al. [2000 #1805, Part II - Table 52] found that
educational status was a strong effect modifier of the PM - mortality relationship in both studies,
with the strongest effect seen among the less educated.  Perhaps because of these differences,
Dockery et al. study found a larger effect of PM on premature mortality than that found by Pope
et al.

After an audit of the air pollution data, demographic variables, and cohort selection
process, Krewski et al. [2000 #1805] noted that a small portion of study participants were
mistakenly censored early.  The following C-R function is based on the risk estimate from the
audited data, with the inclusion of those person-years mistakenly censored early. 

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.28) and 95%
confidence interval (1.10-1.48) associated with a change in annual mean PM  exposure of 18.62.5
µg/m  to 29.6 µg/m  [Krewski et al.,2000 #1805, Part I - Table 19c].    3 3

Functional Form: Log-linear
Coefficient: 0.013272
Standard Error: 0.004070
Incidence Rate: county-specific annual all cause mortality rate per person ages 25 and older
Population: population of ages 25 and older

Mortality, All Cause [Pope, 1995 #81]

Pope et al. [1995 #81] used a Cox proportional hazard model to estimate the impact of
long-term PM exposure.  They followed 295,223 individuals  ages 30 and over in 50 cities from3

September 1, 1982 to December 31, 1989, and related their survival to median PM2.5
concentrations for 1979 to 1983.  Pope et al. [ 1995 #81, Table 2] reported results for all-cause
deaths, lung cancer (ICD-9 code: 162), cardiopulmonary deaths (ICD-9 codes: 401-440 and 460-
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519), and “all other” deaths,  and found that median PM  is significantly related to all-cause and4
2.5

cardiopulmonary mortality.  Pope et al. included only PM, so it is unclear to what extent it may
be including the impacts of ozone or other gaseous pollutants.

Pope et al. [1995 #81] is the better of the two published prospective cohort studies: it has
a larger population and includes more cities than the prospective cohort study by Dockery et al.
[1993 #20].  Pope et al.’s study has several further advantages.  The population followed in this
study was largely Caucasian and middle class, decreasing the likelihood that interlocational
differences in premature mortality were due in part to differences in race, socioeconomic status,
or related factors.  In addition, the PM coefficient in Pope et al. is likely to be biased downward,
counteracting a possible upward bias associated with historical air quality trends discussed
earlier.  One source of this downward bias is the generally healthier study population, in
comparison to poorer minority populations.  Another source of downward bias is that intercity
movement of cohort members was not considered in this study.  Migration across study cities
would result in exposures of cohort members being more similar than would be indicated by
assigning city-specific annual average pollution levels to each member of the cohort.  The more
intercity migration there is, the more exposure will tend toward an intercity mean.  If this is
ignored, differences in exposure levels, that are proxied by differences in city-specific annual
average PM levels, will be exaggerated, and will result in a downward bias of the PM coefficient
(because a given difference in mortality rates is being associated with a larger difference in PM
levels than is actually the case).  

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.17) and 95%
confidence interval (1.09-1.26) associated with a change in annual median PM  exposure of2.5
24.5 µg/m  [Pope, 1995 #81, Table 2].3

Functional Form: Log-linear
Coefficient: 0.006408
Standard Error: 0.001509
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

Mortality, All Cause [Dockery, 1993 #20]

Dockery et al. [ 1993 #20] examined the relationship between PM exposure and mortality
in a cohort of 8,111 individuals aged 25 and older, living in six U.S. cities.  They surveyed these
individuals in 1974-1977 and followed their health status until 1991.  While they used a smaller
sample of individuals from fewer cities than the study by Pope et al., they used improved
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exposure estimates, a slightly broader study population (adults aged 25 and older), and a follow-
up period nearly twice as long as that of Pope et al. [ 1995 #81].  Perhaps because of these
differences, Dockery et al. study found a larger effect of PM on premature mortality than that
found by Pope et al.

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.26) and 95%
confidence interval associated (1.08-1.47) with a change in annual mean PM  exposure of 18.62.5
µg/m  [Dockery, 1993 #20, Tables 1 and 5].3

Functional Form: Log-linear
Coefficient: 0.012425
Standard Error: 0.004228
Incidence Rate: county-specific annual all cause mortality rate per person ages 25 and older
Population: population of ages 25 and older

Mortality, All Cause [Pope, 2002 #2240] - Based on ACS Cohort: Mean PM2.5

The Pope et al. [ 2002 #2240] analysis is a longitudinal cohort tracking study that uses
the same American Cancer Society (ACS) cohort as the original Pope et al. [ 1995 #81] study,
and  the Krewski et al. [2000 #1805] reanalysis.  Pope et al. [ 2002 #2240] analyzed survival data
for the cohort from 1982 through 1998, 9 years longer than the original Pope study.  Pope et al. [
2002 #2240] also obtained PM  data in 116 metropolitan areas collected in 1999, and the first2.5
three quarters of 2000.  This is more metropolitan areas with PM  data than was available in the2.5
Krewski reanalysis (61 areas), or the original Pope study (50 areas), providing a larger size
cohort.

They used a Cox proportional hazard model to estimate the impact of long-term PM
exposure using three alternative measures of PM  exposure; metropolitan area-wide annual2.5
mean PM levels from the beginning of tracking period (’79-’83 PM data, conducted for 61
metropolitan areas with 359,000 individuals), annual mean PM from the end of the tracking
period (’99-’00, for 116 areas with 500,000 individuals), and the average annual mean PM levels
of the two periods (for 51 metropolitan areas, with 319,000 individuals).  PM levels were lower
in ’99-00 than in ’79 - ’83 in most cities, with the largest improvements occurring in cities with
the highest original levels.

Pope et al.  [ 2002 #2240] followed Krewski et al. [2000 #1805] and Pope et al. [ 1995
#81, Table 2] and reported results for all-cause deaths, lung cancer (ICD-9 code: 162),
cardiopulmonary deaths (ICD-9 codes: 401-440 and 460-519), and “all other” deaths.   Like the5
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earlier studies, Pope et al. [ 2002 #2240] found that mean PM  is significantly related to all-2.5
cause and cardiopulmonary mortality.  In addition, Pope et al. [ 2002 #2240] found a significant
relationship with lung cancer mortality, which was not found in the earlier studies.  None of the
three studies found a significant relationship with “all other” deaths.

Pope et al. [ 2002 #2240] obtained ambient data on gaseous pollutants routinely
monitored by EPA during the 1982-1998 observation period, including SO , NO , CO, and2 2
ozone.  They did not find significant relationships between NO , CO, and ozone and premature2
mortality, but there were significant relationships between SO , and all-cause, cardiopulmonary,2
lung cancer and “all other” mortality.

’79-’83 Exposure

The coefficient and standard error for PM  using the ’79-’83 PM data are estimated from2.5
the relative risk (1.041) and 95% confidence interval (1.008-1.075) associated with a change in
annual mean exposure of 10.0 µg/m . Pope et al. [ 2002 #2240, Table 2].  3 6

Functional Form: Log-linear
Coefficient: 0.004018
Standard Error: 0.001642
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

Mortality, Cardiopulmonary [Pope, 2002 #2240] - Based on ACS Cohort: Mean PM2.5

Pope et al.  [ 2002 #2240] followed Krewski et al. [2000 #1805] and Pope et al. [ 1995
#81, Table 2] and reported results for all-cause deaths, lung cancer (ICD-9 code: 162),
cardiopulmonary deaths (ICD-9 codes: 401-440 and 460-519), and “all other” deaths.   Like the7

earlier studies, Pope et al. [ 2002 #2240] found that mean PM  is significantly related to all-2.5
cause and cardiopulmonary mortality.  In addition, Pope et al. [ 2002 #2240] found a significant
relationship with lung cancer mortality, which was not found in the earlier studies.  None of the
three studies found a significant relationship with “all other” deaths.

’79-’83 Exposure

The coefficient and standard error for PM  using the ’79-’83 PM data are estimated from2.5
the relative risk (1.059) and 95% confidence interval (1.015-1.105) associated with a change in
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annual mean exposure of 10.0 µg/m . Pope et al. [ 2002 #2240, Table 2].  3 8

Functional Form: Log-linear
Coefficient: 0.005733
Standard Error: 0.002167
Incidence Rate: county-specific annual cardiopulmonary mortality rate (ICD codes 401-440,
460-519) per person ages 30 and older
Population: population of ages 30 and older

Mortality, Lung Cancer [Pope, 2002 #2240] - Based on ACS Cohort: Mean PM2.5

Pope et al.  [ 2002 #2240] followed Krewski et al. [2000 #1805] and Pope et al. [ 1995
#81, Table 2] and reported results for all-cause deaths, lung cancer (ICD-9 code: 162),
cardiopulmonary deaths (ICD-9 codes: 401-440 and 460-519), and “all other” deaths.   Like the9

earlier studies, Pope et al. [ 2002 #2240] found that mean PM  is significantly related to all-2.5
cause and cardiopulmonary mortality.  In addition, Pope et al. [ 2002 #2240] found a significant
relationship with lung cancer mortality, which was not found in the earlier studies.  None of the
three studies found a significant relationship with “all other” deaths.

’79-’83 Exposure

The coefficient and standard error for PM  using the ’79-’83 PM data are estimated from2.5
the relative risk (1.082) and 95% confidence interval (1.011-1.158) associated with a change in
annual mean exposure of 10.0 µg/m . Pope et al. [ 2002 #2240, Table 2].  3 10

Functional Form: Log-linear
Coefficient: 0.007881
Standard Error: 0.003463
Incidence Rate: county-specific annual lung cancer mortality rate (ICD code 162) per person
ages 30 and older
Population: population of ages 30 and older
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Infant Mortality [Woodruff, 1997 #210]

In a study of four million infants in 86 U.S. metropolitan areas conducted from 1989 to
1991, Woodruff et al. [ 1997 #210] found a significant link between PM  exposure in the first10
two months of an infant’s life with the probability of dying between the ages of 28 days and 364
days.  PM  exposure was significant for all-cause mortality.  PM  was also significant for10 10
respiratory mortality in average birth-weight infants, but not low birth-weight infants.

In addition to the work by Woodruff et al., work in Mexico City [Loomis, 1999 #756],
the Czech Republic [Bobak, 1992 #1130], Sao Paulo [Saldiva, 1994 #167; Pereira, 1998 #164],
and Beijing [Wang, 1997 #1132] provides additional evidence that particulate levels are
significantly related to infant or child mortality, low birth weight or intrauterine mortality.

Conceptually, neonatal or child  mortality could be added to the premature mortality
predicted by Pope et al. [ 1995 #81], because the Pope function covers only the population over
30 years old.   However, the EPA Science Advisory Board recently advised the Agency not to11

include post-neonatal mortality in this analysis because the study is of a new endpoint and the
results have not been replicated in other studies [U.S. EPA, 1999 #930, p.  12].  The estimated
avoided incidences of neonatal mortality are estimated and presented as a sensitivity analysis,
and are not included in the primary analysis.

Single Pollutant Model

The coefficient and standard error are based on the odds ratio (1.04) and 95% confidence
interval (1.02-1.07) associated with a 10 µg/m  change in PM  [Woodruff, 1997 #210, Table 3]. 3

10

Functional Form: Logistic
Coefficient: 0.003922
Standard Error: 0.001221
Incidence Rate: county-specific annual postneonatal  infant deaths per infant under the age of12

one
Population: population of infants under one year old
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Exhibit D-2  Concentration-Response (C-R) Functions for Particulate Matter and Short-Term Mortality

Endpoint Name Pollutant Author Year Location Age Race Gender Beta NotesOther Averaging Std Functional
Pollutants Time Error Form1

Non-Accidental PM Schwartz et al. 1996 6 cities All All All None 24-hr avg 0.001433 0.00013 Log-linear2.5

Non-Accidental PM Schwartz et al. 1996 6 cities All All All None 24-hr avg 0.002835 -- Log-linear Lag Adjusted2.5
2

Chronic Lung PM Schwartz et al. 1996 6 cities All All All None 24-hr avg 0.006423 -- Log-linear Lag Adjusted2.5
2

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
2.  Refer to the study summaries below for a discussion of the lag adjustment used for these functions.
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Schwartz et al. [ 1996 #98, p. 929] defined non-accidental mortality as all-cause mortality less deaths due to accidents13

and other external causes (ICD-9 codes: 800-999).  Other external causes includes suicide, homicide, and legal intervention
(National Center for Health Statistics, 1994).

Schwartz et al. [ 1996 #98, p. 929] defined non-accidental mortality as all-cause mortality less deaths due to accidents14

and other external causes (ICD-9 codes: 800-999).  Other external causes includes suicide, homicide, and legal intervention
(National Center for Health Statistics, 1994).
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Short-term Mortality

Short-term mortality studies are those that typically link daily air pollution levels with
daily changes in mortality rates.

Short-Term Mortality, Non-Accidental [Schwartz, 1996 #98]

Schwartz et al. [ 1996 #98] pooled the results from six cities in the U.S. and found a
significant relationship between daily PM  concentration and non-accidental mortality.   Abt2.5

13

Associates Inc. [ 1996 #239, p. 52] used the six PM  relative risks reported by Schwartz et al. in2.5
a three-step procedure to estimate a pooled PM  coefficient and its standard error.  The first step2.5
estimates a random-effects pooled estimate of β; the second step uses an “empirical Bayes”
procedure to reestimate the β for each study as a weighted average of the β reported for that
location and the random effects pooled estimate; the third step estimates the underlying
distribution of β, and uses a Monte Carlo procedure to estimate the standard error [Abt
Associates Inc., 1996 #238, p. 65].

Single Pollutant Model

Abt Associates Inc. [ 1996 #239, p. 52] used the six PM  relative risks reported by2.5
Schwartz et al. in a three-step procedure to estimate a pooled PM  coefficient [Abt Associates2.5
Inc., 1996 #238, Exhibit 7.2] and its standard error [Abt Associates Inc., 1996 #238, Exhibit 7.2]. 

Functional Form: Log-linear
Coefficient: 0.001433
Standard Error: 0.000129
Incidence Rate: county-specific annual daily non-accidental mortality rate (ICD codes <800)
per person 
Population: population of all ages

Short-Term Mortality, Non-Accidental - Lag Adjusted [Schwartz, 1996 #98]

Schwartz et al. [ 1996 #98] pooled the results from six cities in the U.S. and found a
significant relationship between daily PM  concentration and non-accidental mortality.   Abt2.5

14

Associates Inc. [ 1996 #239, p. 52] used the six PM  relative risks reported by Schwartz et al. in2.5
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 The distributed lag adjustment C-R function is only run for the point estimate.  The standard error of this coefficient has15

not been estimated.
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a three-step procedure to estimate a pooled PM  coefficient and its standard error.  The first step2.5
estimates a random-effects pooled estimate of β; the second step uses an “empirical Bayes”
procedure to reestimate the β for each study as a weighted average of the β reported for that
location and the random effects pooled estimate; the third step estimates the underlying
distribution of β, and uses a Monte Carlo procedure to estimate the standard error [Abt
Associates Inc., 1996 #238, p. 65].  In order to estimate the impact of daily PM  levels on daily2.5
mortality if a distributed lag model had been fit, the PM  coefficient is adjusted as described2.5
below.

Recent studies have found that an increase in PM levels on a given day can elevate
mortality for several days following the exposure [Schwartz, 2000 #1550; Samet, 2000 #1810]. 
These studies have reported the results of distributed lag models for the relationship between
PM  and daily mortality.  Schwartz [ 2000 #1550] examined the relationship between PM  and10 10
daily mortality and reported results both for a single day lag model and an unconstrained
distributed lag model.  The unconstrained distributed lag model coefficient estimate is 0.0012818
and the single-lag model coefficient estimate is 0.0006479. A distributed lag adjustment factor
can be constructed as the ratio of the estimated coefficient from the unconstrained distributed lag
model to the estimated coefficient from the single-lag model reported in Schwartz (2000).  The
ratio of these estimates is 1.9784.  In order to estimate the full impact of daily PM levels on daily
mortality, we applied this ratio to the coefficient obtained from Schwartz et al. [ 1996 #98] for
the association between PM  and daily mortality. 2.5

In applying the ratio derived from a PM  study to PM , we assume that the same10  2.5
relationship between the distributed lag and single day estimates would hold for PM .  Effect2.5
estimates for the PM -daily mortality relationship tend to be lower in magnitude than for PM ,10 2.5
because fine particles are believed to be more closely associated with mortality than the coarse
fraction of PM.  If most of the increase in mortality is expected to be associated with the fine
fraction of PM , then it is reasonable to assume that the same proportional increase in risk10
would be observed if a distributed lag model were applied to the PM  data. 2.5

Single Pollutant Model

The distributed lag model coefficient is estimated by applying the distributed lag
adjustment factor of 1.9784 to the pooled PM  coefficient (0.001433) estimated by Abt2.5
Associates Inc. [ 1996 #238, Exhibit 7.2] from the six PM  relative risks reported by Schwartz2.5
et al. [ 1996 #98].15

Functional Form: Log-linear
Coefficient: 0.002835
Incidence Rate: county-specific annual daily non-accidental mortality rate (ICD codes <800)
per person 
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Population: population of all ages

Short-Term Mortality, Chronic Lung Disease - Lag Adjusted [Schwartz, 1996 #98]

Schwartz et al. [ 1996 #98] evaluated the relationship between daily PM  levels and2.5
short-term mortality in six U.S. cities.  Schwartz pooled results across the six cities and found
statistically significant associations between daily PM  levels and non-accidental mortality2.5
(ICD codes <800), along with mortality for ischemic heart disease (ICD codes 410-414), COPD
(ICD codes 490-496), and pneumonia (ICD codes 480-486).  A smaller association was found
for PM  and no significant associations were reported for PM .  The C-R function for chronic10 10-2.5
lung disease mortality is based on the results of a single pollutant model using a two-day average
of PM [Schwartz et al., 1996 #98, Table 7].  In order to estimate the impact of daily PM2.5 2.5
levels on daily mortality if a distributed lag model had been fit, the PM  coefficient is adjusted2.5
as described below.

Recent studies have found that an increase in PM levels on a given day can elevate
mortality for several days following the exposure [Schwartz, 2000 #1550; Samet, 2000 #1810]. 
These studies have reported the results of distributed lag models for the relationship between
PM  and daily mortality.  Schwartz [ 2000 #1550] examined the relationship between PM  and10 10
daily mortality and reported results both for a single day lag model and an unconstrained
distributed lag model.  The unconstrained distributed lag model coefficient estimate is 0.0012818
and the single-lag model coefficient estimate is 0.0006479. A distributed lag adjustment factor
can be constructed as the ratio of the estimated coefficient from the unconstrained distributed lag
model to the estimated coefficient from the single-lag model reported in Schwartz (2000).  The
ratio of these estimates is 1.9784.  In order to estimate the full impact of daily PM levels on daily
mortality, we applied this ratio to the coefficient obtained from Schwartz et al. [ 1996 #98] for
the association between PM  and daily mortality. 2.5

In applying the ratio derived from a PM  study to PM , we assume that the same10  2.5
relationship between the distributed lag and single day estimates would hold for PM .  Effect2.5
estimates for the PM -daily mortality relationship tend to be lower in magnitude than for PM ,10 2.5
because fine particles are believed to be more closely associated with mortality than the coarse
fraction of PM.  If most of the increase in mortality is expected to be associated with the fine
fraction of PM , then it is reasonable to assume that the same proportional increase in risk10
would be observed if a distributed lag model were applied to the PM  data. 2.5

Single Pollutant Model

The PM  coefficient is based on a reported 3.3% increase in COPD mortality associated2.5
with a 10 µg/m  change in two-day average PM  levels [Schwartz, 1996 #98, Table 7].  This3

2.5
coefficient (0.003247) is then multiplied by the distributed lag adjustment factor of 1.9784 to
estimate a distributed lag model coefficient.
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Functional Form: Log-linear
Coefficient: 0.006423
Incidence Rate: county-specific annual daily chronic lung disease mortality rate (ICD codes
490-496) 
Population: population of all ages
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Exhibit D-3  Concentration-Response (C-R) Functions for Particulate Matter and Chronic Illness

Endpoint Name Pollutant Author Year Location Age Race Gender Averaging Time Beta Std ErrorOther Functional
Pollutants Form

Chronic Bronchitis PM Abbey et al. 1995 27+ All All None Annual Avg 0.0137 0.00680 Logistic2.5
SF, SD, South
Coast Air Basin

Chronic Bronchitis PM Schwartz 1993 53 cities 30+ All All None Annual Avg 0.0123 0.00434 Logistic10
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 There are a limited number of studies that have estimated the impact of air pollution on chronic bronchitis.  An16

important hindrance is the lack of health data and the associated air pollution levels over a number of years.  

D-18

Chronic Illness

Schwartz [ 1993 #240] and Abbey et al. [ 1993 #245;, 1995 #452] provide evidence that
PM exposure over a number of years gives rise to the development of chronic bronchitis in the
U.S., and a recent study by McDonnell et al. [ 1999 #1153] provides evidence that ozone
exposure is linked to the development of asthma in adults.  These results are consistent with
research that has found chronic exposure to pollutants leads to declining pulmonary functioning
[Abbey, 1998 #249; AckermannLiebrich, 1997 #117; Detels, 1991 #345].  16

Chronic Bronchitis [Abbey, 1995 #452, California]

Abbey et al. [ 1995 #452] examined the relationship between estimated PM  (annual2.5
mean from 1966 to 1977), PM  (annual mean from 1973 to 1977) and TSP  (annual mean from10
1973 to 1977) and the same chronic respiratory symptoms in a sample population of 1,868
Californian Seventh Day Adventists.  The initial survey was conducted in 1977 and the final
survey in 1987.  To ensure a better estimate of exposure, the study participants had to have been
living in the same area for an extended period of time.  In single-pollutant models, there was a
statistically significant PM  relationship with development of chronic bronchitis, but not for2.5
AOD or asthma; PM  was significantly associated with chronic bronchitis and AOD; and TSP10
was significantly associated with all cases of all three chronic symptoms.  Other pollutants were
not examined.  The C-R function is based on the results of the single pollutant model presented
in Table 2.

Single Pollutant Model

The estimated coefficient (0.0137) is presented for a one µg/m  change in PM  [Abbey,3
2.5

1995 #452, Table 2].  The standard error is calculated from the reported relative risk (1.81) and
95% confidence interval (0.98-3.25) for a 45 µg/m  change in PM  [Abbey, 1995 #452, Table3

2.5
2].

Functional Form: Logistic
Coefficient: 0.0137
Standard Error: 0.00680
Incidence Rate: annual bronchitis incidence rate per person [Abbey, 1993 #245, Table 3] =
0.00378
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 Using the same data set, Abbey et al. [ 1995 #247, p. 140]  reported that the respondents in 1977 ranged in age from 2717

to 95.  

 The American Lung Association [ 2002 #2357, Table 4] reports a chronic bronchitis prevalence rate for ages 18 and18

over of 4.43% [American Lung Association, 2002 #2357, Table 4]. 

 Respiratory illness defined as a significant condition, coded by an examining physician as ICD-8 code 460-519.19

The conversion of TSP to PM  is from ESEERCO [ 1994 #323, p. V-5], who cited studies by EPA [ 1986 #236] and the20
10

California Air Resources Board [ 1982 #329].

D-19

Population: population of ages 27 and older  without chronic bronchitis = 95.57%  of17 18

population 27+

Chronic Bronchitis [Schwartz, 1993 #240]

Schwartz [ 1993 #240] examined survey data collected from 3,874 adults ranging in age
from 30 to 74, and living in 53 urban areas in the U.S.  The survey was conducted between 1974
and 1975, as part of the National Health and Nutrition Examination Survey, and is representative
of the non-institutionalized U.S. population.  Schwartz [ 1993 #240, Table 3] reported chronic
bronchitis prevalence rates in the study population by age, race, and gender.  Non-white males
under 52 years old had the lowest rate (1.7%) and white males 52 years and older had the highest
rate (9.3%).  The study examined the relationship between the prevalence of reported chronic
bronchitis, asthma, shortness of breath (dyspnea) and respiratory illness , and the annual levels19

of TSP, collected in the year prior to the survey (TSP was the only pollutant examined in this
study).  TSP was significantly related to the prevalence of chronic bronchitis, and marginally
significant for respiratory illness.  No effect was found for asthma or dyspnea.  The C-R function
for PM  is estimated from the results of the single pollutant model reported for TSP.10

Single Pollutant Model

The estimated coefficient is based on the odds ratio ( 1.07) associated with 10 µg/m3

change in TSP [Schwartz, 1993 #240, p.  9].  Assuming that PM  is 55 percent of TSP  and that10
20

particulates greater than ten micrometers are harmless, the coefficient is calculated by dividing
the TSP coefficient by 0.55.  The standard error for the coefficient is calculated from the 95%
confidence interval for the odds ratio (1.02 to 1.12) [Schwartz, 1993 #240, p.  9]. 

Schwartz [ 1993 #240] examined the prevalence of chronic bronchitis, not its incidence. 
To use Schwartz’s study and still estimate the change in incidence, there are at least two possible
approaches.  The first is to simply assume that it is appropriate to use the baseline incidence of
chronic bronchitis in a C-R function with the estimated coefficient from Schwartz’s study, to
directly estimate the change in incidence.  The second is to estimate the percentage change in the
prevalence rate for chronic bronchitis using the estimated coefficient from Schwartz’s study in a
C-R function, and then to assume that this percentage change applies to a baseline incidence rate
obtained from another source.  (That is, if the prevalence declines by 25 percent with a drop in
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 The American Lung Association [ 2002 #2357, Table 4] reports a chronic bronchitis prevalence rate for ages 18 and21

over of 4.43% [American Lung Association, 2002 #2357, Table 4]. 
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PM, then baseline incidence drops by 25 percent with the same drop in PM.)  This analysis is
using the latter approach, and estimates a percentage change in prevalence which is then applied
to a baseline incidence rate.  The scaling factor used in the C-R function is the ratio of chronic
bronchitis incidence rate (estimated from Abbey et al. [ 1993 #245]) to chronic bronchitis
prevalence rate (estimated from American Lung Association [ 2002 #2357, Table 4]).

Functional Form: Logistic
Coefficient: 0.0123
Standard Error: 0.00434
Incidence Rate: annual chronic bronchitis prevalence rate per person [American Lung
Association, 2002 #2357, Table 4] = 0.0443
Population: population of ages 30 and older without chronic bronchitis = 95.57%  of21

population 30+ 
Adjustment Factor: ratio of chronic bronchitis incidence to chronic bronchitis prevalence =
0.00378/0.0443 = 0.085 [Abbey, 1993 #245, Table 3; American Lung Association, 2002 #2357,
Table 4]
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Exhibit D-4  Concentration-Response (C-R) Functions for Particulate Matter and Hospital Admissions

Endpoint Name Pollutant Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Asthma PM Sheppard et al. 1999 Seattle, WA <65 All All CO 24-hr avg 0.002505 0.001045 Log-linear2.5

Chronic Lung Disease PM Lippmann et al. 2000 Detroit, MI 65+ All All O 24-hr avg 0.001089 0.002420 Log-linear2.5 3

Chronic Lung Disease PM Moolgavkar 2000 Los Angeles, CA 65+ All All CO 24-hr avg 0.0008 0.001000 Log-linear2.5

Chronic Lung Disease PM Moolgavkar 2000 Los Angeles, CA 18-64 All All CO 24-hr avg 0.0020 0.000909 Log-linear2.5

Chronic Lung Disease
(less Asthma) PM Samet et al. 2000 14 cities 65+ All All None 24-hr avg 0.002839 0.001351 Log-linear10

Pneumonia PM Lippmann et al. 2000 Detroit, MI 65+ All All O 24-hr avg 0.004480 0.001918 Log-linear2.5 3

Pneumonia PM Samet et al. 2000 14 cities 65+ All All None 24-hr avg 0.002049 0.000570 Log-linear10

All Cardiovascular PM Moolgavkar 2000 Los Angeles, CA 65+ All All CO 24-hr avg 0.0005 0.000556 Log-linear2.5

All Cardiovascular PM Moolgavkar 2000 Los Angeles, CA 18-64 All All CO 24-hr avg 0.0009 0.000500 Log-linear2.5

All Cardiovascular PM Samet et al. 2000 14 cities 65+ All All None 24-hr avg 0.001183 0.000111 Log-linear10

Dysrhythmia PM Lippmann et al. 2000 Detroit, MI 65+ All All O 24-hr avg 0.002138 0.002525 Log-linear2.5 3

Heart Failure PM Lippmann et al. 2000 Detroit, MI 65+ All All O 24-hr avg 0.004668 0.001650 Log-linear2.5 3

Ischemic Heart Disease PM Lippmann et al. 2000 Detroit, MI 65+ All All O 24-hr avg 0.001116 0.001339 Log-linear2.5 3

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for more
detail on the specific averaging time used in the study.
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 PM  levels were estimated from light scattering data.22
2.5

  The reported IQR change in the abstract and text is smaller than reported in Table 3.  We assume the change reported in23

the abstract and text to be correct because greater number of significant figures are reported.
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Hospitalizations

Hospital Admissions for Asthma [Sheppard, 1999 #792, Seattle]

Sheppard et al. [ 1999 #792] studied the relation between air pollution in Seattle and
nonelderly (<65) hospital admissions for asthma from 1987 to 1994.  They used air quality data
for PM , PM , coarse PM10 , SO , ozone, and CO in a Poisson regression model with10 2.5 10-2.5 2
control for time trends, seasonal variations, and temperature-related weather effects.  They22

found asthma hospital admissions associated with PM , PM , PM , CO, and ozone.  They10 2.5 10-2.5
did not observe an association for SO . They found PM and CO to be jointly associated with2
asthma admissions.  The best fitting co-pollutant models were found using ozone.  However,
ozone data was only available April through October, so they did not consider ozone further. 
For the remaining pollutants, the best fitting models included PM  and CO.  Results for other2.5
co-pollutant models were not reported.  The PM  C-R function is based on the multipollutant2.5
model.

Multipollutant Model (PM  and CO)2.5

The coefficient and standard error for the co-pollutant model with CO are calculated from
a relative risk of 1.03 (95% CI 1.01-1.06) for an 11.8 µg/m  increase  in PM [Sheppard, 19993 23

2.5 
#792, p. 28].

Functional Form: Log-linear
Coefficient: 0.002505
Standard Error: 0.001045
Incidence Rate: region-specific daily hospital admission rate for asthma admissions per person
<65 (ICD code 493)
Population: population of ages 65 and under

Hospital Admissions for Chronic Lung Disease [Lippmann, 2000 #2328, Detroit]

Lippmann et al. [ 2000 #2328] studied the association between particulate matter and
daily mortality and hospitalizations among the elderly in Detroit, MI.  Data were analyzed for
two separate study periods, 1985-1990 and 1992-1994.  The 1992-1994 study period had a
greater variety of data on PM size and was the main focus of the report.  The authors collected
hospitalization data for a variety of cardiovascular and respiratory endpoints.  They used daily
air quality data for PM , PM , and PM  in a Poisson regression model with generalized10 2.5 10-2.5
additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single
pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-



May 12, 2003

D-23

486), PM  and PM  were significant for ischemic heart disease (ICD code 410-414), and10-2.5 10
PM  and PM  were significant for heart failure (ICD code 428).  There were positive, but not2.5 10
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496)
and dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone,
SO , NO , or CO, the results were generally comparable.  The PM  C-R function is based on2 2 2.5
results of the co-pollutant model with ozone.

Multipollutant Model (PM  and ozone)2.5

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.040
(95% CI 0.877-1.234) for a 36 µg/m  increase in PM  [Lippmann, 2000 #2328, Table 14, p. 26]. 3

2.5

Functional Form: Log-linear
Coefficient: 0.001089
Standard Error: 0.002420
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease
admissions per person 65+ (ICD codes 490-496)
Population: population of ages 65 and older

Hospital Admissions for Chronic Lung Disease [Moolgavkar, 2000 #2152]

Moolgavkar [ 2000 #2152] examined the association between air pollution and COPD
hospital admissions (ICD 490-496) in the Chicago, Los Angeles, and Phoenix metropolitan
areas.  He collected daily air pollution data for ozone, SO , NO , CO, and PM  in all three areas. 2 2 10
PM  data was available only in Los Angeles.  The data were analyzed using a Poisson2.5
regression model with generalized additive models to adjust for temporal trends.  Separate
models were run for 0 to 5 day lags in each location.  Among the 65+ age group in Chicago and
Phoenix, weak associations were observed between the gaseous pollutants and admissions.  No
consistent associations were observed for PM .  In Los Angeles, marginally significant10
associations were observed for PM , which were generally lower than for the gases.  In co-2.5
pollutant models with CO, the PM  effect was reduced.  Similar results were observed in the 0-2.5
19 and 20-64 year old age groups.  

The PM  C-R functions are based on the co-pollutant models (PM  and CO) reported2.5 2.5
for the 20-64 and 65+ age groups.  Since the true PM effect is most likely best represented by a
distributed lag model, then any single lag model should underestimate the total PM effect.  As a
result, we selected the lag models with the greatest effect estimates for use in the C-R functions.
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 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In this study, Moolgavkar defines and reports the24

“estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1 and log RR are essentially the same.  For
example, a true percent change of 0.8 would result in a relative risk of 1.008 and coefficient of 0.000797.  The “estimated” percent
change, as reported by Moolgavkar, of 0.8 results in a relative risk of 1.008032 and coefficient of 0.0008.

 Although Moolgavkar [ 2000 #2152] reports results for the 20-64 year old age range, for comparability to other studies,25

we apply the results to the population of ages 18 to 64.

 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In this study, Moolgavkar defines and reports the26

“estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1 and log RR are essentially the same.  For
example, a true percent change of 2.0 would result in a relative risk of 1.020 and coefficient of 0.001980.  The “estimated” percent
change, as reported by Moolgavkar, of 2.0 results in a relative risk of 1.020201 and coefficient of 0.002.

 Moolgavkar [ 2000 #2152] reports results for ICD codes 490-496.  In order to avoid double counting non-elderly asthma27

hospitalizations (ICD code 493) with Sheppard et al. [ 1999 #792] in a total benefits estimation, we have excluded ICD code 493
from the baseline incidence rate used in this function. 
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Ages 65 and older

Multipollutant Model (PM  and CO)2.5

In a model with CO, the coefficient and standard error are calculated from an estimated
percent change of 0.8  and t-statistic of 0.8 for a 10 µg/m  increase in PM  in the two-day lag24 3

2.5
model [Moolgavkar, 2000 #2152, Table 3, p. 80].

Functional Form: Log-linear
Coefficient: 0.0008
Standard Error: 0.001000
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease
admissions per person 65+ (ICD codes 490-496)
Population: population of ages 65 and older

Ages 18 to 6425

Multipollutant Model (PM  and CO)2.5

In a model with CO, the coefficient and standard error are calculated from an estimated
percent change of 2.0  and t-statistic of 2.2 for a 10 µg/m  increase in PM  in the two-day lag26 3

2.5
model [Moolgavkar, 2000 #2152, Table 4, p. 81].

Functional Form: Log-linear
Coefficient: 0.0020
Standard Error: 0.000909
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease
admissions per person 18-64 (ICD codes 490-492, 494-496)27

Population: population of ages 18 to 64
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The cities under investigation include: Birmingham, Boulder, Canton, Chicago, Colorado Springs, Detroit,28

Minneapolis/St. Paul, Nashville, New Haven, Pittsburgh, Provo/Orem, Seattle, Spokane, Youngstown.

 Joel Schwartz (co-author), personal communication. 29

 Commentary from the Health Review Committee (Samet et al., 2000, p.77) states that “[w]hile the approach used in the30

morbidity analysis is novel...the question arises as to the adequacy of statistical power for performing these analyses.”
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Hospital Admissions for Chronic Lung Disease (less Asthma) [Samet, 2000 #1810, 14 Cities]

Samet et al. [ 2000 #1810] examined the relationship between air pollution and hospital
admissions for individuals of ages 65 and over in 14 cities across the country.   Cities were28

selected on the basis of available air pollution data for at least four years between 1985 and 1994
during which at least 50% of days had observations between the city-specific start and end of
measurements.  Hospital admissions were obtained from the Health Care Financing
Administration (HCFA) for the years 1992 and 1993.  Poisson regression was used in the
analysis with unconstrained distributed lag models to examine the possibility that air pollution
affects hospital admissions on not only the same day but on later days as well.  The use of
unconstrained distributed lags has the advantages of (1) not inappropriately biasing down risk
estimates due to tight constraints (e.g. one day lag) and (2) not leaving the often arbitrary choice
of lag period to the investigator’s discretion.  The C-R functions are based on the pooled
estimate across all 14 cities, using the unconstrained distributed lag model and fixed or random
effects estimates, depending on the results of a test for heterogeneity.

For this analysis, the unadjusted, base models for the effect of PM  on hospital10
admissions were used.  The authors performed a second-stage regression to estimate the impact
of SO  and O  on the PM  - hospitalization effect.  For ozone, the PM  effect in each city was2 3 10 10
regressed on the correlation between ozone and particulate matter (the slope of a PM  vs. O10 3
regression) in that city.  The fitted line for this regression will have a slope of zero if there is no
relationship, meaning that the effect of PM  is not dependent on the correlation between PM10 10
and O .  The adjusted point estimate was obtained by determining the PM  effect when the3 10
correlation between the pollutants is zero (i.e. the y-intercept of the fitted line).  The effect of O3
adjustment on the PM  - hospitalization relationship appeared to be minimal except for the case10
of COPD.  In this case, adjustment increased the point estimate of the independent particulate
matter effect.  The variance of this estimate, however, was quite large and the confidence
intervals of the adjusted and unadjusted estimates overlapped substantially.  For these reasons,
there appeared to be little impact of O  adjustment.   Furthermore, the statistical power and3

29

robustness of this second-stage approach to co-pollutant adjustment are in question because of
the small number of observations used in the regression (14 cities) and the potential for one or
two observations to dramatically impact the results.   Finally, for the case of COPD, adjustment30

led to an increased PM  independent effect, meaning that if the adjustment is valid, the impact10
on hospital admissions will be underestimated rather than overestimated.
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 The random effects estimate of the unconstrained distributed lag model was chosen for COPD admissions since the chi-31

square test of heterogeneity was significant (see Samet et al., 2000, Part II - Table 15).  
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Single Pollutant Model

The estimated PM  coefficient is based on a 2.88 percent increase (RR = 1.0288) in10
admissions due to a PM  change of 10.0 µg/m  [Samet, 2000 #1810, Part II - Table 14] .  The10

3 31

standard error is estimated from the reported lower (0.19 percent) and upper bounds (5.64
percent) of the percent increase [Samet, 2000 #1810, Part II - Table 14].

Functional Form: Log-linear
Coefficient: 0.002839
Standard Error: 0.001351
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease per person
65+ (ICD codes 490-492, 494-496)
Population: population of ages 65 and older

Hospital Admissions for Pneumonia [Lippmann, 2000 #2328, Detroit]

Lippmann et al. [ 2000 #2328] studied the association between particulate matter and
daily mortality and hospitalizations among the elderly in Detroit, MI.  Data were analyzed for
two separate study periods, 1985-1990 and 1992-1994.  The 1992-1994 study period had a
greater variety of data on PM size and was the main focus of the report.  The authors collected
hospitalization data for a variety of cardiovascular and respiratory endpoints.  They used daily
air quality data for PM , PM , and PM  in a Poisson regression model with generalized10 2.5 10-2.5
additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single
pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-
486), PM  and PM  were significant for ischemic heart disease (ICD code 410-414), and10-2.5 10
PM  and PM  were significant for heart failure (ICD code 428).  There were positive, but not2.5 10
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496)
and dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone,
SO , NO , or CO, the results were generally comparable.  The PM  C-R function is based on the2 2 2.5
results of the co-pollutant model with ozone.

Multipollutant Model (PM  and ozone)2.5

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.175
(95% CI 1.026-1.345) for a 36 µg/m  increase in PM  [Lippmann, 2000 #2328, Table 14, p. 26]. 3

2.5

Functional Form: Log-linear
Coefficient: 0.004480
Standard Error: 0.001918
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The cities under investigation include: Birmingham, Boulder, Canton, Chicago, Colorado Springs, Detroit,32

Minneapolis/St. Paul, Nashville, New Haven, Pittsburgh, Provo/Orem, Seattle, Spokane, Youngstown.

 Joel Schwartz (co-author), personal communication. 33

 Commentary from the Health Review Committee (Samet et al., 2000, p.77) states that “[w]hile the approach used in the34

morbidity analysis is novel...the question arises as to the adequacy of statistical power for performing these analyses.”
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Incidence Rate: region-specific daily hospital admission rate for pneumonia admissions per
person 65+ (ICD codes 480-487)
Population: population of ages 65 and older

Hospital Admissions for Pneumonia [Samet, 2000 #1810, 14 Cities]

Samet et al. [ 2000 #1810] examined the relationship between air pollution and hospital
admissions for individuals of ages 65 and over in 14 cities across the country.   Cities were32

selected on the basis of available air pollution data for at least four years between 1985 and 1994
during which at least 50% of days had observations between the city-specific start and end of
measurements.  Hospital admissions were obtained from the Health Care Financing
Administration (HCFA) for the years 1992 and 1993.  Poisson regression was used in the
analysis with unconstrained distributed lag models to examine the possibility that air pollution
affects hospital admissions on not only the same day but on later days as well.  The use of
unconstrained distributed lags has the advantages of (1) not inappropriately biasing down risk
estimates due to tight constraints (e.g. one day lag) and (2) not leaving the often arbitrary choice
of lag period to the investigator’s discretion.  The C-R functions are based on the pooled
estimate across all 14 cities, using the unconstrained distributed lag model and fixed or random
effects estimates, depending on the results of a test for heterogeneity.

For this analysis, the unadjusted, base models for the effect of PM  on hospital10
admissions were used.  The authors performed a second-stage regression to estimate the impact
of SO  and O  on the PM  - hospitalization effect.  For ozone, the PM  effect in each city was2 3 10 10
regressed on the correlation between ozone and particulate matter (the slope of a PM  vs. O10 3
regression) in that city.  The fitted line for this regression will have a slope of zero if there is no
relationship, meaning that the effect of PM  is not dependent on the correlation between PM10 10
and O .  The adjusted point estimate was obtained by determining the PM  effect when the3 10
correlation between the pollutants is zero (i.e. the y-intercept of the fitted line).  The effect of O3
adjustment on the PM  - hospitalization relationship appeared to be minimal except for the case10
of COPD.  In this case, adjustment increased the point estimate of the independent particulate
matter effect.  The variance of this estimate, however, was quite large and the confidence
intervals of the adjusted and unadjusted estimates overlapped substantially.  For these reasons,
there appeared to be little impact of O  adjustment.   Furthermore, the statistical power and3

33

robustness of this second-stage approach to co-pollutant adjustment are in question because of
the small number of observations used in the regression (14 cities) and the potential for one or
two observations to dramatically impact the results.   Finally, for the case of COPD, adjustment34

led to an increased PM  independent effect, meaning that if the adjustment is valid, the impact10
on hospital admissions will be underestimated rather than overestimated.
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 The random effects estimate of the unconstrained distributed lag model was chosen for pneumonia admissions since the35

chi-square test of heterogeneity was significant (see Samet et al., 2000, Part II - Table 15).  

 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In a similar hospitalization study by Moolgavkar [36

2000 #2152], he defines and reports the “estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1
and log RR are essentially the same.  For example, a true percent change of 0.5 would result in a relative risk of 1.005 and
coefficient of 0.000499.  Assuming that the 0.5 is the “estimated” percent change described previously would result in a relative risk
of 1.005013 and coefficient of 0.0005.  We assume that the “estimated” percent changes reported in this study reflect the definition
from [Moolgavkar, 2000 #2152].
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Single Pollutant Model

The estimated PM  coefficient is based on a 2.07 percent increase (RR = 1.0207) in10
admissions due to a PM  change of 10.0 µg/m  [Samet, 2000 #1810, Part II - Table 14] .  The10

3 35

standard error is estimated from the reported lower (0.94 percent) and upper bounds (3.22
percent) of the percent increase [Samet, 2000 #1810, Part II - Table 14].

Functional Form: Log-linear
Coefficient: 0.002049
Standard Error: 0.000570
Incidence Rate: region-specific daily hospital admission rate for pneumonia per person 65+
(ICD codes 480-487)
Population: population of ages 65 and older

Hospital Admissions for All Cardiovascular [Moolgavkar, 2000 #2029, Los Angeles]

Moolgavkar [ 2000 #2029] examined the association between air pollution and
cardiovascular hospital admissions (ICD 390-448) in the Chicago, Los Angeles, and Phoenix
metropolitan areas.  He collected daily air pollution data for ozone, SO , NO , CO, and PM  in2 2 10
all three areas.  PM  data was available only in Los Angeles.  The data were analyzed using a2.5
Poisson regression model with generalized additive models to adjust for temporal trends. 
Separate models were run for 0 to 5 day lags in each location.  Among the 65+ age group, the
gaseous pollutants generally exhibited stronger effects than PM  or PM .  The strongest overall10 2.5
effects were observed for SO  and CO.  In a single pollutant model, PM  was statistically2 2.5
significant for lag 0 and lag 1.  In co-pollutant models with CO, the PM  effect dropped out and2.5
CO remained significant.  For ages 20-64, SO  and CO exhibited the strongest effect and any2
PM  effect dropped out in co-pollutant models with CO.  The PM  C-R functions are based on2.5 2.5
co-pollutant (PM  and CO) models.2.5

Ages 65 and older

Multipollutant Model (PM  and CO)2.5

In a model with CO, the coefficient and standard error are calculated from an estimated
percent change of 0.5  and t-statistic of 0.9 for a 10 µg/m  increase in PM  in the one day lag36 3

2.5
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 Moolgavkar [ 2000 #2029] reports results for ICD codes 390-429.  In the benefits analysis, avoided nonfatal heart37

attacks are estimated using the results reported by Peters et al. [ 2001 #2157].  The baseline rate in the Peters et al. function is a
modified heart attack hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require hospitalization. 
In order to avoid double counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline incidence rate
used in this function. 

 Although Moolgavkar [ 2000 #2029] reports results for the 20-64 year old age range, for comparability to other studies,38

we apply the results to the population of ages 18 to 64.

 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In a similar hospitalization study by Moolgavkar [39

2000 #2152], he defines and reports the “estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1
and log RR are essentially the same.  For example, a true percent change of 0.9 would result in a relative risk of 1.009 and
coefficient of 0.000896.  Assuming that the 0.9 is the “estimated” percent change described previously would result in a relative risk
of 1.009041 and coefficient of 0.0009.  We assume that the “estimated” percent changes reported in this study reflect the definition
from [Moolgavkar, 2000 #2152].

  Moolgavkar [ 2000 #2029] reports results that include ICD code 410 (heart attack).  In the benefits analysis, avoided40

nonfatal heart attacks are estimated using the results reported by Peters et al. [ 2001 #2157].  The baseline rate in the Peters et al.
function is a modified heart attack hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require
hospitalization.  In order to avoid double counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline
incidence rate used in this function. 
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model [Moolgavkar, 2000 #2029, Table 3, p. 1202].

Functional Form: Log-linear
Coefficient: 0.0005
Standard Error: 0.000556
Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions
per person 65+ (ICD codes 390-409, 411-459)37

Population: population of ages 65 and older

Ages 18 to 6438

Multipollutant Model (PM  and CO)2.5

In a model with CO, the coefficient and standard error are calculated from an estimated
percent change of 0.9  and t-statistic of 1.8 for a 10 µg/m  increase in PM  in the zero lag39 3

2.5
model [Moolgavkar, 2000 #2029, Table 4, p. 1203].

Functional Form: Log-linear
Coefficient: 0.0009
Standard Error: 0.000500
Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions
per person ages 18 to 64 (ICD codes 390-409, 411-459)40

Population: population of ages 18 to 64
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The cities under investigation include: Birmingham, Boulder, Canton, Chicago, Colorado Springs, Detroit,41

Minneapolis/St. Paul, Nashville, New Haven, Pittsburgh, Provo/Orem, Seattle, Spokane, Youngstown.

 Joel Schwartz (co-author), personal communication. 42

 Commentary from the Health Review Committee (Samet et al., 2000, p.77) states that “[w]hile the approach used in the43

morbidity analysis is novel...the question arises as to the adequacy of statistical power for performing these analyses.”
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Hospital Admissions for All Cardiovascular [Samet, 2000 #1810, 14 Cities]

Samet et al. [ 2000 #1810] examined the relationship between air pollution and hospital
admissions for individuals of ages 65 and over in 14 cities across the country.   Cities were41

selected on the basis of available air pollution data for at least four years between 1985 and 1994
during which at least 50% of days had observations between the city-specific start and end of
measurements.  Hospital admissions were obtained from the Health Care Financing
Administration (HCFA) for the years 1992 and 1993.  Poisson regression was used in the
analysis with unconstrained distributed lag models to examine the possibility that air pollution
affects hospital admissions on not only the same day but on later days as well.  The use of
unconstrained distributed lags has the advantages of (1) not inappropriately biasing down risk
estimates due to tight constraints (e.g. one day lag) and (2) not leaving the often arbitrary choice
of lag period to the investigator’s discretion.  The C-R functions are based on the pooled
estimate across all 14 cities, using the unconstrained distributed lag model and fixed or random
effects estimates, depending on the results of a test for heterogeneity.

For this analysis, the unadjusted, base models for the effect of PM  on hospital10
admissions were used.  The authors performed a second-stage regression to estimate the impact
of SO  and O  on the PM  - hospitalization effect.  For ozone, the PM  effect in each city was2 3 10 10
regressed on the correlation between ozone and particulate matter (the slope of a PM  vs. O10 3
regression) in that city.  The fitted line for this regression will have a slope of zero if there is no
relationship, meaning that the effect of PM  is not dependent on the correlation between PM10 10
and O .  The adjusted point estimate was obtained by determining the PM  effect when the3 10
correlation between the pollutants is zero (i.e. the y-intercept of the fitted line).  The effect of O3
adjustment on the PM  - hospitalization relationship appeared to be minimal except for the case10
of COPD.  In this case, adjustment increased the point estimate of the independent particulate
matter effect.  The variance of this estimate, however, was quite large and the confidence
intervals of the adjusted and unadjusted estimates overlapped substantially.  For these reasons,
there appeared to be little impact of O  adjustment.   Furthermore, the statistical power and3

42

robustness of this second-stage approach to co-pollutant adjustment are in question because of
the small number of observations used in the regression (14 cities) and the potential for one or
two observations to dramatically impact the results.   Finally, for the case of COPD, adjustment43

led to an increased PM  independent effect, meaning that if the adjustment is valid, the impact10
on hospital admissions will be underestimated rather than overestimated.
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 The fixed effects estimate of the unconstrained distributed lag model was chosen for CVD admissions since the chi-44

square test of heterogeneity was non-significant (see Samet et al., 2000, Part II - Table 15).  
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Single Pollutant Model

The estimated PM  coefficient is based on a 1.19 percent increase (RR = 1.0119) in10
admissions due to a PM  change of 10.0 µg/m  [Samet, 2000 #1810, Part II - Table 14] .  The10

3 44

standard error is estimated from the reported lower (0.97 percent) and upper bounds (1.41
percent) of the percent increase [Samet, 2000 #1810, Part II - Table 14].

Functional Form: Log-linear
Coefficient: 0.001183
Standard Error: 0.000111
Incidence Rate: region-specific daily hospital admission rate for all cardiovascular disease per
person 65+ (ICD codes 390-459)
Population: population of ages 65 and older

Hospital Admissions for Dysrhythmia [Lippmann, 2000 #2328, Detroit]

Lippmann et al. [ 2000 #2328] studied the association between particulate matter and
daily mortality and hospitalizations among the elderly in Detroit, MI.  Data were analyzed for
two separate study periods, 1985-1990 and 1992-1994.  The 1992-1994 study period had a
greater variety of data on PM size and was the main focus of the report.  The authors collected
hospitalization data for a variety of cardiovascular and respiratory endpoints.  They used daily
air quality data for PM , PM , and PM  in a Poisson regression model with generalized10 2.5 10-2.5
additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single
pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-
486), PM  and PM  were significant for ischemic heart disease (ICD code 410-414), and10-2.5 10
PM  and PM  were significant for heart failure (ICD code 428).  There were positive, but not2.5 10
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496)
and dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone,
SO , NO , or CO, the results were generally comparable.  The PM  C-R function is based on the2 2 2.5
co-pollutant model with ozone.

Multipollutant Model (PM  and ozone)2.5

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.080
(95% CI 0.904-1.291) for a 36 µg/m  increase in PM  [Lippmann, 2000 #2328, Table 14, p. 27]. 3

2.5

Functional Form: Log-linear
Coefficient: 0.002138
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Standard Error: 0.002525
Incidence Rate: region-specific daily hospital admission rate for dysrhythmia admissions per
person 65+ (ICD code 427)
Population: population of ages 65 and older

Hospital Admissions for Heart Failure [Lippmann, 2000 #2328, Detroit]

Lippmann et al. [ 2000 #2328] studied the association between particulate matter and
daily mortality and hospitalizations among the elderly in Detroit, MI.  Data were analyzed for
two separate study periods, 1985-1990 and 1992-1994.  The 1992-1994 study period had a
greater variety of data on PM size and was the main focus of the report.  The authors collected
hospitalization data for a variety of cardiovascular and respiratory endpoints.  They used daily
air quality data for PM , PM , and PM  in a Poisson regression model with generalized10 2.5 10-2.5
additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single
pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-
486), PM  and PM  were significant for ischemic heart disease (ICD code 410-414), and10-2.5 10
PM  and PM  were significant for heart failure (ICD code 428).  There were positive, but not2.5 10
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496)
and dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone,
SO , NO , or CO, the results were generally comparable.  The PM  C-R function is based on the2 2 2.5
co-pollutant model with ozone.

Multipollutant Model (PM  and ozone)2.5

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.183
(95% CI 1.053-1.329) for a 36 µg/m  increase in PM  [Lippmann, 2000 #2328, Table 14, p. 27]. 3

2.5

Functional Form: Log-linear
Coefficient: 0.004668
Standard Error: 0.001650
Incidence Rate: region-specific daily hospital admission rate for heart failure admissions per
person 65+ (ICD code 428)
Population: population of ages 65 and older

Hospital Admissions for Ischemic Heart Disease [Lippmann, 2000 #2328, Detroit]

Lippmann et al. [ 2000 #2328] studied the association between particulate matter and
daily mortality and hospitalizations among the elderly in Detroit, MI.  Data were analyzed for
two separate study periods, 1985-1990 and 1992-1994.  The 1992-1994 study period had a
greater variety of data on PM size and was the main focus of the report.  The authors collected
hospitalization data for a variety of cardiovascular and respiratory endpoints.  They used daily
air quality data for PM , PM , and PM  in a Poisson regression model with generalized10 2.5 10-2.5
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 Lippmann et al. [ 2000 #2328] reports results for ICD codes 410-414.  In the benefits analysis, avoided nonfatal heart45

attacks are estimated using the results reported by Peters et al. [ 2001 #2157].  The baseline rate in the Peters et al. function is a
modified heart attack hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require hospitalization.  In
order to avoid double counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline incidence rate used
in this function. 
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additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single
pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-
486), PM  and PM  were significant for ischemic heart disease (ICD code 410-414), and10-2.5 10
PM  and PM  were significant for heart failure (ICD code 428).  There were positive, but not2.5 10
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496)
and dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone,
SO , NO , or CO, the results were generally comparable.  The PM  C-R function is based on the2 2 2.5
co-pollutant model with ozone.

Multipollutant Model (PM  and ozone)2.5

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.041
(95% CI 0.947-1.144) for a 36 µg/m  increase in PM  [Lippmann, 2000 #2328, Table 14, p. 27]. 3

2.5

Functional Form: Log-linear
Coefficient: 0.001116
Standard Error: 0.001339
Incidence Rate: region-specific daily hospital admission rate for ischemic heart disease
admissions per person 65+ (ICD codes 411-414)45

Population: population of ages 65 and older
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Exhibit D-5  Concentration-Response (C-R) Functions for Particulate Matter and Emergency Room Visits

Endpoint Name Pollutant Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Asthma PM Norris et al. 1999 Seattle, WA <18 All All NO , SO 24-hr avg 0.016527 0.004139 Log-linear2.5 2 2

Asthma PM Schwartz et al. 1993 Seattle, WA <65 All All None 24-hr avg 0.00367 0.00126 Log-linear10

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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Emergency Room Visits

Emergency Room Visits for Asthma [Norris, 1999 #1263]

Norris et al. [ 1999 #1263] examined the relation between air pollution in Seattle and
childhood (<18) hospital admissions for asthma from 1995 to 1996.  The authors used air quality
data for PM , light scattering (used to estimate fine PM), CO, SO , NO , and O  in a Poisson10 2 2 3
regression model with adjustments for day of the week, time trends, temperature, and dew point. 
They found significant associations between asthma ER visits and light scattering (converted to
PM ), PM , and CO.   No association was found between O , NO , or SO  and asthma ER2.5 10 3 2 2
visits, although O  had a significant amount of missing data.  In multipollutant models with3
either PM metric (light scattering or PM ) and NO  and SO , the PM coefficients remained10 2 2
significant while the gaseous pollutants were not associated with increased asthma ER visits. 
The PM  C-R function is on the multipollutant model reported.2.5

Multipollutant Model (PM , NO  and SO )2.5 2, 2

In a model with NO  and SO , the PM  coefficient and standard error are calculated2 2 2.5
from a relative risk of 1.17 (95% CI 1.08-1.26) for a 9.5 µg/m  increase in PM  [Norris, 19993

2.5
#1263, p. 491].  
Functional Form: Log-linear
Coefficient: 0.016527
Standard Error: 0.004139
Incidence Rate: region-specific daily emergency room rate for asthma admissions per person
<18 (ICD code 493)
Population: population of ages under 18

Emergency Room Visits for Asthma [Schwartz, 1993 #860, Seattle]

Schwartz et al. [ 1993 #680] examined the relationship between air quality and
emergency room visits for asthma (ICD codes 493,493.01,493.10,493.90,493.91) in persons
under 65 and 65 and over, living in Seattle from September 1989 to September 1990.  Using
single-pollutant models they found daily levels of PM  linked to ER visits in individuals ages10
under 65, and they found no effect in individuals ages 65 and over.  They did not find a
significant effect for SO  and ozone in either age group.  The results of the single pollutant2
model for PM  are used in this analysis.10

Single Pollutant Model

The PM  coefficient and standard error are reported by Schwartz et al. [ 1993 #860, p.10
829] for a unit µg/m  increase in four-day average PM  levels.3

10

Functional Form: Log-linear
Coefficient: 0.00367
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Standard Error: 0.00126
Incidence Rate: region-specific daily emergency room rate for asthma admissions per person
<65 (ICD code 493)
Population: population of ages under 65
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Exhibit D-6  Concentration-Response (C-R) Functions for Particulate Matter and Acute Effects

Endpoint Name Pollutant Author Year Location Age Race Gender BetaOther Averaging Std Functional
Pollutants Time Error Form1

Acute Bronchitis PM Dockery et al. 1996 24 communities 8-12 All All None Annual Avg 0.027212 0.017096 Logistic2.5

Acute Myocardial Infarction,
Nonfatal PM Peters et al. 2001 Boston, MA 18+ All All None 24-hr avg 0.024121 0.009285 Logistic2.5

Any of 19 Respiratory
Symptoms PM Krupnick 1990 Los Angeles, CA 18-64 All All O 24-hr avg 0.000461 0.000239 Linear10 3

Lower Respiratory Symptoms PM Schwartz and Neas 2000 6 cities 7-14 All All PM 24-hr avg 0.016976 0.006680 Logistic2.5 10-2.5

Minor Restricted Activity Ostro and
Days RothschildPM 1989 nationwide 18-64 All All O 24-hr avg 0.00741 0.00070 Log-linear2.5 3

Work Loss Days PM Ostro 1987 nationwide 18-64 All All None 24-hr avg 0.0046 0.00036 Log-linear2.5

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for more
detail on the specific averaging time used in the study.
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 The original study measured PM , however when using the study's results we use PM .  This makes only a negligible46
2.1 2.5

difference, assuming that the adverse effects of PM  and PM  are comparable.2.1 2.5

D-38

Acute Effects

Acute Bronchitis [Dockery, 1996 #25]

Dockery et al. [ 1996 #25] examined the relationship between PM and other pollutants on
the reported rates of asthma, persistent wheeze, chronic cough, and bronchitis, in a study of
13,369 children ages 8-12 living in 24 communities in U.S. and Canada.  Health data were
collected in 1988-1991, and single-pollutant models were used in the analysis to test a number of
measures of particulate air pollution.  Dockery et al. found that annual level of sulfates and
particle acidity were significantly related  to bronchitis, and PM  and PM  were marginally2.1 10
significantly related to bronchitis.   They also found nitrates were linked to asthma, and sulfates46

linked to chronic phlegm.  It is important to note that thestudy examined annual pollution
exposures, and the authors did not rule out that acute (daily) exposures could be related to
asthma attacks and other acute episodes.  Earlier work, by Dockery et al. [ 1989 #327], based on
six U.S. cities, found acute bronchitis and chronic cough significantly related to PM .  Because15
it is based on a larger sample, the Dockery et al. [1996 #25] study is the better study to develop a
C-R function linking PM  with bronchitis. 2.5

Bronchitis was counted in the study only if there were “reports of symptoms in the past
12 months” [Dockery, 1996 #25, p.  501].  It is unclear, however, if the cases of bronchitis are
acute and temporary, or if the bronchitis is a chronic condition.  Dockery et al. found no
relationship between PM and chronic cough and chronic phlegm, which are important indicators
of chronic bronchitis.  For this analysis, we assumed that the C-R function based on Dockery et
al. is measuring acute bronchitis.  The C-R function is based on results of the single pollutant
model reported in Table 1. 

Single Pollutant Model

The estimated logistic coefficient and standard error are based on the odds ratio (1.50)
and 95% confidence interval (0.91-2.47) associated with being in the most polluted city (PM  =2.1
20.7 µg/m ) versus the least polluted city (PM  = 5.8 µg/m ) [Dockery, 1996 #25, Tables 1 and3 3

2.1
4].  The original study used PM , however, we use the PM  coefficient and apply it to PM2.1 2.1 2.5
data.

Functional Form: Logistic
Coefficient: 0.027212
Standard Error: 0.017096
Incidence Rate: annual bronchitis incidence rate per person = 0.043 [American Lung
Association, 2002 #2354, Table 11]
Population: population of ages 8-12
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This estimate assumes that all heart attacks that are not instantly fatal will result in a hospitalization.  In addition,47

Rosamond et al. [ 1999 #2373] report that approximately six percent of male and eight percent of female hospitalized heart attack
patients die within 28 days (either in or outside of the hospital).  We applied a factor of 0.93 to the number of hospitalizations to
estimate the number of nonfatal heart attacks per year.
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Acute Myocardial Infarction (Heart Attacks), Nonfatal [Peters, 2001 #2157]

Peters et al. [ 2001 #2157] studied the relationship between increased particulate air
pollution and onset of heart attacks in the Boston area from 1995 to 1996.  The authors used air
quality data for PM , PM , PM ,“black carbon”, O , CO, NO , and SO  in a case-crossover10 10-2.5 2.5 3 2 2
analysis.  For each subject, the case period was matched to three control periods, each 24 hours
apart.  In univariate analyses, the authors observed a positive association between heart attack
occurrence and PM  levels hours before and days before onset.  The authors estimated2.5
multivariate conditional logistic models including two-hour and twenty-four hour pollutant
concentrations for each pollutant.  They found significant and independent associations between
heart attack occurrence and both two-hour and twenty-four hour PM  concentrations before2.5
onset.  Significant associations were observed for PM  as well.  None of the other particle10
measures or gaseous pollutants were significantly associated with acute myocardial infarction for
the two hour or twenty-four hour period before onset.

The patient population for this study was selected from health centers across the United
States.  The mean age of participants was 62 years old, with 21% of the study population under
the age of 50.  In order to capture the full magnitude of heart attack occurrence potentially
associated with air pollution and because age was not listed as an inclusion criteria for sample
selection, we apply an age range of 18 and over in the C-R function.  According to the National
Hospital Discharge Survey, there were no hospitalizations for heart attacks among children <15
years of age in 1999 and only 5.5% of all hospitalizations occurred in 15-44 year olds [Popovic,
2001 #2374, Table 10].

Single Pollutant Model

The coefficient and standard error are calculated from an odds ratio of 1.62 (95% CI
1.13-2.34) for a 20 µg/m  increase in twenty-four hour average PM  [Peters, 2001 #2157, Table3

2.5
4, p. 2813].

Functional Form: Logistic
Coefficient: 0.024121
Standard Error: 0.009285
Incidence Rate: region-specific daily nonfatal heart attack rate per person 18+ = 93% of region-
specific daily heart attack hospitalization rate (ICD code 410) 47

Population: population of ages 18 and older
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Krupnick and Kopp [ 1988 #318, p. 2-24] and ESEERCO [ 1994 #323, p. V-32] used the same C-R functional form as48

that used here.

Krupnick et al. [ 1990 #35, Table 1] reported the age distribution in their complete data, but they did not report the ages49

of individuals that were considered “adult.”  This analysis assumes that individuals 18 and older were considered adult.  Only a
small percentage (0.6%) of the study population is above the age of 60, so the C-R function was limited to the adult population. up
through the age of 65.
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Any of 19 Respiratory Symptoms [Krupnick, 1990 #35]

Krupnick et al. [ 1990 #35] estimated the impact of air pollution on the incidence of any
of 19 respiratory symptoms or conditions in 570 adults and 756 children living in three
communities in Los Angeles, California from September 1978 to March 1979.  Krupnick et al. [
1990 #35] listed 13 specific “symptoms or conditions”: head cold, chest cold, sinus trouble,
croup, cough with phlegm, sore throat, asthma, hay fever, doctor-diagnosed ear infection, flu,
pneumonia, bronchitis, and bronchiolitis.  The other six symptoms or conditions are not
specified.

In their analysis, they included COH, ozone, NO , and SO , and they used a logistic2 2
regression model that takes into account whether a respondent was well or not the previous day. 
A key difference between this and the usual logistic model, is that the model they used includes a
lagged value of the dependent variable.  In single-pollutant models, daily O , COH, and SO3 2
were significantly related to respiratory symptoms in adults.  Controlling for other pollutants,
they found that ozone was still significant.  The results were more variable for COH and SO ,2
perhaps due to collinearity.  NO  had no significant effect.  No effect was seen in children for2
any pollutant.  The results from the two-pollutant model with COH and ozone are used to
develop a C-R function.

Multipollutant Model (PM  and ozone)10

The C-R function used to estimate the change in ARD2 associated with a change in daily
average PM  concentration is based on Krupnick et al. [ 1990 #35, p. 12]:10

48

Functional Form: Linear
Coefficient: first derivative of the stationary probability = 0.000461
Standard Error: 0.000239
Population: population of ages 18-64 years49

The logistic regression model used by Krupnick et al. [ 1990 #35] takes into account
whether a respondent was well or not the previous day.  Following Krupnick et al. (p. 12), the
probability that one is sick is on a given day is:
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The model without NO  [Krupnick, 1990 #35, Table V equation 3] was used in this analysis, but the full suite of50
2

coefficient estimates for this model were not reported.  Krupnick et al. [ 1990 #35, Table IV] reported all of the estimated
coefficients for a model of children and for a model of adults when four pollutants were included (ozone, COH, SO , and NO ). 2 2
However, because of high collinearity between NO  and COH, NO  was dropped from some of the reported analyses (Krupnick et2 2
al., p. 10), and the resulting coefficient estimates changed substantially [see \Krupnick, 1990 #35, Table IV].  Both the ozone and
COH coefficients dropped by about a factor of two or more. 
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where: 
X = the matrix of explanatory variables
p = the probability of sickness on day t, given wellness on day t-1, and 0
p = the probability of sickness on day t, given sickness on day t-1.  1

In other words, the transition probabilities are estimated using a logistic function; the key
difference between this and the usual logistic model, is that the model includes a lagged value of
the dependent variable.

To calculate the impact of COH (or other pollutants) on the probability of ARD2, it is
possible, in principle, to estimate ARD2 before the change in COH and after the change:

However the full suite of coefficient estimates are not available.   Rather than use the50

full suite of coefficient values, the impact of COH on the probability of probability of ARD2
may be approximated by the derivative of ARD2 with respect to COH:

where β  is the reported logistic regression coefficient for COH.  Since COH data are notCOH
available for the benefits analysis, an estimated PM  logistic regression coefficient is used based10
on the following assumed relationship between PM , COH, and TSP:10
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This analysis uses β  = 0.0088 [Krupnick, 1990 #35, Table V equation 3].  TheCOH
conversion from COH to TSP is based on study-specific information provided to ESEERCO [
1994 #323, p. V-32].  The conversion of TSP to PM  is from also from ESEERCO [ 1994 #323,10
p. V-5], which cited studies by EPA [ 1986 #236] and the California Air Resources Board [ 1982
#329].

The change in the incidence of ARD2 associated with a given change in COH is then
estimated by:

This analysis uses transition probabilities obtained from Krupnick et al. as reported by
ESEERCO [ 1994 #323, p. V-32],  for the adult population: p  = 0.7775 and p  = 0.0468.  This1 0
implies:

The standard error for the coefficient is derived using the reported standard error of the
logistic regression coefficient in Krupnick et al. [ 1990 #35, Table V]:
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Lower Respiratory Symptoms [Schwartz, 2000 #1657]

Schwartz et al. [ 2000 #1657] replicated a previous analysis [Schwartz, 1994 #96] linking
PM levels to lower respiratory symptoms in children in six cities in the U.S.  The original study
enrolled 1,844 children into a year-long study that was conducted in different years (1984 to
1988) in six cities.  The students were in grades two through five at the time of enrollment in
1984.  By the completion of the final study, the cohort would then be in the eighth grade (ages
13-14); this suggests an age range of 7 to 14.  The previous study focused on PM , acid aerosols,10
and gaseous pollutants, although single-pollutant PM  results were reported.  Schwartz et al. [2.5
2000 #1657] focused more on the associations between PM  and PM  and lower respiratory2.5 10-2.5
symptoms.  In single and co-pollutant models, PM  was significantly associated with lower2.5
respiratory symptoms, while PM  was not.  PM  exhibited a stronger association with10-2.5 10-2.5
cough than did PM .  The PM  C-R function for lower respiratory symptoms is based on the2.5 2.5
results of the reported co-pollutant model (PM  and PM ).  2.5 10-2.5

Multipollutant Model (PM  and PM )2.5 10-2.5

In a model with PM , the PM  coefficient and standard error are calculated from the10-2.5 2.5
reported odds ratio (1.29) and 95% confidence interval (1.06-1.57) associated with a 15 µg/m3

change in PM  [Schwartz , 2000 #1657, Table 2]. 2.5

Functional Form: Logistic
Coefficient: 0.016976
Standard Error: 0.006680
Incidence Rate: daily lower respiratory symptom incidence rate per person = 0.0012 [Schwartz,
1994 #96, Table 2]
Population: population of ages 7 to 14
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 The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health51

Statistics.  In publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.  From the
study, it is not clear if the age range stops at 65 or includes 65 year olds.  We apply the C-R function to individuals ages 18-64 for
consistency with other studies estimating impacts to non-elderly adult populations.
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Minor Restricted Activity Days: Ostro and Rothschild [ 1989 #60]

Ostro and Rothschild [ 1989 #60] estimated the impact of PM  and ozone on the2.5
incidence of minor restricted activity days (MRADs) and respiratory-related restricted activity
days (RRADs) in a national sample of the adult working population, ages 18 to 65, living in
metropolitan areas.   The annual national survey results used in this analysis were conducted in51

1976-1981.  Controlling for PM , two-week average ozone has highly variable association with2.5
RRADs and MRADs.  Controlling for ozone, two-week average PM  was significantly linked2.5
to both health endpoints in most years.  The C-R function for PM is based on this co-pollutant
model.

The study is based on a “convenience” sample of non-elderly individuals.  Applying the
C-R function to this age group is likely a slight underestimate, as it seems likely that elderly are
at least as susceptible to PM as individuals under 65.  The elderly appear more likely to die due
to PM exposure than other age groups [e.g., \Schwartz, 1994 #149, p. 30; ] and a number of
studies have found that hospital admissions for the elderly are related to PM exposures [e.g.,
\Schwartz, 1994 #147; Schwartz, 1994 #144].

Multipollutant Model (PM  and ozone)2.5

Using the results of the two-pollutant model, we developed separate coefficients for each
year in the analysis, which were then combined for use in this analysis.  The coefficient is a
weighted average of the coefficients in Ostro and Rothschild [ 1989 #60, Table 4] using the
inverse of the variance as the weight:
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 The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health52

Statistics.  In publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.  From the
study, it is not clear if the age range stops at 65 or includes 65 year olds.  We apply the C-R function to individuals ages 18-64 for
consistency with other studies estimating impacts to non-elderly adult populations.

The study used a two-week average pollution concentration; the C-R function uses a daily average, which is assumed to53

be a reasonable approximation.  
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The standard error of the coefficient is calculated as follows, assuming that the estimated
year-specific coefficients are independent:

This reduces down to:

Functional Form: Log-linear
Coefficient: 0.00741
Standard Error: 0.00070
Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137
[Ostro and Rothschild , 1989 #60, p. 243]
Population: adult population ages 18 to 64

Work Loss Days [Ostro, 1987 #456]

Ostro [ 1987 #456] estimated the impact of PM  on the incidence of work-loss days2.5
(WLDs), restricted activity days (RADs), and respiratory-related RADs (RRADs) in a national
sample of the adult working population, ages 18 to 65, living in metropolitan areas.   The annual52

national survey results used in this analysis were conducted in 1976-1981.  Ostro reported that
two-week average PM  levels  were significantly linked to work-loss days, RADs, and2.5

53

RRADs, however there was some year-to-year variability in the results.  Separate coefficients
were developed for each year in the analysis (1976-1981); these coefficients were pooled.  The
coefficient used in the concentration-response function presented here is a weighted average of
the coefficients in Ostro [ 1987 #456, Table III] using the inverse of the variance as the weight.

The study is based on a “convenience” sample of non-elderly individuals.  Applying the
C-R function to this age group is likely a slight underestimate, as it seems likely that elderly are
at least as susceptible to PM as individuals under 65.  The elderly appear more likely to die due
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to PM exposure than other age groups [e.g., \Schwartz, 1994 #149, p. 30; ] and a number of
studies have found that hospital admissions for the elderly are related to PM exposures [e.g.,
\Schwartz, 1994 #147; Schwartz, 1994 #144].  On the other hand, the number of workers over
the age of 65 is relatively small; it was approximately 3% of the total workforce in 2001 [U.S.
Bureau of the Census, 2002 #2387, Table 561].

Single Pollutant Model

The coefficient used in the C-R function is a weighted average of the coefficients in
Ostro [ 1987 #456, Table III] using the inverse of the variance as the weight:

The standard error of the coefficient is calculated as follows, assuming that the estimated
year-specific coefficients are independent:

This eventually reduces down to:

Functional Form: Log-linear
Coefficient: 0.0046
Standard Error: 0.00036
Incidence Rate: daily work-loss-day incidence rate per person ages 18 to 64 = 0.00595 [Adams,
1999 #2355, Table 41; U.S. Bureau of the Census, 1997 #447, No. 22]
Population: adult population ages 18 to 64
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Exhibit D-7  Concentration-Response (C-R) Functions for Particulate Matter and Asthma-Related Effects

Endpoint Name Pollutant Author Year Location Age Race Gender Beta Std Error NotesOther Averaging Functional
Pollutants Time Form1

Acute Bronchitis PM 1999 9-15 All All None Annual Avg 0.022431 0.015957 Logistic2.5
McConnell et Southern
al. California

Asthma Exacerbation, Whittemore Los Angeles,
Asthma Attacks and Korn CAPM 1980 All All All O 24-hr avg 0.001436 0.000558 Logistic10 3

Asthma Exacerbation, Los Angeles, New onset of
Cough CA symptomsPM Ostro et al. 2001 8-13 Black All None 24-hr avg 0.003177 0.001156 Logistic2.5

Asthma Exacerbation, Vancouver,
Cough CANPM Vedal et al. 1998 6-13 All All None 24-hr avg 0.007696 0.003786 Logistic10

Asthma Exacerbation, Linear (log
Moderate or Worse of pollutant)PM Ostro et al. 1991 Denver, CO All All All None 24-hr avg 0.0006 0.00032.5

Asthma Exacerbation,
One or More Symptoms PM Yu et al. 2000 Seattle, WA 5-13 All All CO, SO 24-hr avg 0.004879 0.005095 Logistic10 2

Asthma Exacerbation, Los Angeles, New onset of
Shortness of Breath CA symptomsPM Ostro et al. 2001 8-13 Black All None 24-hr avg 0.003177 0.001550 Logistic2.5

Asthma Exacerbation, Los Angeles, New onset of
Wheeze CA symptomsPM Ostro et al. 2001 8-13 Black All None 24-hr avg 0.002565 0.001030 Logistic2.5

Chronic Phlegm PM 1999 9-15 All All None Annual Avg 0.063701 0.025580 Logistic2.5
McConnell et Southern
al. California

Upper Respiratory
Symptoms PM Pope et al. 1991 Utah Valley 9-11 All All None 24-hr avg 0.0036 0.0015 Logistic10

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for more detail
on the specific averaging time used in the study.
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 Assuming that a child enters kindergarten at age 5, 4  grade corresponds to age 9 and 10  grade corresponds to age 15. 54 th th

We therefore applied the results of this study to children ages 9 to 15.

  The American Lung Association [ 2002  #2358, Table 7] estimates asthma prevalence for children ages 5 to 17 at55

5.67% (based on data from the 1999 National Health Interview Survey).
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Asthma-Related Effects

Acute Bronchitis [McConnell, 1999 #1900]

McConnell et al. [ 1999 #1900] examined the relationship between air pollution and
bronchitic symptoms among asthmatic 4 , 7 , and 10  grade children in southern California.  th th th 54

The authors collected information on the prevalence of bronchitis, chronic cough, and chronic
phlegm among children with and without a history of asthma and/or wheeze.  They used annual
measurements of ozone, PM , PM , NO , and acids in a logistic regression model with10 2.5 2
adjustments for personal covariates.  Neither bronchitis, cough, or phlegm were associated with
any of the pollutants among children with no history of wheeze or asthma or a history of wheeze
without diagnosed asthma.  Among asthmatics, PM  was significantly associated with bronchitis10
and phlegm; PM  was significantly associated with phlegm and marginally associated with2.5
bronchitis; NO  and acids were both significantly associated with phlegm; and ozone was not2
significantly associated with any of the endpoints. 

Bronchitis was defined in the study by the question: “How many times in the past 12
months did your child have bronchitis?” [McConnell, 1999 #1900, p. 757].  It is unclear,
however, if the cases of bronchitis are acute and temporary, or if the bronchitis is a chronic
condition.  McConnell et al. found a relationship between PM and chronic phlegm but none with
chronic cough, each of which may be indicators of chronic bronchitis.  For this analysis, we
assumed that the C-R function based on McConnell et al. is measuring acute bronchitis.  The
PM  C-R function for bronchitis among asthmatics is based on the results of the single pollutant2.5
model reported in Table 3.

Single Pollutant Model

The estimated logistic coefficient and standard error are based on the odds ratio (1.4) and
95% confidence interval (0.9-2.3) associated with an increase in yearly mean 2-week average
PM  of 15 µg/m . [McConnell, 1999 #1900, Table 3] 2.5

3

Functional Form: Logistic
Coefficient: 0.022431
Standard Error: 0.015957
Incidence Rate: annual incidence rate of one or more episodes of bronchitis per asthmatic =
0.326 [McConnell, 1999 #1900, Table 2]
Population: population of asthmatics ages 9 to 15 = 5.67%  of population ages 9 to 1555
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The conversion of TSP to PM  is from ESEERCO [ 1994 #323, p. V-5], who cited studies by EPA [ 1986 #236] and the56
10

California Air Resources Board [ 1982 #329].

 Based on an analysis of the 1999 National Health Interview Survey, the daily incidence of wheezing attacks for adult57

asthmatics is estimated to be 0.0550. In the same survey, wheezing attacks for children were examined, however, the number of
wheezing attacks per year were censored at 12 (compared to censoring at 95 for adults).  Due to the potential for underestimation of
the number of children’s wheezing attacks, we used the adult rate for all individuals.    

 The authors note that there were 26 days in which PM  concentrations were reported higher than PM  concentrations. 58
2.5 10

The majority of results the authors reported were based on the full dataset.  These results were used for the basis for the C-R
functions.
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Asthma Attacks [Whittemore and Korn, 1980 #634]

Whittemore and Korn [ 1980 #634] examined the relationship between air pollution and
asthma attacks in a survey of 443 children and adults, living in six communities in southern
California during three 34-week periods in 1972-1975.  The analysis focused on TSP and
oxidants (O ).  Respirable PM, NO , SO  were highly correlated with TSP and excluded from thex 2 2
analysis. In a two pollutant model, daily levels of both TSP and oxidants were significantly
related to reported asthma attacks.  The results from this model were used, and the oxidant result
was adjusted so it may be used with ozone data.

Multipollutant Model (PM  and ozone)10

The PM  C-R function is based on the results of a co-pollutant model of TSP and ozone10
[Whittemore, 1980 #634, Table 5].  Assuming that PM  is 55 percent of TSP  and that10

56

particulates greater than ten micrometers are harmless, the coefficient is calculated by dividing
the TSP coefficient (0.00079) by 0.55.  The standard error is calculated from the two-tailed p-
value (<0.01) reported by Whittemore and Korn [ 1980 #634, Table 5], which implies a t-value
of at least 2.576 (assuming a large number of degrees of freedom).

Functional Form: Logistic
Coefficient: 0.001436
Standard Error: 0.000558
Incidence Rate: daily incidence of asthma attacks = 0.0550  57

Population: population of asthmatics of all ages = 3.86% of the population of all ages
[American Lung Association, 2002  #2358, Table 7]

Asthma Exacerbation, Cough [Ostro, 2001 #2317]

Ostro et al. [ 2001 #2317] studied the relation between air pollution in Los Angeles and
asthma exacerbation in African-American children (8 to 13 years old) from August to November
1993.  They used air quality data for PM , PM , NO , and O  in a logistic regression model10 2.5 2 3
with control for age, income, time trends, and temperature-related weather effects.   Asthma58

symptom endpoints were defined in two ways: “probability of a day with symptoms” and “onset
of symptom episodes”.  New onset of a symptom episode was defined as a day with symptoms
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 On average, 17.3% of African-American asthmatics have cough episodes on a given day [Ostro, 2001 #2317, p.202]. 59

Only those who are symptom-free on the previous day (1-0.145 = 85.5%) are at-risk for a new onset episode.

  The American Lung Association [ 2002  #2358, Table 9] estimates asthma prevalence for African-American children60

ages 5 to 17 at 7.26% (based on data from the 1999 National Health Interview Survey).
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followed by a symptom-free day.  The authors found cough prevalence associated with PM  and10
PM  and cough incidence associated with PM  PM , and NO .  Ozone was not significantly2.5 2.5 10 2
associated with cough among asthmatics.  The PM  C-R function is based on the results of the2.5
single pollutant model looking at the onset of new symptoms. 

Single Pollutant Model

The coefficient and standard error are based on an odds ratio of 1.10 (95% CI 1.03-1.18)
for a 30 µg/m  increase in 12-hour average PM  concentration.3

2.5

The C-R function based on this model will estimate the number of new onset episodes of
cough avoided.  In order to convert this estimate to the total number of episodes avoided, the
results are adjusted by an estimate of the duration of symptom episodes.  The average duration
can be estimated from Ostro et al. [ 2001 #2317] using the ratio of the probability of a symptom
episode to the probability of a new onset episode.  For cough, this ratio is 2.2 (14.5% divided by
6.7%) [Ostro, 2001 #2317, p.202].

In addition, not all children are at-risk for a new onset of cough, as defined by the study. 
On average, 14.5% of African-American asthmatics have cough on a given day [Ostro, 2001
#2317, p.202].  Only those who are symptom-free on the previous day are at-risk for a new onset
episode (1-0.145 = 85.5%).  As a result, a factor of 85.5% is used in the function to estimate the
population of African-American 8 to 13 year old children at-risk for a new cough episode.

Functional Form: Logistic
Coefficient: 0.003177
Standard Error: 0.001156
Incidence Rate: daily new onset cough (incidence) rate per person [Ostro, 2001 #2317, p.202] =
0.067
Population: asthmatic African-American population ages 8 to 13 at-risk for a new episode of
cough = 6.21% of African-American population ages 8 to 13 multiplied (85.5% at-risk  times59

7.26% asthmatic )60

Adjustment Factor: average number of consecutive days with a cough episode (days) = 2.2

Asthma Exacerbation, Cough [Vedal, 1998 #416]

Vedal et al. [ 1998 #416] studied the relationship between air pollution and respiratory
symptoms among asthmatics and non-asthmatic children (ages 6 to 13) in Port Alberni, British
Columbia, Canada.  Four groups of elementary school children were sampled from a prior cross-
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sectional study: (1) all children with current asthma, (2) children without doctor diagnosed
asthma who experienced a drop in FEV after exercise, (3) children not in groups 1 or 2 who had
evidence of airway obstruction, and (4) a control group of children with matched by classroom. 
The authors used logistic regression and generalized estimating equations to examine the
association between daily PM  levels and daily increases in various respiratory symptoms10
among these groups.  In the entire sample of children, PM  was significantly associated with10
cough, phlegm, nose symptoms, and throat soreness.  Among children with diagnosed asthma,
the authors report a significant association between PM  and cough symptoms, while no10
consistent effects were observed in the other groups.  Since the study population has an over-
representation of asthmatics, due to the sampling strategy, the results from the full sample of
children are not generalizeable to the entire population.  The C-R function presented below is
based on results among asthmatics only.  

Single Pollutant Model

The PM coefficient and standard error are based on an increase in odds of 8% (95% CI10 
0-16%) reported in the abstract for a 10 µg/m  increase in daily average PM .3

10

Functional Form: Logistic
Coefficient: 0.007696
Standard Error: 0.003786
Incidence Rate: daily cough rate per person [Vedal, 1998 #416, Table 1, p. 1038] = 0.086
Population: asthmatic population ages 6 to 13 = 5.67%  of population ages 6 to 1361

Asthma Exacerbation, Moderate or Worse [Ostro, 1991 #64]

Ostro et al. [ 1991 #64] examined the effect of air pollution on asthmatics, ages 18 to 70,
living in Denver, Colorado from December 1987 to February 1988.  The respondents in this
study were asked to record daily a subjective rating of their overall asthma status each day
(0=none, 1=mild, 2=moderate, 3=severe, 4=incapacitating).  Ostro et al. then examined the
relationship between moderate (or worse) asthma and H , sulfate, SO , PM , estimated PM ,+

2 2.5 2.5
PM , nitrate, and nitric acid.  Daily levels of H  were linked to cough, asthma, and shortness of10

+

breath.  PM  was linked to asthma.  Sulfate was linked to shortness of breath.  No effects seen2.5
for other pollutants. The C-R function is based on a single-pollutant linear regression model
where the log of the pollutant is used.

Single Pollutant Model

Two PM  coefficients are presented, both equal 0.0006, however only one is significant. 2.5
The coefficient based on data that does not include estimates of missing PM  values is not2.5
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 The C-R function is applied to asthmatics of all ages, although the study population consists of asthmatics between the62

ages of 18 and 70.  It seems reasonable to assume that individuals over the age of 70 are at least as susceptible as individuals in the
study population.  It also seems reasonable to assume that individuals under the age of 18 are also susceptible.  For example,
controlling for oxidant levels, Whittemore and Korn [ 1980 #634] found TSP significantly related to asthma attacks in a study
population comprised primarily (59 percent) of individuals less than 16 years of age.
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significant (std error =  0.0053); the coefficient that includes estimates of missing PM  values2.5
(estimated using a function of sulfate and nitrate) is significant at p < 0.5 (std error =  0.0003). 
The latter coefficient is used here.

The C-R function to estimate the change in the number of days with moderate (or worse)

asthma 

Functional Form: Linear (using log of the pollutant)
Coefficient: 0.0006
Standard Error: 0.0003
Population: population of asthmatics of all ages  = 3.86% of the population of all ages62

[American Lung Association, 2002  #2358, Table 7]

Asthma Exacerbation, One or More Symptoms [Yu, 2000 #2112]

Yu et al. [ 2000 #2112] examined the association between air pollution and asthmatic
symptoms among mild to moderate asthmatic children ages 5-13 in Seattle.  They collected air
quality data for CO, SO , PM , and PM and asked study subjects to record symptoms daily. 2 10 1.0 
They used logistic regression models with generalized estimating equations in two different
approaches.  A “marginal approach” was used to estimate the impact of air pollution on asthma
symptoms and a “transition approach” was used to estimate the association conditioned on the
previous day’s outcome.  The primary endpoint, odds of at least one asthma symptom, was
significantly associated with CO, PM , and PM  in single pollutant models.  In multipollutant10 1.0
models, CO remained significant while PM effects declined slightly.  The magnitude of the
effects were similar between the “marginal” and “transition” approaches.  The C-R function is
based on the results of the “transition approach,” where the previous day’s symptoms is an
explanatory variable.  

Multipollutant Model (PM , CO, SO )10 2

The C-R function is based on the results of the “transition approach,” where the previous
day’s symptoms is an explanatory variable.  The multipollutant PM  coefficient and standard10
error are based on the odds ratio (1.05) and 95% confidence interval (0.95-1.16) for a 10 µg/m3

increase in one-day lagged daily average PM  [Yu, 2000 #2112, Table 4, p. 1212].10
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Functional Form: Logistic
Coefficient: 0.004879
Standard Error: 0.005095
Incidence Rate: daily rate of at least one asthma episode per person [Yu, 2000 #2112, Table 2,
p. 1212] = 0.60
Population: asthmatic population ages 5 to 13 = 5.67%  of population ages 5 to 1363

Asthma Exacerbation, Shortness of Breath [Ostro, 2001 #2317]

Ostro et al. [ 2001 #2317] studied the relationship between air pollution in Los Angeles
and asthma exacerbation in African-American children (8 to 13 years old) from August to
November 1993.  They used air quality data for PM , PM , NO , and ozone in a logistic10 2.5 2
regression model with control for age, income, time trends, and temperature-related weather
effects.  Asthma symptom endpoints were defined in two ways: “probability of a day with
symptoms” and “new onset of a symptom episode”.  New onset of a symptom episode was
defined as a day with symptoms followed by a symptom-free day.  The authors found that both
the prevalent and incident episodes of shortness of breath were associated with PM  and PM . 2.5 10
Neither ozone nor NO  were significantly associated with shortness of breath among asthmatics. 2
The PM  C-R function is based on the results of a single pollutant model looking at the onset of2.5
new symptoms.  

Single Pollutant Model

The coefficient and standard error are based on an odds ratio of 1.10 (95% CI 1.00-1.20)
for a 30 µg/m  increase in 12-hour average PM  concentration [Ostro, 2001 #2317, Table 5,3

2.5
p.204].

The C-R function based on this model will estimate the number of new onset episodes of
shortness of breath avoided.  In order to convert this estimate to the total number of episodes
avoided, the results are adjusted by an estimate of the duration of symptom episodes.  The
average duration can be estimated from Ostro et al. [ 2001 #2317] using the ratio of the
probability of a symptom episode to the probability of a new onset episode.  For shortness of
breath, this ratio is 2.0 (7.4% divided by 3.7%) [Ostro, 2001 #2317, p.202].

In addition, not all children are at-risk for a new onset of shortness of breath, as defined
by the study.  On average, 7.4% of African-American asthmatics have shortness of breath
episodes on a given day [Ostro, 2001 #2317, p.202].  Only those who are symptom-free on the
previous day are at-risk for a new onset episode (1-0.074 = 92.6%).  As a result, a factor of
92.6% is used in the function to estimate the population of African-American 8 to 13 year old
children at-risk for a new shortness of breath episode.
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 On average, 7.4% of African-American asthmatics have shortness of breath episodes on a given day [Ostro, 2001 #2317,64

p.202].  Only those who are symptom-free on the previous day (1-0.074 = 92.6%) are at-risk for a new onset episode.

 The American Lung Association [ 2002  #2358, Table 9] estimates asthma prevalence for African-American children65

ages 5 to 17 at 7.26% (based on data from the 1999 National Health Interview Survey).
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Functional Form: Logistic
Coefficient: 0.003177
Standard Error: 0.001550
Incidence Rate: daily new onset shortness of breath (incidence) rate per person [Ostro, 2001
#2317, p.202] = 0.037
Population: asthmatic African-American population ages 8 to 13 at-risk for a new episode of
shortness of breath = 6.72% of African-American population ages 8 to 13 multiplied (92.6% at-
risk  times 7.26% asthmatic )64 65

Adjustment Factor: average number of consecutive days with a shortness of breath episode
(days) = 2.0

Asthma Exacerbation, Wheeze [Ostro, 2001 #2317]

Ostro et al. [ 2001 #2317] studied the relation between air pollution in Los Angeles and
asthma exacerbation in African-American children (8 to 13 years old) from August to November
1993.  They used air quality data for PM , PM , NO , and O  in a logistic regression model10 2.5 2 3
with control for age, income, time trends, and temperature-related weather effects.  Asthma
symptom endpoints were defined in two ways: “probability of a day with symptoms” and “onset
of symptom episodes”.  New onset of a symptom episode was defined as a day with symptoms
followed by a symptom-free day.  The authors found both the prevalence and incidence of
wheeze associated with PM  PM , and NO .  Ozone was not significantly associated with2.5 10 2
wheeze among asthmatics.  The PM  C-R function is based on the results of a single pollutant2.5
model looking at the onset of new symptoms.   

Single Pollutant Model

The coefficient and standard error are based on an odds ratio of 1.08 (95% CI 1.01-1.14)
for a 30 µg/m  increase in 12-hour average PM  concentration [Ostro, 2001 #2317, Table 5,3

2.5
p.204].

The C-R function based on this model will estimate the number of new onset episodes of
wheeze avoided.  In order to convert this estimate to the total number of episodes avoided, the
results are adjusted by an estimate of the duration of symptom episodes.  The average duration
can be estimated from Ostro et al. [ 2001 #2317] using the ratio of the probability of a symptom
episode to the probability of a new onset episode.  For wheeze, this ratio is 2.3 (17.3% divided
by 7.6%) [Ostro, 2001 #2317, p.202].
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 On average, 17.3% of African-American asthmatics have wheeze episodes on a given day [Ostro, 2001 #2317, p.202]. 66

Only those who are symptom-free on the previous day (1-0.173 = 82.7%) are at-risk for a new onset episode.

  The American Lung Association [ 2002  #2358, Table 9] estimates asthma prevalence for African-American children67

ages 5 to 17 at 7.26% (based on data from the 1999 National Health Interview Survey).

 Assuming that a child enters kindergarten at age 5, 4  grade corresponds to age 9 and 10  grade corresponds to age 15. 68 th th

We therefore applied the results of this study to children ages 9 to 15.
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In addition, not all children are at-risk for a new onset of wheeze, as defined by the study. 
On average, 17.3% of African-American asthmatics have wheeze on a given day [Ostro, 2001
#2317, p.202].  Only those who are symptom-free on the previous day are at-risk for a new onset
episode (1-0.173 = 82.7%).  As a result, a factor of 82.7% is used in the function to estimate the
population of African-American 8 to 13 year old children at-risk for a new wheeze episode.

Functional Form: Logistic
Coefficient: 0.002565
Standard Error: 0.001030
Incidence Rate: daily new onset wheeze (incidence) rate per person [Ostro, 2001 #2317, p.202]
= 0.076
Population: asthmatic African-American population ages 8 to 13 at-risk for a new episode of
wheeze = 6.00% of African-American population ages 8 to 13 multiplied (82.7% at-risk  times66

7.26% asthmatic )67

Adjustment Factor: average number of consecutive days with a wheeze episode (days) = 2.3

Chronic Phlegm [McConnell, 1999 #1900]

McConnell et al. [ 1999 #1900] examined the relationship between air pollution and
bronchitic symptoms among asthmatic 4 , 7 , and 10  grade children in southern California.  th th th 68

The authors collected information on the prevalence of bronchitis, chronic cough, and chronic
phlegm among children with and without a history of asthma and/or wheeze.  They used annual
measurements of ozone, PM , PM , NO , and acids in a logistic regression model with10 2.5 2
adjustments for personal covariates.  Neither bronchitis, cough, or phlegm were associated with
any of the pollutants among children with no history of wheeze or asthma or a history of wheeze
without diagnosed asthma.  Among asthmatics, PM  was significantly associated with bronchitis10
and phlegm; PM  was significantly associated with phlegm and marginally associated with2.5
bronchitis; NO  and acids were both significantly associated with phlegm; and ozone was not2
significantly associated with any of the endpoints. 

Phlegm was defined in the study by the question: “Other than with colds, does this child
usually seem congested in the chest or bring up phlegm?” [McConnell, 1999 #1900, p. 757]. 
The authors refer to this definition as “chronic phlegm” and we also assume that the term
“usually” refers to chronic, rather than acute, phlegm.  The PM C-R functions for chronic
phlegm among asthmatics are based on the results of the single pollutant model reported in Table
3.
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Single Pollutant Model

The estimated logistic coefficient and standard error are based on the odds ratio (2.6) and
95% confidence interval (1.2-5.4) associated with an increase in yearly mean 2-week average
PM  of 15 µg/m . [McConnell, 1999 #1900, Table 3] 2.5

3

Functional Form: Logistic
Coefficient: 0.063701
Standard Error: 0.025580
Incidence Rate: annual incidence rate of phlegm per asthmatic = 0.257 [McConnell, 1999
#1900, Table 2]
Population: population of asthmatics ages 9 to 15 = 5.67%  of population ages 9 to 1569

Upper Respiratory Symptoms [Pope, 1991 #77]

Using logistic regression, Pope et al. [ 1991 #77] estimated the impact of PM  on the10
incidence of a variety of minor symptoms in 55 subjects (34 “school-based” and 21 “patient-
based”) living in the Utah Valley from December 1989 through March 1990.  The children in the
Pope et al. study were asked to record respiratory symptoms in a daily diary.  With this
information, the daily occurrences of upper respiratory symptoms (URS) and lower respiratory
symptoms (LRS) were related to daily PM  concentrations.  Pope et al. describe URS as10
consisting of one or more of the following symptoms:  runny or stuffy nose; wet cough; and
burning, aching, or red eyes.  Levels of ozone, NO , and SO  were reported low during this2 2
period, and were not included in the analysis.  The sample in this study is relatively small and is
most representative of the asthmatic population, rather than the general population.  The school-
based subjects (ranging in age from 9 to 11) were chosen based on “a positive response to one or
more of three questions: ever wheezed without a cold, wheezed for 3 days or more out of the
week for a month or longer, and/or had a doctor say the ‘child has asthma’ [Pope, 1991 #77, p.
669].”  The patient-based subjects (ranging in age from 8 to 72) were receiving treatment for
asthma and were referred by local physicians.  Regression results for the school-based sample
[Pope, 1991 #77, Table 5] show PM  significantly associated with both upper and lower10
respiratory symptoms.  The patient-based sample did not find a significant PM  effect.  The10
results from the school-based sample are used here.

Single Pollutant Model

The coefficient and standard error for a one µg/m  change in PM  is reported in Table 5.3
10

Functional Form: Logistic
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Coefficient: 0.0036
Standard Error: 0.0015
Incidence Rate: daily upper respiratory symptom incidence rate per person = 0.3419 [Pope,
1991 #77, Table 2]
Population: asthmatic population ages 9 to 11 = 5.67%  of population ages 9 to 1170

Ozone Concentration-response Functions

Short-term Mortality

Exhibit D-8 summarizes the C-R functions used to estimate the relationship between ozone
and short-term mortality.  Detailed summaries of each of the studies used to generate the functions
are described below, along with the parameters used in each of the functions.
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Exhibit D-8  Concentration-Response (C-R) Functions for Ozone and Short-Term Mortality

Endpoint Name Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Non-Accidental Ito and Thurston 1996 Chicago, IL All All All PM 1-hr max Log-linear 0.000634 0.00025110

Non-Accidental Kinney et al. 1995 Los Angeles, CA All All All PM 1-hr max Log-linear 0 0.00021410

Non-Accidental Moolgavkar et al. 1995 Philadelphia, PA All All All SO , TSP 24-hr avg Log-linear 0.000611 0.0002162

Non-Accidental Samet et al. 1997 Philadelphia, PA All All All 24-hr avg Log-linear 0.000936 0.000312CO, NO , SO ,2 2
TSP

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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Short-Term Mortality, Non-Accidental [Ito, 1996 #187, Chicago]

Ito and Thurston [ 1996 #187] examined the relationship between daily non-accidental
mortality and air pollution levels in Cook County, Illinois from 1985 to 1990.  They examined
daily levels of ozone, PM , SO , and CO, and found a significant relationship for ozone and10 2
PM  with both pollutants in the model; no significant effects were found for SO  and CO.  In10 2
single pollutant models the effects were slightly larger. The C-R function for ozone is based on
the results of the co-pollutant model.  

Multipollutant Model (ozone and PM )10

In a co-pollutant model with PM , the coefficient (0.000634) and standard error10
(0.000251) were obtained directly from the author because the published paper reported
incorrect information.

Functional Form: Log-linear
Coefficient: 0.000634 
Standard Error: 0.000251 
Incidence Rate: county-level daily non-accidental mortality rate (ICD codes <800) per person
Population: population of all ages

Short-Term Mortality, Non-Accidental [Kinney, 1995 #191, Los Angeles]

Kinney et al. [ 1995 #191] examined the relationship between daily non-accidental
mortality and air pollution levels in Los Angeles, California from 1985 to 1990.  They examined
ozone, PM , and CO, and found a significant relationship for each pollutant in single pollutant10
models.  The effect for ozone dropped to zero with the inclusion of PM  in the model, while the10
effect for CO and PM  appeared co-pollutant ozone models.  The C-R function for ozone is10
based on the results of the co-pollutant model.    

Multipollutant Model (ozone and PM )10

In a model with PM , the coefficient and standard error are based on the relative risk10
(1.00) and 95% confidence interval (0.94-1.06) reported for a 143 ppb increase in daily one-hour
maximum ozone concentration [Kinney, 1995 #191, Table 2, p. 64].      

Functional Form: Log-linear
Coefficient: 0
Standard Error: 0.000214 
Incidence: county-level daily non-accidental mortality rate (ICD codes <800) per person
Population: population of all ages
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Short-Term Mortality, Non-Accidental [Moolgavkar, 1995 #49, Philadelphia]

Moolgavkar et al. [ 1995 #49] examined the relationship between daily non-accidental
mortality and air pollution levels in Philadelphia, Pennsylvania from 1973 to 1988.  They
examined ozone, TSP, and SO  in a three-pollutant model, and found a significant relationship2 
for ozone and SO ; TSP was not significant.  In season-specific models, ozone was significantly2
associated with mortality only in the summer months.  The C-R function for ozone is based on
the full-year three-pollutant model reported in Table 5 [Moolgavkar et al., 1995 #49, p. 482].  

Multipollutant Model (ozone, SO , TSP)2

The coefficient and standard error are based on the relative risk (1.063) and 95%
confidence interval (1.018-1.108) associated with a 100 ppb increase in daily average ozone
[Moolgavkar et al., 1995 #49, p. 482, Table 5].

Functional Form: Log-linear
Coefficient: 0.000611
Standard Error: 0.000216
Incidence Rate: county-level daily non-accidental mortality rate (ICD codes <800) per person
Population: population of all ages

Short-Term Mortality, Non-Accidental [Samet, 1997 #685, Philadelphia]

Samet et al. [ 1997 #685] examined the relationship between daily non-accidental
mortality and air pollution levels in Philadelphia, Pennsylvania from 1974 to 1988.  They
examined ozone, TSP, SO , NO , and CO  in a Poisson regression model.  In single pollutant2 2  
models, ozone, SO , TSP, and CO were significantly associated with mortality.  In a five-2
pollutant model, they found a positive statistically significant relationship for each pollutant
except NO .  The C-R function for ozone is based on the five-pollutant model (ozone, CO, NO ,2 2
SO , and TSP) reported in Table 9 [Samet, 1997 #685, p. 20].2

Multipollutant Model (ozone, CO, NO , SO , and TSP)2 2

In a model with CO, NO , SO , and TSP, the ozone coefficient and standard error are2 2
based on the percent increase (1.91) and t-statistic (3) associated with a 20.219 ppb increase in
two-day average ozone [Samet, 1997 #685, p. 20, Table 9].

Functional Form: Log-linear
Coefficient: 0.000936
Standard Error: 0.000312
Incidence Rate: county-level daily non-accidental mortality rate (ICD codes <800) per person
Population: population of all ages
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Exhibit D-9  Concentration-Response (C-R) Functions for Ozone and Chronic Illness

Endpoint Name Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Chronic Asthma McDonnell et al. 1999 27+ All Male None Logistic 0.0277 0.0135SF, SD, South annual avg 8-
Coast Air Basin hr avg

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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 The prevalence of asthma among males 27 and older (2.10 percent) was estimated from the 2000 National Health72

Interview Survey (NHIS) public use data, available at ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHIS/2000.
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Chronic Illness

Exhibit D-9 summarizes the C-R function ([McDonnell, 1999 #1153]) used to estimate
the relationship between ozone and chronic asthma.  A more detailed summary of McDonnell et
al. [ 1999 #1153], and the parameters used in the function, is described below.

Chronic Asthma  [McDonnell, 1999 #1153]

McDonnell et al. [ 1999 #1153] used the same cohort of Seventh-Day Adventists as
Abbey et al. [ 1991 #242;, 1993 #245], and examined the association between air pollution and
the onset of asthma in adults between 1977 and 1992.  Males who did not report doctor-
diagnosed asthma in 1977, but reported it in 1987 or 1992, had significantly higher ozone
exposures, controlling for other covariates; no significant effect was found between ozone
exposure and asthma in females.  No significant effect was reported for females or males due to
exposure to PM, NO , SO , or SO .  The C-R function for ozone is based on the single pollutant2 2 4
model for males reported in Table 5 [McDonnell, 1999 #1153, 1999, p. 117].  

Single Pollutant Model

The coefficient and standard error for males is reported in Table 5 for a unit increase in
annual average eight-hour ozone concentrations.71

Functional Form: Logistic
Coefficient: 0.0277
Standard Error: 0.0135
Incidence Rate: annual asthma incidence rate per person = 0.00219 [McDonnell, 1999 #1153,
1999, Table 4]
Population: non-asthmatic males age 27 and over = 97.9%  of males 27+72
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Exhibit D-10  Concentration-Response (C-R) Functions for Ozone and Hospital Admissions

Endpoint Name Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

All Respiratory Burnett et al. 2001 Toronto, CAN <2 All All PM 1-hr max Log-linear 0.006309 0.0018342.5

All Respiratory Schwartz 1995 New Haven, CT 65+ All All PM 24-hr avg Log-linear 0.002652 0.00139810

All Respiratory Schwartz 1995 Tacoma, WA 65+ All All PM 24-hr avg Log-linear 0.007147 0.00256510

Chronic Lung Disease Moolgavkar et al. 1997 Minneapolis, MN 65+ All All CO, PM 24-hr avg Log-linear 0.002743 0.00169910

Chronic Lung Disease
(less Asthma) Schwartz 1994 Detroit, MI 65+ All All PM 24-hr avg Log-linear 0.00549 0.0020510

Pneumonia Moolgavkar et al. 1997 Minneapolis, MN 65+ All All 24-hr avg Log-linear 0.003696 0.001030NO , PM ,2 10
SO2

Pneumonia Schwartz 1994 Detroit, MI 65+ All All PM 24-hr avg Log-linear 0.00521 0.001310

Pneumonia Schwartz 1994 Minneapolis, MN 65+ All All PM 24-hr avg Log-linear 0.003977 0.00186510

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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Hospital Admissions

Exhibit D-10 summarizes the C-R functions used to estimate the relationship between
ozone and hospital admissions.  Detailed summaries of each of the studies used to generate the
functions are described below, along with the parameters used in each of the functions.

Hospital Admissions for All Respiratory [Burnett, 2001 #2202, Toronto]

Burnett et al. [ 2001 #2202] studied the association between air pollution and acute
respiratory hospital admissions (ICD codes 493, 466, 464.4, 480-486) in Toronto from 1980-
1994, among children less than 2 years of age.  They collected hourly concentrations of the
gaseous pollutants, CO, NO , SO , and ozone.  Daily measures of particulate matter were2 2
estimated for the May to August period of 1992-1994 using TSP, sulfates, and coefficient of
haze data.  The authors report a positive association between ozone in the May through August
months and respiratory hospital admissions, for several single days after elevated ozone levels.  

The strongest association was found using a five-day moving average of ozone.  No
association was found in the September through April months.  In co-pollutant models with a
particulate matter or another gaseous pollutant, the ozone effect was only slightly diminished. 
The effects for PM and gaseous pollutants were generally significant in single pollutant models
but diminished in co-pollutant models with ozone, with the exception of CO.  The C-R function
for ozone is based on a co-pollutant model with PM , using the five-day moving average of2.5
one-hour max ozone.  

Multipollutant Model (ozone and PM )2.5

In a model with PM , the coefficient and standard error are based on the percent2.5
increase (33.0) and t-statistic (3.44) associated with a 45.2 ppb increase in the five-day moving
average of one-hour max ozone  [Burnett, 2001 #2202, Table 3].  

Functional Form: Log-linear
Coefficient: 0.006309
Standard Error: 0.001834
Incidence Rate: region-specific daily hospital admission rate for all respiratory admissions per
person less than 2 years of age (ICD codes 464, 466, 480-487, 493)
Population: population less than 2 years of age

Hospital Admissions for All Respiratory [Schwartz, 1995 #153, New Haven]

Schwartz [1995 #153] examined the relationship between air pollution and respiratory
hospital admissions (ICD codes 460-519) for individuals 65 and older in New Haven,
Connecticut, from January 1988 to December 1990.  In single-pollutant models, PM  and SO10 2
were significant, while ozone was marginally significant.  In a co-pollutant model with ozone
and PM , both pollutants were significant.  PM  remained significant in a model with SO ,10 10 2
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 To calculate the coefficient, a conversion of 1.96 µg/m  per ppb is used, based on a density of ozone of 1.96 grams per73 3

liter (at 25 degrees Celsius).  Since there are 1000 liters in a cubic meter and a million µg in a gram, this density means that there are
1.96 billion µg of ozone in a cubic meter of ozone.  If a cubic meter has just one ppb of ozone, then this means that this particular
cubic meter has 1.96 µg of ozone (i.e., one ppb = 1.96 µg/m ).3

To calculate the coefficient, a conversion of 1.96 µg/m  per ppb is used, based on a density of ozone of 1.96 grams per74 3

liter (at 25 degrees Celsius).  Since there are 1000 liters in a cubic meter and a million µg in a gram, this density means that there are
1.96 billion µg of ozone in a cubic meter of ozone.  If a cubic meter has just one ppb of ozone, then this means that this particular
cubic meter has 1.96 µg of ozone (i.e., one ppb = 1.96 µg/m ).3
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while ozone was marginally significant when adjusted for SO .  SO  was significant in a co-2 2
pollutant model with PM  but not with ozone.  The ozone C-R function is based on results from10
the co-pollutant model with PM .  10

Multipollutant Model (ozone and PM )10

In a model with PM , the coefficient and standard error are estimated from the relative10
risk (1.07) and 95% confidence interval (1.00-1.15) for a 50 µg/m  increase in average daily3

ozone levels [Schwartz,1995 #153, Table 3, p. 534].73

Functional Form: Log-linear
Coefficient: 0.002652
Standard Error: 0.001398
Incidence Rate: region-specific daily hospital admission rate for respiratory admissions per
person 65+ (ICD codes 460-519)
Population: population of ages 65 and older

Hospital Admissions for All Respiratory [Schwartz, 1995 #153, Tacoma]

Schwartz [ 1995 #153] examined the relationship between air pollution and hospital
admissions for individuals 65 and older in Tacoma, Washington, from January 1988 to
December 1990.  In single-pollutant models, PM , ozone, and SO  were all significant.  Ozone10 2
remained significant in separate co-pollutant models with PM  and SO .  PM  remained10 2 10
significant in a co-pollutant model with SO , but not in a co-pollutant model with ozone.  SO2 2
was not significant in either of the co-pollutant models.  The ozone C-R function is based on
results from the co-pollutant model with PM .  10

Multipollutant Model (ozone and PM )10

In a model with PM , the coefficient and standard error are estimated from the relative10
risk (1.20) and 95% confidence interval (1.06-1.37) for a 50 µg/m  increase in average daily3

ozone levels [Schwartz, 1995 #153, Table 6, p. 535].74

Functional Form: Log-linear
Coefficient: 0.007147
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however no standard error or confidence intervals were reported.
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Standard Error: 0.002565
Incidence Rate: region-specific daily hospital admission rate for respiratory admissions per
person 65+ (ICD codes 460-519)
Population: population of ages 65 and older

Hospital Admissions for Chronic Lung Disease [Moolgavkar, 1997 #53, Minneapolis]

Moolgavkar et al. [ 1997 #53] examined the relationship between air pollution and
hospital admissions (ICD codes 490-496) for individuals 65 and older in Minneapolis-St. Paul,
Minnesota, from January 1986 to December 1991.  In a Poisson regression, they found no
significant effect for any of the pollutants (PM , ozone, or CO).  The effect for ozone was10
marginally significant.  The model with a 100 df smoother was reported to be optimal (p. 368). 
The C-R function is based on the results from a three-pollutant model (ozone, CO, PM ) using10
the 100 df smoother.

Multipollutant Model (ozone, CO, PM )  10

In a model with CO and PM , the estimated coefficient and standard error are based on10
the percent increase (4.2) and 95% confidence interval of the percent increase (-1.0-9.4)
associated with a change in daily average ozone levels of 15 ppb [Moolgavkar, 1997 #53, Table
4 and p. 366].

Functional Form: Log-linear
Coefficient: 0.002743
Standard Error: 0.001699
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease per person
65+ (ICD codes 490-496)
Population: population of ages 65 and older

Hospital Admissions for Chronic Lung Disease (less Asthma) [Schwartz, 1994 #144, Detroit]

Schwartz [ 1994 #144] examined the relationship between air pollution and hospital
admissions (ICD codes 491-492, 494-496) for individuals 65 and older in Detroit, Michigan,
from January 1986 to December 1989.  In a two-pollutant Poisson regression model, Schwartz
found both PM  and ozone significantly linked to pneumonia and COPD.  The authors state that10
effect estimates were relatively unchanged compared to the unreported single pollutant models. 
No significant associations were found between either pollutant and asthma admissions.  The C-
R function for chronic lung disease incidence is based on the results of the “basic” co-pollutant
model (ozone and PM ) presented in Table 4 (p. 651).10

75
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Multipollutant Model (ozone and PM )10

The coefficient and standard error for the “basic” model are reported in Table 4
[Schwartz , 1994 #144, p.651] for a one ppb change in daily average ozone.

Functional Form: Log-linear
Coefficient: 0.00549
Standard Error: 0.00205
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease per person
65+ (ICD codes 490-492, 494-496)
Population: population of ages 65 and older

Hospital Admissions for Pneumonia [Moolgavkar, 1997 #53, Minneapolis]

Moolgavkar et al. [ 1997 #53] examined the relationship between air pollution and
pneumonia hospital admissions (ICD 480-487) for individuals 65 and older in Minneapolis-St.
Paul, Minnesota, from January 1986 to December 1991.  In a four pollutant Poisson model
examining pneumonia admissions in Minneapolis, ozone was significant, while NO , SO , and2 2
PM  were not significant.  The model with a 130 df smoother was reported to be optimal (p. 10
368).  The ozone C-R function is based on the results from the four-pollutant model with a 130
df smoother. 

Multipollutant Model (ozone, NO , PM , SO )2 10 2

In a model with NO , PM ,and SO , the estimated coefficient and standard error are2 10 2
based on the percent increase (5.7) and 95% confidence interval of the percent increase (2.5-8.9)
associated with an increase in daily average ozone levels of 15 ppb [Moolgavkar, 1997 #53,
Table 4 and p. 366]. 

Functional Form: Log-linear
Coefficient: 0.003696
Standard Error: 0.00103
Incidence Rate: region-specific daily hospital admission rate for pneumonia per person 65+
(ICD codes 480-487)
Population: population of ages 65 and older

Hospital Admissions for Pneumonia [Schwartz, 1994 #144, Detroit]

Schwartz [ 1994 #144] examined the relationship between air pollution and hospital
admissions for individuals 65 and older in Detroit, Michigan, from January 1986 to December
1989.  In a two-pollutant Poisson regression model, Schwartz found both PM  and ozone10
significantly linked to pneumonia and COPD.  The authors state that effect estimates were
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relatively unchanged compared to the unreported single pollutant models.  No significant
associations were found between either pollutant and asthma admissions.  The PM  C-R10
function for pneumonia incidence is based on results of the “basic” co-pollutant model (ozone
and PM ).  10

76

Multipollutant Model (ozone and PM )10

The ozone C-R function for pneumonia incidence is based on the coefficient and standard
error for the “basic” co-pollutant model presented in Table 4 [Schwartz, 1994 #144, p. 651]. 

Functional Form: Log-linear
Coefficient: 0.00521
Standard Error: 0.0013
Incidence Rate: region-specific daily hospital admission rate for pneumonia per person 65+
(ICD codes 480-487)
Population: population of ages 65 and older

Hospital Admissions for Pneumonia [Schwartz, 1994 #143, Minneapolis]

Schwartz [ 1994 #143] examined the relationship between air pollution and hospital
admissions for individuals 65 and older in Minneapolis-St. Paul, Minnesota, from January 1986
to December 1989.  In single-pollutant Poisson regression models, both ozone and PM  were10
significantly associated with pneumonia admissions.  In a two-pollutant model, Schwartz found
PM  significantly related to pneumonia; ozone was weakly linked to pneumonia.  The results10
were not sensitive to the methods used to control for seasonal patterns and weather.  The ozone
C-R function is based on the results of the two-pollutant model (PM  and ozone) with spline10
smoothing for temporal patterns and weather.

Multipollutant Model (ozone and PM )10

In a model with PM  and spline functions to adjust for time and weather, the coefficient10
and standard error are based on the relative risk (1.22) and 95% confidence interval (1.02, 1.47)
for a 50 ppb increase in daily average ozone levels [Schwartz, 1994 #143, Table 4].

Functional Form: Log-linear
Coefficient: 0.003977
Standard Error: 0.001865
Incidence Rate: region-specific daily hospital admission rate for pneumonia per person 65+
(ICD codes 480-487)
Population: population of ages 65 and older
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Exhibit D-11  Concentration-Response (C-R) Functions for Ozone and Emergency Room Visits

Endpoint Name Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Asthma Cody et al. 1992 New Jersey (Northern) All All All SO 5-hr avg Linear 0.0203 0.007172

Asthma Stieb et al. 1996 New Brunswick, CAN All All All None 1-hr max Quadratic 0.00004 0.00002

Asthma Weisel et al. 1995 All All All None 5-hr avg Linear 0.0443 0.00723New Jersey (Northern and
Central)

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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Emergency Room Visits

Exhibit D-11 summarizes the C-R functions used to estimate the relationship between
ozone and emergency room visits.  Detailed summaries of each of the studies used to generate
the functions are described below, along with the parameters used in each of the functions.

Emergency Room Visits for Asthma [Cody, 1992 #914, Northern NJ]

Cody et al. [ 1992 #914] examined the relationship between ER visits and air pollution
for persons of all ages in central and northern New Jersey, from May to August in 1988-1989.  In
a two pollutant multiple linear regression model, ozone was linked to asthma visits, and no effect
was seen for SO .  They modeled PM  in separate analysis because of limited (every sixth day)2 10
sampling.  No significant effect was seen for PM .  The C-R function for ozone is based on10
results of a co-pollutant model with SO  [Cody, 1992 #914, Table 6, p. 191].  2

Multipollutant Model (ozone and SO )2

The ozone coefficient and standard error are reported per 1 ppm increment of five-hour
ozone levels, which are converted to a 1 ppb increment by dividing by 1,000 [Cody, 1992 #914,
Table 6, p. 191].  

Functional Form: Linear
Coefficient: 0.0203
Standard Error: 0.00717
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  The population estimate is based on the 1990 population for the eight counties containing hospitals or in the central77

core of the study.  Cody et al. [ 1992 #914, Figure 1] presented a map of the study area; the counties are: Bergen, Essex, Hudson,
Middlesex, Morris, Passaic, Somerset, and Union.
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Baseline Population: baseline population of Northern New Jersey  = 4,436,97677

Population: population of all ages

Emergency Room Visits for Asthma [Stieb, 1996 #218, New Brunswick]

Stieb et al. [ 1996 #218] examined the relationship between ER visits and air pollution
for persons of all ages in St. John, New Brunswick, Canada, from May through September in
1984-1992.  Ozone was significantly linked to ER visits, especially when ozone levels exceeded
75 ppb.  The authors reported results from a linear model, quadratic model, and linear-quadratic
model using daily average and 1-hour maximum ozone.  In the linear model, ozone was
borderline significant.  In the quadratic and linear-quadratic models, ozone was highly
significant.  This is consistent with the author’s conclusion that “only ozone appeared to have a
nonlinear relationship with visit rates” (p. 1356) and that “quadratic, linear-quadratic, and
indicator models consistently fit the data better than the linear model ...” (p. 1358).  The linear
term in the linear-quadratic model is negative, implying that at low ozone levels, increases in
ozone are associated with decreases in risk.  Since this does not seem biologically plausible, the
ozone C-R function described here is based on the results of the quadratic regression model
presented in Table 2 [Stieb et al., 1996 #218, p. 1356], for a change in one-hour maximum ozone
levels.  

Single Pollutant Model

The coefficient and standard error of the quadratic model are reported in Table 2 [Stieb et
al., 1996 #218, p. 1356] for a 1 ppb increase in 1-hour daily maximum ozone levels.  The C-R
function to estimate avoided emergency visits derived from a quadratic regression model is
shown below:

Functional Form: Quadratic
Coefficient: 0.00004
Standard Error: 0.00002
Baseline Population: baseline population of St. John, New Brunswick [Stieb, 1996 #218, p.
1354] = 125,000
Population: population of all ages
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  The population estimate is based on the 1990 population for the eight counties containing hospitals or in the central78

core of the study.  Cody et al. [ 1992 #914, Figure 1] presented a map of the study area; the counties are: Bergen, Essex, Hudson,
Middlesex, Morris, Passaic, Somerset, and Union.
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Emergency Room Visits for Asthma [Weisel, 1995 #688, Northern NJ]

Weisel et al. [ 1995 #688] examined the relationship between ER visits and air pollution
for persons of all ages in central and northern New Jersey, from May to August in 1986-1990.  A
significant relationship was reported for ozone.  The C-R function is based on the results of the
single pollutant models reported by Weisel et al. [ 1995 #688, Table 2].

Single Pollutant Model

The coefficient (β) used in the C-R function is a weighted average of the coefficients in
Weisel et al. [ 1995 #688, Table 2] using the inverse of the variance as the weight:

The standard error of the coefficient (σ ) is calculated as follows, assuming that theβ
estimated year-specific coefficients are independent:

This eventually reduces down to:

Functional Form: Linear
Coefficient: 0.0443
Standard Error: 0.00723
Baseline Population: baseline population of Northern New Jersey  = 4,436,97678

Population: population of all ages
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Exhibit D-12  Concentration-Response (C-R) Functions for Ozone and Acute Effects

Endpoint Name Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Any of 19 Respiratory
Symptoms Krupnick 1990 Los Angeles, CA 18-64 All All COH 1-hr max Linear 0.000137 0.000070

Minor Restricted Activity
Days Ostro and Rothschild 1989 nationwide 18-64 All All PM 24-hr avg Log-linear 0.0022 0.0006582.5

School Loss Days, All Cause Chen et al. 2000 Washoe Co, NV 6-11 All All CO, PM 1-hr max Linear 0.013247 0.00498510

School Loss Days, All Cause Gilliland et al. 2001 Southern California 9-10 All All None 8-hr avg Log-linear 0.00755 0.004527

Worker Productivity Crocker and Horst 1981 nationwide 18-64 All All None 24-hr avg Linear 0.14 –

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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Krupnick et al. [ 1990 #35] used parts per hundred million (pphm) to measure ozone; the coefficient used here is based79

on ppb.

Krupnick and Kopp [ 1988 #318, p. 2-24] and ESEERCO [ 1994 #323, p. V-32] used the same C-R functional form as80

that used here.
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Acute Morbidity

Exhibit D-12 summarizes the C-R functions used to estimate the relationship between
ozone and acute morbidity.  Detailed summaries of each of the studies used to generate the
functions are described below, along with the parameters used in each of the functions.

Any of 19 Respiratory Symptoms: Krupnick [ 1990 #35]

Krupnick et al. [ 1990 #35] estimated the impact of air pollution on the incidence of any
of 19 respiratory symptoms or conditions in 570 adults and 756 children living in three
communities in Los Angeles, California from September 1978 to March 1979.  Krupnick et al. [
1990 #35] listed 13 specific “symptoms or conditions”: head cold, chest cold, sinus trouble,
croup, cough with phlegm, sore throat, asthma, hay fever, doctor-diagnosed ear infection, flu,
pneumonia, bronchitis, and bronchiolitis.  The other six symptoms or conditions are not
specified.

In their analysis, they included coefficient of haze (COH, a measure of particulate matter
concentrations), ozone, NO , and SO , and they used a logistic regression model that takes into2 2
account whether a respondent was well or not the previous day.  A key difference between this
and the usual logistic model, is that the model they used includes a lagged value of the dependent
variable.  In single-pollutant models, daily ozone, COH, and SO  were significantly related to2
respiratory symptoms in adults.  Controlling for other pollutants, they found that ozone was still
significant.  The results were more variable for COH and SO , perhaps due to collinearity.  NO2 2
had no significant effect.  No effect was seen in children for any pollutant.  The results from the
two-pollutant model with COH and ozone are used to develop a C-R function.

Multipollutant Model (ozone and coefficient of haze)

The C-R function used to estimate the change in ARD2 associated with a change in daily
one-hour maximum ozone  is based on Krupnick et al. [ 1990 #35, p. 12]:79 80

Functional Form: Linear
Coefficient: first derivative of the stationary probability = 0.000137
Standard Error: 0.0000697
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The coefficient estimates are based on the sample of “adults,” and assumes that individuals 18 and older were considered81

adult.  According to Krupnick et al. [ 1990 #35, Table 1], about 0.6 percent of the study sample was over the age of 60.  This is a
relatively small fraction, so it is further assumed that the results do not apply to individuals 65 years of age and older.

The model without NO  [Krupnick, 1990 #35, Table V equation 3] was used in this analysis, but the full suite of82
2

coefficient estimates for this model were not reported.  Krupnick et al. (Table IV) reported all of the estimated coefficients for a
model of children and for a model of adults when four pollutants were included (ozone, COH, SO , and NO ).  However, because of2 2
high collinearity between NO  and COH, NO  was dropped from some of the reported analyses (Krupnick et al., p. 10), and the2 2
resulting coefficient estimates changed substantially (see Krupnick et al., Table V).  Both the ozone and COH coefficients dropped
by about a factor of two or more. 

The derivative result is reported by Krupnick et al. [ 1990 #35, p.  12].83
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Population: population of ages 18-64 years81

The logistic regression model used by Krupnick et al. [ 1990 #35] takes into account
whether a respondent was well or not the previous day.  Following Krupnick et al. (p. 12), the
probability that one is sick is on a given day is:

where: 
X = the matrix of explanatory variables
p = the probability of sickness on day t, given wellness on day t-1, and 0
p = the probability of sickness on day t, given sickness on day t-1.  1

In other words, the transition probabilities are estimated using a logistic function; the key
difference between this and the usual logistic model, is that the model includes a lagged value of
the dependent variable.

To calculate the impact of ozone (or other pollutants) on the probability of ARD2, it is
possible, in principle, to estimate ARD2 before the change in ozone and after the change:

However the full suite of coefficient estimates are not available.   Rather than use the82

full suite of coefficient values, the impact of ozone on the probability of ARD2 may be
approximated by the derivative of ARD2 with respect to ozone:83
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where β is the reported logistic regression coefficient for ozone. The change in the incidence of
ARD2 associated with a given change in ozone is then estimated by:

This analysis uses transition probabilities obtained from Krupnick et al. as reported by
ESEERCO [ 1994 #323, p. V-32] for the adult population: p  = 0.7775 and p  = 0.0468.  This1 0
implies:

The standard error for the coefficient is derived using the reported standard error of the
logistic regression coefficient in Krupnick et al. [ 1990 #35, Table V]:
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 The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health84

Statistics.  In publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.  From the
study, it is not clear if the age range stops at 65 or includes 65 year olds.  We apply the C-R function to individuals ages 18-64 for
consistency with other studies estimating impacts to non-elderly adult populations.
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Minor Restricted Activity Days: Ostro and Rothschild [ 1989 #60]

Ostro and Rothschild [ 1989 #60] estimated the impact of PM  and ozone on the2.5
incidence of minor restricted activity days (MRADs) and respiratory-related restricted activity
days (RRADs) in a national sample of the adult working population, ages 18 to 65, living in
metropolitan areas.   The annual national survey results used in this analysis were conducted in84

1976-1981.  Controlling for PM , two-week average ozone had a highly variable association2.5
with RRADs and MRADs.  Controlling for ozone, two-week average PM  was significantly2.5
linked to both health endpoints in most years.  The C-R function for ozone is based on the co-
pollutant model with PM .2.5

The study is based on a “convenience” sample of non-elderly individuals.  Applying the
C-R function to this age group is likely a slight underestimate, as it seems likely that elderly are
at least as susceptible to ozone as individuals under 65.  A number of studies have found that
hospital admissions for the elderly are related to ozone exposures [e.g., \Schwartz,1995 #153;
Schwartz , 1994 #144].

Multipollutant Model (ozone and PM )2.5

The coefficient and standard error used in the C-R function are based on a weighted
average of the coefficients in Ostro and Rothschild [ 1989 #60, Table 4].  The derivation of these
estimates is described below.

Functional Form: Log-linear
Coefficient: 0.00220
Standard Error: 0.000658
Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137
[Ostro and Rothschild , 1989 #60, p. 243]
Population: adult population ages 18 to 64



β

β
σ

σ

β

β

=



















=
=

=

∑

∑

i

i

i

i

i

2
1976

1981

2
1976

1981 1
0 00220. .

σ

β
σ

σ

β
σ

γ
β

σ γβ

β

β

β

β

2

2
1 9 7 6

1 9 8 1

2
1 9 7 6

1 9 8 1

2
1 9 7 6

1 9 8 1

2
1 9 7 6

1 9 8 1

1=





















=





















=
⋅















=

=

=

=

∑

∑

∑
∑v a r v a r .

i

i

i

i

i
i

i

i

i

i

i

σ
γ

σ
γβ β

2 1 1
0 000658= ⇒ = = . .

May 12, 2003

 The calculation of the MRAD coefficient and its standard error is exactly analogous to the calculation done for the85

work-loss days coefficient based on Ostro [ 1987 #456].

 Assuming that most children start kindergarten at age 5, the corresponding ages for grades 1 through 6 would be 686

through 11.
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The coefficient used in the C-R function is a weighted average of the coefficients in
Ostro and Rothschild [ 1989 #60, Table 4] using the inverse of the variance as the weight:85

The standard error of the coefficient is calculated as follows, assuming that the estimated
year-specific coefficients are independent:

This reduces down to:

School Loss Days, All Cause [Chen, 2000 #2101]

Chen et al. [ 2000 #2101] studied the association between air pollution and elementary
school absenteeism (grades 1-6)  in Washoe County, Nevada.  Daily absence data were86

available for all elementary schools in the Washoe Country School District.  The authors
regressed daily total absence rate on the three air pollutants, meteorological variables, and
indicators for day of the week, month, and holidays.  They reported statistically significant
associations between both ozone and CO and daily total absence rate for grades one through six. 
PM  was negatively associated with absence rate, after adjustment for ozone, CO, and10
meteorological and temporal variables.  The C-R function for ozone is based on the results from
a multiple linear regression model with CO, ozone, and PM .  10
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Multipollutant Model (ozone, CO, and PM )10

The coefficient and standard error are presented in Table 3 [Chen, 2000 #2101, p. 1008]
for a unit ppm increase in the two-week average of daily one-hour maximum ozone
concentration.  This is converted to unit ppb increase by dividing by 1,000.

The reported coefficient represents an absolute increase in absenteeism rate for a unit
increase in ozone.  If we apply this study to other locations, we assume that the same absolute
increase will occur for a unit increase in ozone, regardless of the baseline rate.  If the study
location has a particularly high baseline rate, we may be overestimating decreases in absenteeism
nationally, and vice-versa.  As an example, consider if the baseline absenteeism rate were 10% in
the study and 5% nationally.  An absolute increase in absence rate of 2% associated with a given
increase in ozone reflects a relative increase in absence rate of 20% for the study population. 
However, in the national estimate, we would assume the same absolute increase of 2%, but this
would reflect a relative increase in the absenteeism rate of 40%.

An alternative approach is to estimate apply the relative increase in absenteeism rate in
the C-R function by adjusting the results by the ratio of the national absenteeism rate to the
study-specific rate.  As a result, the percent increase in absenteeism rate associated with an
increase in ozone is extrapolated nationally rather than the absolute increase in absenteeism rate. 
The incidence derivation section above describes the data used to estimate national and study-
specific absence rates.

In addition to this scaling factor, there are two other scaling factors which are applied to
the function.  A scaling factor of 0.01 is used to convert the beta from a percentage (x 100) per
unit increase of ozone to a proportion per unit increase of ozone.  As a result it can be applied
directly to the national population of school children ages 6 through 11 to estimate the number of
absences avoided.  

The final scaling factor adjusts for the number of school days in the ozone season.  In the
modeling program, the function is applied to every day in the ozone season (May 1 - September
30), however, in reality, school absences will be avoided only on school days.  We assume that
children are in school during weekdays for all of May, two weeks in June, one week in August,
and all of September.  This corresponds to approximately 2.75 months out of the 5 month season,
resulting in an estimate of 39.3% of days (2.75/5*5/7).  The C-R function parameters are shown
below. 

Functional Form: Linear
Coefficient: 0.013247
Standard Error: 0.004985
Population: population of children ages 6-11
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 National school absence rate of 5.5% obtained from the U.S. Department of Education [ 1996 #2377, Table 42-1]. 87

Study-specific school absence rate of 5.09% obtained from Chen et al. [ 2000 #2101, Table 1]. 

 Ozone is modeled for the 5 months from May 1 through September 30.  We assume that children are in school during88

weekdays for all of May, 2 weeks in June, 1 week in August, and all of September.  This corresponds to approximately 2.75 months
out of the 5 month season, resulting in an estimate of 39.3% of days (2.75/5*5/7). 
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Scaling Factor 1: Ratio of national school absence rate to study-specific school absence rate  =87

1.081
Scaling Factor 2: Convert beta in percentage terms to a proportion = 0.01
Scaling Factor 3: Proportion of days that are school days in the ozone season  = 0.39388

School Loss Days, All Cause [Gilliland, 2001 #2151]

Gilliland et al. [ 2001 #2151] examined the association between air pollution and school
absenteeism among 4  grade school children (ages 9-10) in 12 southern Californianth

communities.  The study was conducted from January through June 1996.  The authors used
school records to collect daily absence data and parental telephone interviews to identify causes. 
They defined illness-related absences as respiratory or non-respiratory.  A respiratory illness was
defined as an illness that included at least one of the following: runny nose/sneezing, sore throat,
cough, earache, wheezing, or asthma attack.  The authors used 15 and 30 day distributed lag
models to quantify the association between ozone, PM , and NO  and incident school absences. 10 2
Ozone levels were positively associated with all school absence measures and significantly
associated with all illness-related school absences (non-respiratory illness, respiratory illness,
URI and LRI).  Neither PM  nor NO  was significantly associated with illness-related school10 2
absences, but PM  was associated with non-illness related absences.  The C-R function for10
ozone is based on the results of the single pollutant model.

Gilliland et al. [ 2001 #2151] defines an incident absence as an absence that followed
attendance on the previous day and the incidence rate as the number of incident absences on a
given day over the population at risk for an absence on a given day (i.e. those children who were
not absent on the previous day).  Since school absences due to air pollution may last longer than
one day, an estimate of the average duration of school absences could be used to calculated the
total avoided school loss days from an estimate of avoided new absences.  A simple ratio of the
total absence rate divided by the new absence rate would provide an estimate of the average
duration of school absences, which could be applied to the estimate of avoided new absences as
follows:
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 The proportion of children not absent from school on a given day (5.5%) is based on 1996 data from the U.S.89

Department of Education [ 1996 #2377, Table 42-1].

 Ozone is modeled for the 5 months from May 1 through September 30.  We assume that children are in school during90

weekdays for all of May, 2 weeks in June, 1 week in August, and all of September.  This corresponds to approximately 2.75 months
out of the 5 month season, resulting in an estimate of 39.3% of days (2.75/5*5/7). 
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Since the function is log-linear, the baseline incidence rate (in this case, the rate of new
absences) is multiplied by duration, which reduces to the total school absence rate.  Therefore,
the same result would be obtained by using a single estimate of the total school absence rate in
the C-R function.  Using this approach, we assume that the same relationship observed between
pollutant and new school absences in the study would be observed for total absences on a given
day.  As a result, the total school absence rate is used in the function below.  The derivation of
this rate is described in the section on baseline incidence rate estimation.

Single Pollutant Model

For all absences, the coefficient and standard error are based on a percent increase of
16.3 percent (95% CI -2.6 percent, 38.9 percent) associated with a 20 ppb increase in 8-hour
average ozone concentration [ 2001 #2151, Table 6, p. 52].  

A scaling factor is used to adjust for the number of school days in the ozone season.  In
the modeling program, the function is applied to every day in the ozone season (May 1 -
September 30), however, in reality, school absences will be avoided only on school days.  We
assume that children are in school during weekdays for all of May, two weeks in June, one week
in August, and all of September.  This corresponds to approximately 2.75 months out of the 5
month season, resulting in an estimate of 39.3% of days (2.75/5*5/7).

In addition, not all children are at-risk for a new school absence, as defined by the study. 
On average, 5.5% of school children are absent from school on a given day [U.S. Department of
Education, 1996 #2377, Table 42-1].  Only those who are in school on the previous day are at
risk for a new absence (1-0.055 = 94.5%).  As a result, a factor of 94.5% is used in the function
to estimate the population of school children at-risk for a new absence.

Functional Form: Log-linear
Coefficient: 0.007550
Standard Error: 0.004527
Incidence Rate: daily school absence rate = 0.055 [U.S. Department of Education, 1996 #2377,
Table 42-1]
Population: population of children ages 9-10 not absent from school on a given day  = 94.5%89

of children ages 9-10
Scaling Factor: Proportion of days that are school days in the ozone season  = 0.39390

Worker Productivity: Crocker and Horst [ 1981 #636]
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 The relationship estimated by Crocker and Horst between wages and ozone is a log-log relationship.  Therefore the91

elasticity of wages with respect to ozone is a constant, equal to the coefficient of the log of ozone in the model.

 The national median daily income for workers engaged in “farming, forestry, and fishing” from the U.S. Census Bureau92

[ 2002 #2387, Table 621, p. 403] is used as a surrogate for outdoor workers engaged in strenuous activity. 

 The national median daily income for workers engaged in “farming, forestry, and fishing” was obtained from the U.S.93

Census Bureau [ 2002 #2387, Table 621, p. 403] and is used as a surrogate for outdoor workers engaged in strenuous activity.  This
national median daily income ($68) is then scaled by the ratio of national median income to county median income to estimate
county median daily income for outdoor workers.
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To monetize benefits associated with increased worker productivity resulting from
improved ozone air quality, we used information reported in Crocker and Horst [ 1981 #636] and
summarized in EPA [ 1994 #637].  Crocker and Horst examined the impacts of ozone exposure
on the productivity of outdoor citrus workers.  The study measured productivity impacts as the
change in income associated with a change in ozone exposure, given as the elasticity of income
with respect to ozone concentration (-0.1427).   The reported elasticity translates a ten percent91

reduction in ozone to a 1.4 percent increase in income.  Given the national median daily income
for outdoor workers engaged in strenuous activity reported by the U.S. Census Bureau [ 2002
#2387], $68 per day (2000$),  a ten percent reduction in ozone yields about $0.97 in increased92

daily wages.  We adjust the national median daily income estimate to reflect regional variations
in income using a factor based on the ratio of county median household income to national
median household income.  No information was available for quantifying the uncertainty
associated with the central valuation estimate.  Therefore, no uncertainty analysis was conducted
for this endpoint.

Single Pollutant Model

The C-R function for estimating changes in worker productivity is shown below:

Functional Form: Linear
Coefficient: 0.1427
Daily Income: median daily income for outdoor workers93

Population: population of adults 18 to 64 employed as farm workers
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Exhibit D-13  Concentration-Response (C-R) Functions for Ozone and Asthma-Related Effects

Endpoint Name Author Year Location Age Race Gender Beta Std ErrorOther Averaging Functional
Pollutants Time Form1

Asthma Exacerbation, Whittemore and
Asthma Attacks Korn 1980 Los Angeles, CA All All All TSP 1-hr max Logistic 0.001843 0.000715

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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 The study used oxidant measurements in ppm [Whittemore, 1980 #634, p.  688]; these have been converted to ozone94

measurements in ppb, assuming ozone comprises 90% of oxidants (i.e., 1.11*ozone=oxidant).  It is assumed that the harm of
oxidants is caused by ozone.  The view expressed in the Ozone Staff Paper [U.S. EPA, 1996 #455, p.164] is consistent with
assuming that ozone is the oxidant of concern at normal ambient concentrations: “Further, among the photochemical oxidants, the
acute-exposure chamber, field, and epidemiological human health data base raises concern only for ozone at levels of photochemical
oxidants commonly reported in ambient air.  Thus,  the staff recommends that ozone remain as the pollutant indicator for protection
of public health from exposure to all photochemical oxidants found in the ambient air.” 

 Based on an analysis of the 1999 National Health Interview Survey, the daily incidence of wheezing attacks for adult95

asthmatics is estimated to be 0.0550. In the same survey, wheezing attacks for children were examined, however, the number of
wheezing attacks per year were censored at 12 (compared to censoring at 95 for adults).  Due to the potential for underestimation of
the number of children’s wheezing attacks, we used the adult rate for all individuals.    
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Asthma-Related Effects

Exhibit D-13 summarizes the C-R functions used to estimate the relationship between
ozone and asthma-related effects.  Detailed summaries of each of the studies used to generate the
functions are described below, along with the parameters used in each of the functions.

Asthma Attacks [Whittemore and Korn, 1980 #634]

Whittemore and Korn [ 1980 #634] examined the relationship between air pollution and
asthma attacks in a survey of 443 children and adults, living in six communities in southern
California during three 34-week periods in 1972-1975.  The analysis focused on TSP and
oxidants (O ).  Respirable PM, NO , SO  were highly correlated with TSP and excluded from thex 2 2
analysis. In a two pollutant model, daily levels of both TSP and oxidants were significantly
related to reported asthma attacks.  The results from this model were used, and the oxidant result
was adjusted so it may be used with ozone data.

Multipollutant Model (ozone and PM )10

The daily one-hour ozone coefficient is based on an oxidant coefficient (1.66) estimated
from data expressed in ppm.  The coefficient is converted to ppb by dividing by 1,000 and to
ozone by multiplying by 1.11.   The standard error is calculated from the two-tailed p-value94

(<0.01) reported by Whittemore and Korn [ 1980 #634, Table 5], which implies a t-value of at
least 2.576 (assuming a large number of degrees of freedom).

Functional Form: Logistic
Coefficient: 0.001843
Standard Error: 0.000715
Incidence Rate: daily incidence of asthma attacks = 0.0550  95

Population: population of asthmatics of all ages = 3.86% of the population of all ages
[American Lung Association, 2002  #2358, Table 7]


