

Region 10: Office of Environmental Assessment; Office of Air, Waste & Toxics 1200 -6th Ave, AWT-121 • Seattle, Washington • 98101

Rhone-Poulenc (Rhodia) sediment & porewater investigation Aug/Sept 2004

DATA REPORT:

VOLATILE ORGANIC COMPOUNDS, METALS, AND PESTICIDES/PCBS DETECTED IN SEDIMENT & POREWATER
DRAFT

September 13, 2005

Site ID No. WAD 009282302

Table of Contents

LIST OF	Tables	1
ACRONY	MS	II
1.0 In	NTRODUCTION	3
2.1 2 2 2 2.2	.1.1. Ground water samples.1.2. Sediment Samples.1.3. Sampling method limitations	4 5 5 7 8 8 8
3.1	GROUND WATER TRANSITION ZONE SAMPLES GROUND WATER/SURFACE WATER FIELD PARAMETERS SEDIMENT SAMPLES	9 9 10 11
4.0 R	REFERENCES	21
5.1 5.2 5.3 5.4 5.5	DATA RESULTS QASP FIELD NOTEBOOKS SAMPLE DATA AND CHAIN OF CUSTODY FORMS DIVE REPORT PREVIOUS TRANSITION ZONE CHARACTERIZATION	21 21 21 21 21 21 21
List of	Figures and Tables	
	-1. Sample locations	5
Table 2-	1. Coordinates for intertidal sampling stations and subtidal transect	6
Table 2-2	2. Sampling Information (see Figure 2-1 for location)	7
Table 2-	3. Analytical methods for water and sediment analyses	8
Table 3-	Detected metals in piezometer and seepage meter samples	9
Table 3-2	2. Detected organics in piezometer samples	10
Table 3-	3. Ground water & surface water field parameters	10
Table 3-	4. Detected metals in sediment samples	11
Table 3-	5. Detected PCB Aroclors in sediment samples	13

Table 3-7. Detected Organics (ug/kg) in sediment samples

Acronyms

ACRONYM	Definition
DO	dissolved oxygen
EPA	US Environmental Protection Agency
GPS	Global positioning system
ICP	Inductive Coupled Plasma – analytical method used to lower Cu detection limits
LDW	Lower Duwamish Waterway
MHE	Mark Henry Enterprises? Mini-push probe piezometer
MLLW	mean lower low water
РСВ	polychlorinated bi-phenyl
PPT	parts per thousand
QASP	quality assurance and sampling plan
RCRA	Resource Conservation and Recovery Act
RFI	RCRA Facility Investigation
svoc	semi-volatile organic compound
voc	volatile organic compound

1.0 Introduction

The former Rhone-Poulenc facility is located on the Lower Duwamish Waterway (LDW) in Seattle, Washington. The facility is under a RCRA 3008(h) Order for cleanup of releases to the soil, ground water, and sediments. Sediments offshore of the facility are also part of the LDW Superfund site. Ground water monitoring conducted at the facility confirms that a number of organic and metals contaminants have discharged from the ground water to the Waterway. Metals migrating from the facility, for example copper and mercury, are present in some locations in the ground water immediately adjacent to the Waterway at levels three to five orders of magnitude in excess of the screening criteria. The RFI Report also documents metals in a bank seep at levels two to three orders of magnitude above the screening criteria. In addition, a removal action was conducted in 1995 due to PCBs in soils, process drains, and storm sewers at the facility. The PCB Remediation and Sewer Cleaning Report (April 1, 1998; site file) confirms that PCB-contaminated sediments were present in sewers which discharge to the Waterway.

A barrier wall was constructed in 2003 in an attempt to control contaminant migration to the Waterway, and work continues on the accompanying pump-and-treat system in order to provide hydraulic control of the contaminated ground water. A monitoring program is in place to determine the impacts of construction on the contaminants remaining in the riverbank outside of the barrier wall. The results of this monitoring indicate that, while copper contamination appears to be contained by the barrier wall at most locations, copper concentrations are increasing in some locations since the construction of the barrier wall.

The contaminants of interest for this sampling event were metals (i.e., including copper, lead, vanadium), total mercury, PCBs as total Aroclors, Semi-volatile Organic Compounds (SVOCs), and Volatile Organic Compounds (VOCs) (VOC analysis from water samples only).

The purpose of this sampling event was to determine whether there are contaminants of concern outside the barrier wall in either the transition zone ground water or the inter- or sub-tidal sediments adjacent to the facility. Sampling was done to obtain water samples for chemical analysis and for field parameters (measured at the time of sampling). The sampling was conducted with manual field equipment on the shoreline (mudflats during low tides), and with field kits. Sediment collection and transition zone sampling in the river and Slip 6 (along the south side of facility) was done with the EPA Region 10 dive team support. The dive report is attached as Appendix 5.4. The samples collected were analyzed at the EPA Region 10 Manchester

Environmental Laboratory except for Total Organic Carbon and percent moisture in sediment samples, which were analyzed at the EPA Region 7 Laboratory.

Purpose and Objectives

Purpose: The purpose of this investigation was to obtain representative ground water/surface water transition zone water samples and sediment samples, from locations that have the highest likelihood of containing the contaminants of interest to determine whether 1) human exposures are controlled, 2) unacceptable exposures to ecological receptors such as juvenile salmonids are occurring, and 3) whether a more detailed investigation to determine the full nature and extent of contaminants remaining outside the barrier wall, in the wedge between the wall and the river, is warranted.

Objectives: The primary objectives of this field investigation were to collect transition zone ground water and sediment data to:

- Assess the potential for water quality and sediment quality impacts to the Duwamish River, including Slip 6;
- Determine whether migration of contaminated ground water from the site has been controlled;
- Understand the nature of contamination outside the barrier wall on the shoreline mud flats along the Duwamish River and in the shallow sub-tidal zone of Slip 6;
- Provide data to develop a conceptual model of the contamination distribution; and,
- Determine whether further investigation of the ground water and sediments outside the barrier wall is warranted.

2.0 Sample Collection, Processing, & Laboratory Methods

This section describes in brief the collection of the sediment and transition zone ground water samples accessed from the shore and boat as well as sample processing methods. The following codes are used in this data report: SH = intertidal accessed from shore; SHB = intertidal accessed by boat; SB = subtidal accessed by boat. Sampling procedures are described in detail in the 8/5/2004 QASP. Sample locations are shown in Figure 1 and lat/lon coordinates in Table 2-1. Exact coordinates are not available for many of the subtidal stations because most subtidal stations in Slip 6 were located by placing a marked transect line on the bottom of the slip. Coordinates were recorded from the boat's GPS unit for (1) the beginning and end of the transect, (2) subtidal stations where the boat was on station, and (3) boat location in the vicinity of the station along with the bearing and distance from the boat GPS location to where

the divers sampled. These data were used in ArcView to place station locations on an ortho photo and produce the best-estimated station locations as indicated on Figure 1. Intertidal station locations were obtained with hand-held GPS unit.

Figure 2-1. Sample locations

2.1 SAMPLE COLLECTION – GROUND WATER AND SEDIMENT SAMPLES

2.1.1. Ground water samples

Near-shore samples were collected using the "MHE Push-Point Sampling Tool" (QASP, Figure 2). This 70-cm sampling tool is stainless steel with a 4-cm, screened area near the tip, which was pushed 60 cm into the subsurface to access the ground water within the ground water/surface water transition zone. A peristaltic pump was used to draw a sample up to the surface for collection and analysis for field parameters. Collection of sub-tidal transition zone ground water samples was attempted using a push probe tool of larger diameter. The screened area consistently clogged with the sticky muds present in the slip sediments. Therefore, a field

deviation from the QASP was required and transition zone ground water samples were collected using seepage meters. Using seepage meters to collect ground water samples is more labor intensive than using push probes and requires three sequential dives to: 1) place the seepage meter and let it purge the ambient water from the meter; 2) open the collection bag; and 3) to retrieve the collection bag. Therefore, subtidal sampling with seepage meters was conducted at relatively few stations. Seepage meters were based on the design by Lee and Cherry (1978) and were constructed from plastic buckets (26.6 cm diameter). Each seepage meter was pushed into the sediments until approximately 7.5 cm of space remained between the sediments and the top of the bucket. During installation, tubing connected to the sample collection bag (45 x 46 cm; low density polyethylene bag used in the food industry to hold milk) was clamped shut and the water trapped in the bucket escaped through a vent tube. Following installation and purging, the discharging water was diverted to the sampling bag by switching the position of the clamp. Sample collection information is in Table 2-2.

Table 2-1. Coordinates for intertidal sampling stations and subtidal transect

INTERTIDAL STATIONS	LATITUDE	Longitude	SUBTIDAL STATIONS	LATITUDE	Longitude
SH-01	47.520999	-122.305722	W end of Transect	47.51878	-122.30515
SH-02	47.520864	-122.305647	W end of transect	47.51875	-122.30519
SH-03	47.520732	-122.305628	E end of transect	47.51955	-122.30232
SH-13	Same as SF	H-03 (field dup)	SB-01	47.519420	-122.302199
SH-04	47.520342	-122.305487	SB-02	47.518610	-122.304129
SH-05	47.519991	-122.305431	SB-15	Same as SB-	02 (field dup)
SH-06	47.519351	-122.305129	SB-03	47.519527	-122.302458
SH-16	Same as SF	H-06 (field dup)	SB-04	47.519412	-122.302890
SH-07	47.519270	-122.305038	SB-05	47.519295	-122.303314
SH-08	47.519112	-122.304980	SB-06	47.519193	-122.303688
SH-09	47.519110	-122.305104	SB-07	47.518958	-122.304354
SHB-05	47.519431	-122.303356	SB-08	47.518883	-122.304679
SHB-06	47.519502	-122.303137	SB-11	47.519100	-122.306120
			SB-12	47.520023	-122.306254
			SB-13	47.521306	-122.306661
			SB-16	47.519552	-122.302387
			SB-17	Same as SB-	16 (field dup)
			SB-18	47.518929	-122.304472

SHB-05 & 06 are referred to as SB-05 & 06 in Appendix 5.1 Data Results. The H is added here and elsewhere in this data report to help distinguish them as intertidal (SHore) stations (they were shoreline seeps in Slip 6).

SB18 = pore water sample only

An additional deviation from the QASP was the collection of samples from two intertidal locations in Slip 6. These had not been targeted due to the difficulty of reaching locations in the intertidal riprap area, below the fence and blackberry vines in Slip 6. Because piezometer samples could not be acquired subtidally from Slip 6, these intertidal samples of opportunity from visible seep locations were obtained using the same sampling protocol as the other shoreline samples. The two Slip 6 shoreline samples are designated as SHB-05 and SHB-06 in this report and SB-05 and SB-06 in the Appendix data tables.

Table 2-2. Sampling Information (see Figure 2-1 for location)

INTERTIDAL STATIONS	SEDIMENT COLLECTION DATE	START TIME	QA	GROUND WATER COLLECTION DATE	START TIME	QA
River						
SH-1	8/24/2004	7:58		8/31/2004	10:04	
SH-2	8/24/2004	8:25		8/31/2004	10:40	
SH-3 & 13	8/24/2004	8:50	DUPLICATES	8/31/2004	11:45	
SH-4	8/24/2004	9:31		8/31/2004	12:45	
SH-5	8/25/2004	9:45		8/30/2004	9:57	
SH-6 & 16	8/25/2004	9:05	DUPLICATES	8/30/2004	8:45	
SH-7	8/25/2004	8:26		8/30/2004	9:33	
SH-8	8/25/2004	7:35		8/30/2004	11:00	
SH-9	8/25/2004	8:56		8/30/2004	11:32	
Slip 6						
SHB-05				9/1/2004	13:33	
SHB-06				9/1/2004	12:45	
	SEDIMENT			SEEPAGE	_	
SUBTIDAL STATIONS	COLLECTION DATE	START TIME	QA	COLLECTION DATE	START TIME	QA
River	DAIE	IIME	QA	DAIE	IIME	QA
SB-11	8/25/2004	11:57				
SB-12	8/25/2004	12:55				
SB-13	8/25/2004	17:23				
Slip 6						
SB-01	8/25/2004	14:44				
SB-02 & 15	8/25/2004	13:54	DUPLICATES			
SB-03*	8/24/2004	13:25		9/1/2004	12:32	
SB-04	8/24/2004	14:25				
SB-05	8/24/2004	15:30				
SB-06	8/24/2004	16:12				
SB-07	8/26/2004	12:08		9/1/2004	11:58	
SB-08	8/26/2004	11:23		9/1/2004	10:07	
SB-17 & 16	8/25/2004	15:49	DUPLICATES			
SB-18**		1 2		9/1/2004	10:07	
	eter seenage n	notor place	ud at SR-03 re	ecording field para		 24_20/20(

^{*}Large diameter seepage meter placed at SB-03, recording field parameters from 8/24-30/2005 **Halfway between SB-07 and SB-08

2.1.2. Sediment Samples

Samples were taken with cores (subtidal = 30 cm by 5 cm diameter; intertidal = "clam guns," 1 m by 10 cm diameter) that were pushed into the sediment, capped (subtidal) and then pulled out with the sediment inside. Samples were split into an upper

EPA R10 - OEA/OAWT	Rhone Poulenc - Data Report - Site ID No. WAD 009282302 September 13, 2005 Page 7

surface sample (upper 10 cm) and a lower deeper sample (rest of the core below 10 cm; the interval thickness of the lower samples ranged from 5 to 17 cm for subtidal (SB) stations and from 5 to 26 cm for intertidal (SH, SHB) stations, see Appendix 5.3). Separate cores were taken for metals (cores/clam guns made of plastic) and for organics (cores/clam guns made of aluminum). Multiple cores were needed to obtain sufficient sediment for analyses. Both upper and lower layers were analysed for metals to determine whether any concentration differences were present between the deeper zone and the zone near oxygenated surface water. SVOCs and PCBs were analyzed from lower layers to avoid recent deposition. Pesticides and PCBs were analyzed from upper layers at selected locations to compare with previous investigations.

2.1.3. Sampling method limitations

The sampling methods have some inherent limitations due to the materials used in their construction and to the method of acquiring the samples. These are discussed in detail in the QASP with major points reiterated here:

- Peristaltic pumps may have degassed some of the samples. This may have resulted in a low bias for VOCs.
- Contact with sampler materials was not expected to alter concentrations significantly due to short contact times. Blank samples were taken to account for this.

2.2 SAMPLE PROCESSING

Samples were processed in the field according to the QASP. Field parameters were recorded at many locations (Table 2-2)

2.3 LABORATORY METHODS

Laboratory methods followed the QASP (summarized in Table 2-3)

Table 2-3. Analytical methods for water and sediment analyses

ANALYTICAL GROUP	MATRIX	EPA METHODS
	Water	
Metals		6020/200.8
Mercury		1631E
SVOCs		8270
VOCs		8260
	Sediment	
Metals		6010/200.7
Mercury		245.5
SVOCs		8270
PCBs		8082
Pesticides		8081
TOC		PSEP/9060
Grain Size ^a		per MEL
^a Grain size analyses not done	due to lack of ca	pacity at MEL

Deviations from the QASP were:

- The seepage meter samples were reanalyzed for Cu and Zn utilizing lower detection limits
- The samples selected for TOC and percent moisture were analyzed by EPA Region 7 Laboratory
- Grain size analyses were not done (lack of capacity at MEL)

3.0 Results

Analytical results of the ground water transition zone samples (piezometer and seepage meter samples) and sediment core samples (upper 10cm and below 10cm) are summarized in this section. Data presented in this section are the detected contaminants only. Complete data tables are attached in the Appendices and should be consulted for information on detection limits and qualifiers. Quality assurance was conducted in accordance with the QASP.

3.1 GROUND WATER TRANSITION ZONE SAMPLES

Tables 3-1 and 3-2 present ground water data

Table 3-1. Detected metals in piezometer and seepage meter samples

	MERCURY	COPPER	COPPER [ICP Low DET LIMIT]	ZINC
STATION	(NG/L)	(ug/L)	(ug/L)	(ug/L)
Piezometers				
SH-1	37.3			
SH-2	48.8			
SH-3	2.25			
SH-13	1.37			
SH-4	23.7			
SH-4 Dup	26.8			
SH-5	2.99			
SH-6	2.52			
SH-7	2.06			
SH-8	1.6			
SH-9	2.7			
SHB-06			32	
SHB-05		259	264	
Seepage meters				
SB-18A Bag4	408	71	76.8	1560
SB-07			5.4	263

Table 3-2. Detected organics in piezometer samples

			BENZO[B]	BENZO[K]	Bis(2-				
	1,1'-	BENZO(A)	FLUORAN	FLUORAN	ETHYLHEXYL)	CAPRO	DIETHYL	FLUORAN	
	BIPHENYL	PYRENE	THENE	THENE	PHTHALATE	LACTAM	PHTHALATE	THENE	PYRENE
STATION	(ug/L)	(ug/L)	(ug/L)	(UG/L)	(ug/L)	(UG/ L)	(ug/L)	(ug/ L)	(ug/L)
SH-1						7.5			
SH-2		0.032	0.039	0.039	390			0.26	0.32
SH-3					5.7	3.4			
SH-4	0.032				2	4.8			
SH-5					4.3	6.8			
SH-6	0.026					3.1			
SH-7						2.2			
SH-8					3	2.4			
SH-9						1.5			
SH-13					6.7	5.3			
Blank							1.2		
Insufficient gr	round water co	llected by see	page meters to	analyze for o	rganics				

3.2 GROUND WATER/SURFACE WATER FIELD PARAMETERS

Table 3-3. Ground water & surface water field parameters

			TEMPERATURE	РΗ	CONDUCTIVITY	DISSOLVED OXYGEN	SALINITY	TURBIDITY
LOCATION	DATE	D EPTH	(DEGREES C)	(UNITS)	(MS/CM)	(MG/L)	(%)	(NTUs)
Ground w	ater							
SH-01	8/31/2004		20.9	6.4	21.1	8.77	1.27	71
SH-02	8/31/2004		21.4	7.26	27.8	8.38	1.72	85
SH-03	8/31/2004		21.1	6.66	30.3	9.32	1.89	93
SH-04	8/31/2004		21.6	7	28.2	8.72	1.75	98
SH-05	8/30/2004		19	6.92	19.3	9.2	1.15	174
SH-06	8/30/2004		19.3	6.65	21.2	8.79	1.27	144
SH-07	8/30/2004		18.6	6.7	29.4	9.45	1.83	147
SH-08	8/30/2004		18.2	7.32	26.9	9.52	1.65	181
SH-09	8/30/2004		18.3	7.08	32.2	9.23	2.02	138
SHB-06	9/1/2004		20.1	7.14	7.32	9.0*	0.39	139
SHB-05	8/30/2004		20	6.55	8.23	8.84*	0.45	161
Surface w	ater							
SH07	8/30/2004	surf	18.1	7.27	13.4	4.8	0.77	359
River	8/31/2004	surf	19.7	7.23	3.46	6.3	0.17	19
SLIP-6**	8/30/2004	bottom	18.9	6.95	44		28.5	30
SB-18	9/1/2004	1 ft	18.2	7.16	10	6.6	0.56	12
SB-18	9/1/2004	8.4 ft	17.5	7.16	27.5	8.69	1.7	69
SB-08	9/1/2004	1 ft	19.4	7.41	5.47	6.9	0.28	13
SB-08	9/1/2004	bottom	21.8	7.6	43	5.35	2.76	31 - 48
SB-08	9/1/2004	bottom (duplicate)	15.8	7.51	45	4.42	2.9	10 – 14
*air entrain	ed in tubing	by pump; **	Redox potentia	al was 281	mV			

Data on field parameters from the two data-sonde recorders at the large seepage meter at SB-03 are shown in Appendix 5.5 Dive Report.

3.3 SEDIMENT SAMPLES

Sediment sample results are presented in Tables 3-4 through 3-7.

Table 3-4. Detected metals in sediment samples

	MERCURY	ARSENIC	CADMIUM	CHROMIUM	COPPER	LEAD	NICKEL	VANADIUM	ZINC
STATION	(MG/KG)	(MG/KG)	(MG/KG)	(MG/KG)	(MG/KG)	(MG/KG)	(MG/KG)	(MG/KG)	(MG/KG)
Upper SH-01	0.055	8.3		9.19	54.9	14.1	11	28.3	44.5
Upper SH-01 Dup	0.055								
Lower SH-01	0.134	9.3		15.6	132	29.2	9.94	41.2	55.3
Upper SH-02	0.201	11	0.77	20.1	89.9	38.1	14.9	49.6	156
Lower SH-02	0.288	10	0.68	21.2	175	43.9	17.8	36.6	212
Upper SH-03	0.057	10		13	22.6	6.3	10.5	43.3	43.7
Lower SH-03		4.7		12.1	14		8.81	43.6	29.5
Upper SH-04	0.108	8.8	0.58	16	70.3	30.6	12.8	37.9	73.7
Lower SH-04	0.302	8.3	0.65	14.7	114	40.7	10.8	24.4	79.9
Upper SH-05	0.067	4.5		11.6	29.4	17.7	8.06	32.6	45.8
Lower SH-05	0.068	5.6		12.1	35.7	16.8	9.52	32.4	49.1
Upper SH-06	0.158	6.3		14.5	47.3	17.6	7.66	27.9	35.6
Lower SH-06	0.058			6.67	16.6	4.9	4.8	18	18.6
Lower SH-06 Dup	0.05								
Upper SH-07	0.106	7.7		12.6	23.2	8.2	10.8	34.6	44.4
Lower SH-07	0.107	6.4		14.1	22.2	8.3	11.9	47.4	43
Lower SH-07 Dup		6.8		15.9	22.7	8.1	12.1	52.1	43.9
Upper SH-08	0.106	6.4		14.6	28.8	11	13.5	37.8	59.4
Lower SH-08	0.157	6.9		15.3	31	13.8	14.2	40.7	74.1
Upper SH-09	0.099	8		12.2	23.6	9.8	12.3	32.6	47.5
Upper SH-09 Dup	0.083								
Lower SH-09	0.054	7.2		8.94	17.7	12	8.3	30.2	33.8
Lower SH-13				7.6	10.9		6.81	24.9	21.8
Upper SB-01	0.277	22	0.97	28.2	70	30	21.5	73.8	130
Lower SB-01	0.272	17	0.84	27.4	65.2	28.9	21.7	72.2	122
Upper SB-02	0.251	14	0.78	23.3	49.1	20.9	19.1	61.7	104
Lower SB-02	0.246	16	0.75	25.1	55.1	23.5	20.3	68.5	111
Upper SB-15 (SB-02 field dup)	0.353	16	0.74	23.8	49.4	22.2	19.7	63.7	108
Lower SB-15 (SB-02 field dup)	0.226	14	0.71	24.2	53.7	22.1	20	66.4	107
Upper SB-03	0.253	22.6	1	27.5	68.9	29.8	21	72.4	140
Lower SB-03	0.328	19	0.87	26.2	66.6	27.1	20.6	70.2	128
Lower SB-03 Dup	0.253								
Upper SB-04	0.27	20	0.91	27.7	66.6	28.1	21.7	72.4	128
Lower SB-04	0.318	16	0.78	26.8	63.2	27.4	21.6	71.5	126
Upper SB-05	0.259	20	0.82	26.7	63.1	27.6	20.8	69.1	125
Lower SB-05	0.237	17	0.81	27.8	63.2	28.7	22.1	71.6	121
Upper SB-06	0.283	19	0.67	24.7	59.6	27	20.2	63.8	113
Lower SB-06	0.216	12	0.57	20.2	45.6	19.4	16.3	53.9	118
Upper SB-07	0.232	20	0.74	25	59.4	26.4	20	65.2	115

	ne Poulenc - Data Report - <i>Site ID No. V</i> September 13, 2005	VAD 009282302 Page 11
--	---	--------------------------

	MERCURY	ARSENIC	CADMIUM	CHROMIUM	COPPER	LEAD	NICKEL	VANADIUM	ZINC
STATION	(MG/KG)	(MG/KG)	(MG/KG)	(MG/KG)	(MG/KG)	(MG/KG)	(MG/KG)	(MG/KG)	(MG/KG)
Lower SB-07	0.243	16	0.85	24	58.9	25.7	20	63.5	118
Lower SB-07 Dup		16	0.83	25.9	59.6	24.4	20.6	70.6	118
Upper SB-08	0.214	14	0.71	23.3	49.6	21.4	18.5	61.5	103
Lower SB-08	0.232	12	0.64	23	48.6	19.8	19.2	61.8	106
Upper SB-17	0.282	22	0.85	26.4	67.2	31.1	20.3	67.3	141
Lower SB-17	0.249	19	0.88	25.4	64.1	27.7	20	68.2	131
Lower SB-16 (SB-17 field dup)	0.288	20	0.75	25	65.6	30.1	20	67.9	114
Upper SB-11	0.29	8.7	0.5	20.2	38.7	17.8	17.2	55.4	78.3
Lower SB-11	0.17	9.1	0.5	20.2	38.3	16.5	19	51.3	73.5
Upper SB-12	0.139	14	0.5	20.1	37.8	17.7	16.8	55.8	78
Upper SB-12 Dup		13	0.5	19.8	37.2	16.4	16.3	55.3	74.8
Lower SB-12	0.174	9.3	0.5	20.9	38.5	14.4	19.2	55.4	68.9
Upper SB-13	0.194	7.9	0.5	20.3	37.1	16.5	15.2	52.4	68.3
Lower SB-13	0.21	11	0.54	22.6	49.9	16.5	16.8	55.6	77
Blank					0.96				

Note: Al, Ba, Be, Ca, Co, Fe, Mg, Mn, K, Na data not shown here, see Appendix 5.1 for these data
Upper = upper 10 cm; Lower = below 10 cm (*interval thickness* for Lower ranged from 5 to 17 cm for subtidal (SB) stations and from 5 to 26 cm for intertidal (SH, SHB) stations, see Appendix 5.3)

Table 3-5. Detected PCB Aroclors in sediment samples

STATION	% Solid	TOC ¹	PCB-1242 (ug/kg)	PCB- 1254/1260 (UG/KG)	PCB-1254 (ug/kg)	PCB-1260 (ug/kg)	SUM DETECTS (UG/KG)	SUM DETECTS NORMALIZED ² (UG/KG-TOC)
Lower SH-01	75.2%	0.66%				130	130	19,700
Lower SH-02	54.6%	1.45%			300		300	20,700
Upper SH-03	70.2%	0.37%			10		10	2,680
Lower SH-04	67.4%	0.61%	820	1700			2520	413,000
Upper SH-05	76.5%	0.28%	450	800			1250	448,000
Upper SH-06	68.2%	0.50%				94	94	18,700
Lower SH-06	82.2%	0.08%				44	44	54,600
Lower SH-07	72.1%	0.47%		34			34	7,190
Lower SH-08	60.1%	1.10%	18	63			81	7,360
Upper SH-09	69.5%	0.62%		37			37	5,930
Lower SH-09	72.6%	0.38%	11	51			62	16,400
Upper SH-13	70.2%	0.30%			16		16	5,390
Upper SB-01	38.9%	2.72%	36	130			166	6,100
Lower SB-01	45.8%	2.50%	42	130			172	6,880
Lower SB-02	46.6%	2.32%	27	98			125	5,390
Lower SB-15 (SB-02 field dup)	45.5%	2.29%	36	110			146	6,380
Upper SB-03	41.1%	2.72%	42	140			182	6,690
Lower SB-03	42.7%	2.94%	35	130			165	5,610
Upper SB-04	41.1%	3.17%	42	130			172	5,430
Lower SB-04	43.5%	3.44%	36	130			166	4,830
Upper SB-05			37	110			147	
Lower SB-05	44.8%	2.90%	40	150			190	6,550
Lower SB-06	48.5%	2.98%	30	110			140	4,700
Lower SB-07	45.9%	2.92%	29	110			139	4,760
Upper SB-08	42.6%	2.87%	17	43			60	2,090
Lower SB-08	46.7%	2.48%	44	110			154	6,210
Lower SB-17	44.2%	3.32%		120			120	3,610
Lower SB-11	52.2%	2.26%	110				110	4,870
Upper SB-12	53.9%	1.61%	48	71			119	7,390
Lower SB-12	53.7%	1.79%	26	53			79	4,410
Lower SB-13	64.0%	1.50%	18	120	and owen non-	and from C to	138	9,200

Upper = upper 10 cm; Lower = below 10 cm (*interval thickness* for Lower ranged from 5 to 17 cm for subtidal (SB) stations and from 5 to 26 cm for intertidal (SH, SHB) stations, see Appendix 5.3)

¹ TOC rounded to two decimal places (Calculations based on raw numbers)

² Normalized Sum rounded to three significant figures

Table 3-6. Detected Pesticides (ug/kg) in sediment samples

SEDIMENTS	UPPER SH-03	UPPER SH-06	UPPER SH-13	UPPER SH-16
% Solid	70.2%	68.2%	70.2%	
TOC	0.37%	0.50%	0.30%	
Aldrin				0.014
Alpha-BHC				0.14
Beta-BHC				0.087
cis-Chlordane				0.2
Delta-BHC				0.081
Dieldrin				0.099
Endosulfanl				0.11
Endosulfan II				0.47
Endosulfan Sulfate				0.84
Endrin				9.1
Endrin Aldehyde				3.2
Endrin Ketone				3.7
Gamma-chlordane				2.4
Heptachlor				0.12
Heptachlor Epoxide				1
Lindane				0.05
Methoxychlor				2.8
P,P'-DDD	4.9		6.8	6.4
Normalized to TOC	1,314		2,290	
P,P'-DDE	5.4		7.3	3.1
Normalized to TOC	1,448		2,458	
P,P'-DDT	30	51	26	23
Normalized to TOC	8,043	10,159	8,754	
P,P'-DDT (reanalysis 2/5/05)				43
Upper = upper 10 cm				

Table 3-7. Detected Organics (ug/kg) in sediment samples

ANALYTE	Lower SH- 01	Lower SH- 02	UPPER SH-	Lower SH- 04	UPPER SH- 05	UPPER SH- 06	Lower SH-	Lower SH- 08	UPPER SH-	Lower SH-
% Solid	75.2%	54.6%	70.2%	67.4%	76.5%	68.2%	72.1%	60.1%	69.5%	72.6%
TOC	0.66%	1.45%	0.37%	0.61%	0.28%	0.50%	0.47%	1.10%	0.62%	0.38%
1,2-Diphenylhydrazine							100			
normalized to TOC							21,142			
2-Chloronaphthalene										
normalized to TOC										
4-Methylphenol										
normalized to TOC										
9H-Carbazole										
normalized to TOC										
9H-Fluorene										
normalized to TOC										
Acenaphthene										
normalized to TOC										
Anthracene										
normalized to TOC										
Benzaldehyde										
normalized to TOC										
Benzo(a)anthracene		390		150				150		
normalized to TOC		26,897		24,590				13,636		
Benzo(a)pyrene		490						140		
normalized to TOC		33,793						12,727		
Benzo(g,h,i)perylene		370						130		
normalized to TOC		25,517						11,818		
Benzo[b]Fluoranthene	250	880	290	310	260	220	290	420	250	200
normalized to TOC	37,879	60,690	77,748	50,820	93,190	43,825	61,311	38,182	40,064	53,050
Benzo[k]fluoranthene		490		92				210		
normalized to TOC		33,793		15,082				19,091		
Benzoic acid			940			840	930			
normalized to TOC			252,011			167,331	196,617			
Bis(2-ethylhexyl)phthalate										

EPA R10 - OEA/OAWT

Rhone Poulenc - Data Report - *Site ID No. WAD 009282302* September 13, 2005 Page 15

	LOWER SH-	LOWER SH-		LOWER SH-	UPPER SH-	UPPER SH-	LOWER SH-		UPPER SH-	Lower SH-
ANALYTE	01	02	03	04	05	06	07	08	09	09
normalized to TOC										
Caprolactam										
normalized to TOC										
Chrysene		500	88	90	69			190		
normalized to TOC			23,592	14,754	24,731			17,273		
Dibenzo[a,h]anthracene	210	380	220	230	230			310		
normalized to TOC	31,818	26,207	58,981	37,705	82,437			28,182		
Dibenzofuran										
normalized to TOC										
Diethyl phthalate	2700									
normalized to TOC	409,091									
Di-n-octylphthalate		2000								
normalized to TOC		137,931								
Fluoranthene		1200	170	330	120		140	360		87
normalized to TOC		82,759	45,576	54,098	43,011		29,598	32,727		23,077
Indeno(1,2,3-cd)pyrene	150	470	180	170	180	150	190	270	160	130
normalized to TOC	22,727	32,414	48,257	27,869	64,516	29,880	40,169	24,545	25,641	34,483
Isophorone	•		-			430			,	
normalized to TOC						85,657				
Pentachlorophenol	840			930						
normalized to TOC	127,273			152,459						
Phenanthrene	•	190						120		
normalized to TOC		13,103						10,909		
Phenol		, ,								
normalized to TOC										
Pyrene		1100	130	590	100		110	330		69
normalized to TOC		75,862	34,853	96,721	35,842		23,256	30,000		18,302
Retene		130	. ,	300	99		-,	230	100	120
normalized to TOC		8,966		49,180	35,484			20,909	16,026	31,830

				LOWER SB-							
	Hanna CD	LOWER SB-	Lowen CB	15 SB-02	Hoose CD	Lowen CD	Hoose CD	LOWER SB-	Hansa CB	Lower CB	Lowen CB
ANALYTE	01	01	02	SB-UZ FIELD DUP	03	03	04 04	04	05	05	06
% Solid	38.9%	45.8%	46.6%	45.5%	41.1%	42.7%	41.1%	43.5%		44.8%	48.5%
TOC	2.72%	2.50%	2.32%	2.29%	2.72%	2.94%	3.17%	3.44%		2.90%	2.98%
1,2-Diphenylhydrazine											
normalized to TOC											
2-Chloronaphthalene											
normalized to TOC											
4-Methylphenol					210						
normalized to TOC					7,721						
9H-Carbazole	340	240			250	170					
normalized to TOC	12,500	9,600			9,191	5,782					
9H-Fluorene	140	87									
normalized to TOC	5,147	3,480									
Acenaphthene	86		16								
normalized to TOC	3,162		690								
Anthracene	280	190	89	98	180	150	110	110	110	77	81
normalized to TOC	10,294	7,600	3,836	4,279	6,618	5,102	3,470	3,198		2,655	2,718
Benzaldehyde	210	280	180	190	200	210	380	290	250	260	250
normalized to TOC	7,721	11,200	7,759	8,297	7,353	7,143	11,987	8,430		8,966	8,389
Benzo(a)anthracene	1400	1000	460	450	990	730	460	500	550	340	310
normalized to TOC	51,471	40,000	19,828	19,651	36,397	24,830	14,511	14,535		11,724	10,403
Benzo(a)pyrene	1400	1200	350	390	1100	860	480	540	460	360	340
normalized to TOC	51,471	48,000	15,086	17,031	40,441	29,252	15,142	15,698		12,414	11,409
Benzo(g,h,i)perylene	1100	860	290	290	820	640	380	410	330	310	280
normalized to TOC	•	34,400	12,500	12,664	30,147	21,769	11,987	11,919		10,690	9,396
Benzo[b]Fluoranthene	2000	1800	770	870	1700	1600	990	1100	1200	900	760
normalized to TOC	,	72,000	33,190	37,991	62,500	54,422	31,230	31,977		31,034	25,503
Benzo[k]fluoranthene	1700	1400	470	410	1200	850	500	580	540	400	400
normalized to TOC	62,500	56,000	20,259	17,904	44,118	28,912	15,773	16,860		13,793	13,423
Benzoic acid						2000	1900	1700		1800	1800
normalized to TOC						68,027	59,937	49,419		62,069	60,403
Bis(2-ethylhexyl)phthalate	1600	1600			2100	2100	1900	1700		1600	

EPA R10 - OEA/OAWT

Rhone Poulenc - Data Report - *Site ID No. WAD 009282302* September 13, 2005 Page 17

				LOWER SB-							
	HDDED SR.	Lower SB-	LOWER SR.	15 SB-02	HDDED SR.	LOWER SB-	HDDED SR.	LOWER SR-	HDDED SR.	LOWER SR-	LOWER SR.
ANALYTE	01	01	02	FIELD DUP	03	03	04	04	05	05	06
normalized to TOC	58,824	64,000			77,206	71,429	59,937	49,419		55,172	
Caprolactam									27		
normalized to TOC											
Chrysene	2100	1400	590	600	1400	1100	680	620	1100	430	410
normalized to TOC	77,206	56,000	25,431	26,201	51,471	37,415	21,451	18,023		14,828	13,758
Dibenzo[a,h]anthracene	700	630	380	410	630	540	460	490	460	420	420
normalized to TOC	25,735	25,200	16,379	17,904	23,162	18,367	14,511	14,244		14,483	14,094
Dibenzofuran	110										
normalized to TOC	4,044										
Diethyl phthalate	·										
normalized to TOC											
Di-n-octylphthalate											
normalized to TOC											
Fluoranthene	4800	3500	1100	1300	3200	2500	1300	1400	1500	950	900
normalized to TOC	176,471	140,000	47,414	56,769	117,647	85,034	41,009	40,698		32,759	30,201
Indeno(1,2,3-cd)pyrene	1200	970	420	440	950	800	540	580	520	470	440
normalized to TOC	44,118	38,800	18,103	19,214	34,926	27,211	17,035	16,860		16,207	14,765
Isophorone											
normalized to TOC											
Pentachlorophenol											
normalized to TOC											
Phenanthrene	1800	1300	350	340	1100	790	490	440	330	290	280
normalized to TOC	66,176	52,000	15,086	14,847	40,441	26,871	15,457	12,791		10,000	9,396
Phenol	160				1400	3100	1400				
normalized to TOC	5,882				51,471	105,442	44,164				
Pyrene	3600	2800	970	1000	2600	1800	1100	1200	1300	820	750
normalized to TOC	132,353	112,000	41,810	43,668	95,588	61,224	34,700	34,884		28,276	25,168
Retene	240	220	180	190	310	210	250	230	230	210	200
normalized to TOC	8,824	8,800	7,759	8,297	11,397	7,143	7,886	6,686		7,241	6,711

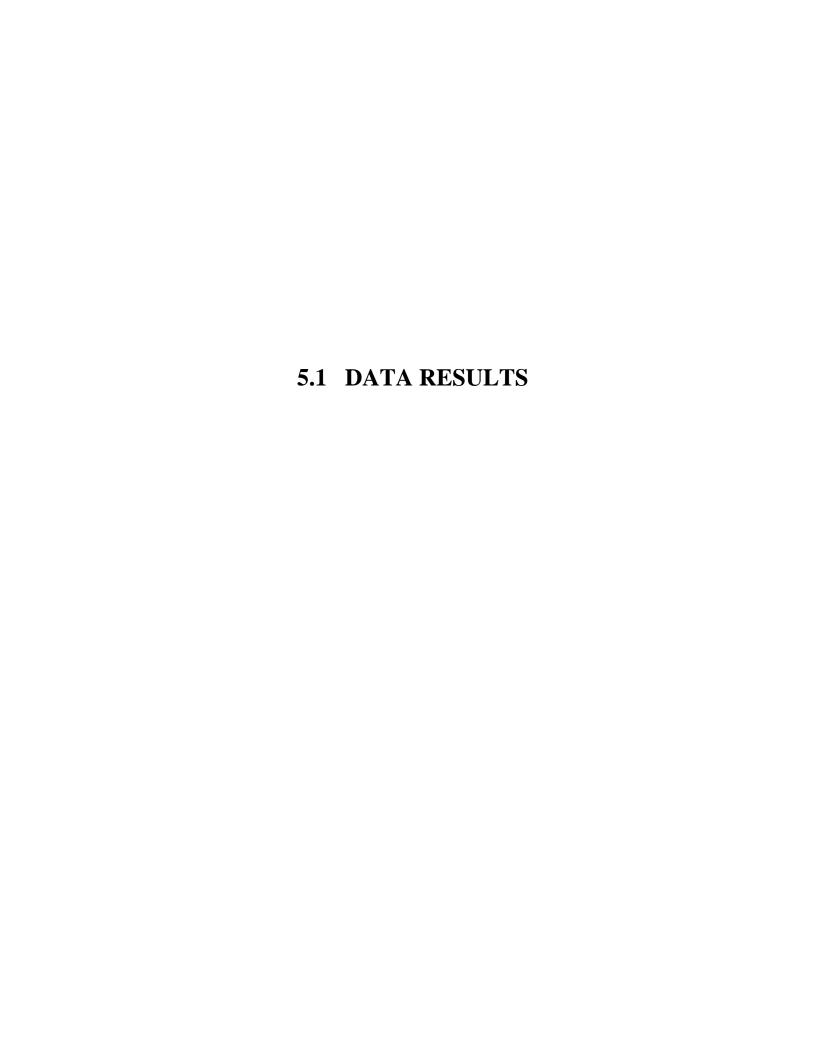
									Lower SB- 16	
	LOWER SB-	UPPER SB-			UPPER SB-				SB-17	LOWER SB-
ANALYTE	07	80	08	11	12	12	13	15	FIELD DUP	17
% Solid	45.9%	42.6%	46.7%	52.2%	53.9%	53.7%	64.0%	45.5%	45.1%	44.2%
TOC	2.92%	2.87%	2.48%	2.26%	1.61%	1.79%	1.50%	2.29%	3.71%	3.32%
4.2 Dink anythydronia										
1,2-Diphenylhydrazine										
normalized to TOC									1.0	
2-Chloronaphthalene									16	
normalized to TOC									431	
4-Methylphenol										
normalized to TOC										
9H-Carbazole									200	220
normalized to TOC									5,391	6,627
9H-Fluorene										
normalized to TOC										
Acenaphthene										
normalized to TOC										
Anthracene	70				220	140		98	180	210
normalized to TOC	2,397				13,665	7,821		4,279	4,852	6,325
Benzaldehyde	290	200			120	110		190	,	320
normalized to TOC	9,932	6,969			7,453	6,145		8,297		9,639
Benzo(a)anthracene	330	270	260	140	1400	620	180	450	830	1100
normalized to TOC	11,301	9,408	10,484	6,195	86,957	34,637	12,000	19,651	22,372	33,133
Benzo(a)pyrene	320	270	290	110	640	470	160	390	1000	1300
normalized to TOC	10,959	9,408	11,694	4,867	39,752	26,257	10,667	17,031	26,954	39,157
Benzo(g,h,i)perylene	260	250	270	130	260	240	120	290	730	910
normalized to TOC	8,904	8,711	10,887	5,752	16,149	13,408	8,000	12,664	19,677	27,410
Benzo[b]Fluoranthene	780	780	700	420	1100	850	400	870	1700	1800
normalized to TOC	26,712	27,178	28,226	18,584	68,323	47,486	26,667	37,991	45,822	54,217
Benzo[k]fluoranthene	310	300	320	130	830	640	170	410	990	1300
normalized to TOC	10,616	10,453	12,903	5,752	51,553	35,754	11,333	17,904	26,685	39,157
Benzoic acid	1700	1700	1500	1200	1300	1300			2000	1800
normalized to TOC	58,219	59,233	60,484	53,097	80,745	72,626			53,908	54,217

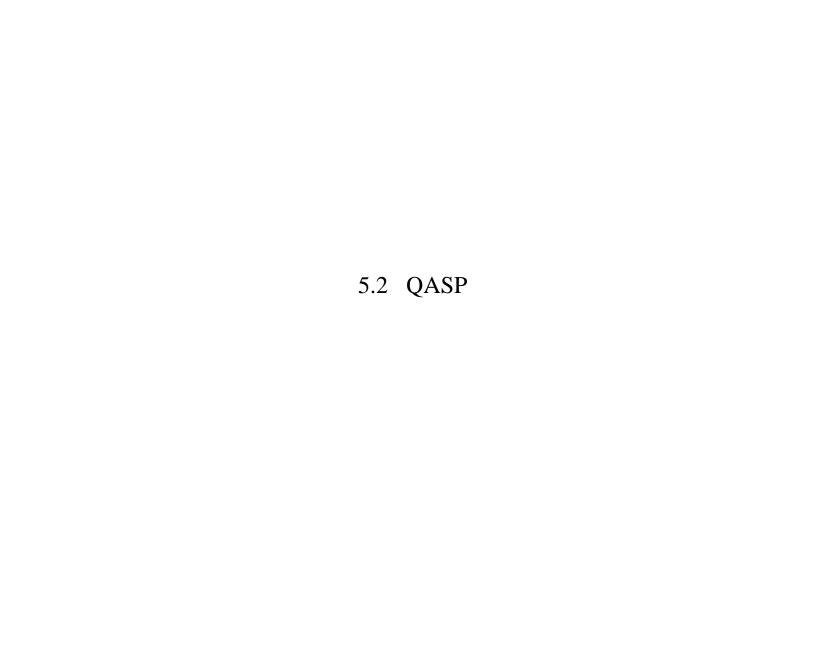
EPA R10 - OEA/OAWT

Rhone Poulenc - Data Report - *Site ID No. WAD 009282302* September 13, 2005 Page 19

									Lower SB-	
	LOWER SB-	UPPER SB-	LOWER SB-	LOWER SB-	UPPER SB-	LOWER SB-	LOWER SB-	LOWER SB-	SB-17	LOWER SB
ANALYTE	07	08	08	11	12	12	13	15	FIELD DUP	17
Bis(2-ethylhexyl)phthalate	1400								1800	1800
normalized to TOC									48,518	54,217
Caprolactam										
normalized to TOC	•									
Chrysene	420	350	340	160	1600	950	200	600	1300	1500
normalized to TOC	14,384	12,195	13,710	7,080	99,379	53,073	13,333	26,201	35,040	45,181
Dibenzo[a,h]anthracene	410	440	410	320	420	380	300	410	630	660
normalized to TOC	14,041	15,331	16,532	14,159	26,087	21,229	20,000	17,904	16,981	19,880
Dibenzofuran				·				•		
normalized to TOC										
Diethyl phthalate										
normalized to TOC										
Di-n-octylphthalate										
normalized to TOC										
Fluoranthene	760	720	700	270	5300	2700	440	1300	3100	3800
normalized to TOC	26,027	25,087	28,226	11,947	329,193	150,838	29,333	56,769	83,558	114,458
Indeno(1,2,3-cd)pyrene	420	410	410	250	430	370	250	440	860	1000
normalized to TOC	14,384	14,286	16,532	11,062	26,708	20,670	16,667	19,214	23,181	30,120
Isophorone	,	,	·	,	,		,	,	,	,
normalized to TOC										
Pentachlorophenol										
normalized to TOC										
Phenanthrene	230	240	250	110	900	230	250	340	1100	1300
normalized to TOC		8,362	10,081	4,867	55,901	12,849	16,667	14,847	29,650	39,157
Phenol	380	-,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,-	480	
normalized to TOC									12,938	
Pyrene	680	580	610	290	4100	3900	360	1000	2100	2800
normalized to TOC		20,209	24,597	12,832	254,658	217,877	24,000	43,668	56,604	84,337
Retene	210	250	220	220	200	160	270	190	210	240
normalized to TOC		8,711	8,871	9,735	12,422	8,939	18,000	8,297	5,660	7,229
Upper = upper 10 cm; Lower = below	-,									

Upper = upper 10 cm; Lower = below 10 cm (*interval thickness* for Lower ranged from 5 to 17 cm for subtidal (SB) stations and from 5 to 26 cm for intertidal (SH, SHB) stations, see Appendix 5.3)


EPA R10 - OEA/OAWTRhone Poulenc - Data Report - Site ID No. WAD 009282302
September 13, 2005Page 20


4.0 References

Lee DR and Cherry JA. 1978. A field exercise on groundwater flow using seepage meters and mini-piezometers. J Geol Educ 27:6-10.

5.0 Appendice

- 5.1 DATA RESULTS
- 5.2 QASP
- 5.3 FIELD NOTEBOOKS
- 5.4 SAMPLE DATA AND CHAIN OF CUSTODY FORMS
- 5.5 DIVE REPORT
- 5.6 Previous Transition Zone Characterization

5.4	Sample Data and Chain of Custody Forms

5.6 Previous Transition Zone Characterization