

STUDENT STUDY GUIDE

FOR

AEROSPACE DIMENSIONS

2000

Published by

National Headquarters Civil Air Patrol Aerospace Education Maxwell AFB, Alabama

CONTENTS

	Page
Introduction	iii
Improving Study Skills	1
Developing Good Study Habits	3
Calculating Reading Time	3
Developing Good Reading Skills	4
Listen Effectively	4
Taking Notes	5
Improving Your Memory	5
Taking a Test	6
Module 1 - Introduction to Flight	9
Module 2 - Aircraft Systems & Airports	14
Module 3 - Air Environment	18
Module 4 - Rockets	22
Module 5 - Space Environment	25
Module 6 - Spacecraft	29
Appendix 1 – Answers	32
- Module 1	32-34
- Module 2	34-36
- Module 3	36-38
- Module 4	38-39
- Module 5	39-41
- Module 6	41-42

INTRODUCTION

We designed this study guide to be used with the Phase I and II aerospace education program, *Aerospace Dimensions*. This study guide should help you review the material and reinforce your knowledge of the six modules that make up *Aerospace Dimensions*.

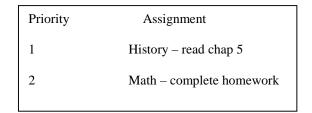
The study guide begins with a section on improving study skills. It includes sections on: developing good study habits, calculating reading time, developing good reading skills, listen effectively, taking notes, improving your memory and taking a test. These sections offer valuable information and tips that will help you with your CAP lessons or with your schoolwork. We hope you will find these sections useful.

The study guide contains lots of questions for each chapter of each module. When you answer the questions, try to respond without looking up the answer. This will be a good review and a way to find out how well you know the material. Also, spend a little time thinking about the main ideas and concepts of the modules. Notice also that the learning outcomes of each module are included. Studying these outcomes will help you prepare for the tests.

The answers to the questions can be found in the appendix of this guide, or you can look them up in the text. The reference page for each answer is also included in the appendix.

So, good luck, and we hope you find this guide interesting, helpful and worthwhile.

Improving Study Skills


The next few pages contain some helpful hints for studying. These hints apply whether you are involved with Civil Air Patrol books or with your schoolwork. Take a few minutes and look over these pages. They should help you work more efficiently.

Organizing Your Time

There never is enough time! How many times have we heard that or even said that ourselves. We are all busy, no question about it. However, some people seem to accomplish a lot more than others. How do they do it? Some people are more organized than others. Let's take a look at a couple of ideas to help you better organize your time.

The first step in organizing your time is making a To Do List. Be sure that you prioritize your list. Use any system that works for you, for instance, you could number each item based on ranking them in the order that you plan to complete them. ie. 1, 2, 3, etc. Or you could use a 1 -for high priority, 2 -for medium, and 3 -for low, or simply H, M, L. Just be sure to classify them in some way. See charts below:

То	Do	List
----	----	------

1	1	D
L	ונ	Γ.

Priority	Assignment
Н	Write English paper
М	Read Science chap 9

Next, you need to make a time schedule. Two examples are listed on the next page. Either will work. The main idea is to fill out the schedule and use it. Be accountable for your time and then stick to it the best you can. If you have everything listed and you use your schedule, you are already on your way to being more organized.

The first example of a schedule is very general in nature. Just block the times you want to study that day. That part is up to you. So, this gives you the flexibility to fit the studying in when you can. This is fine, but you must be responsible to ensure that you

do actually study. You should remember that you may not be able to study for two hours straight and stay alert enough to get all you can from the lesson. A quick 5-10 minute break to get up and stretch or walk around can help clear your mind a little and refresh you. After the break, get back to work. This establishes a good routine, plus its better than studying for two hours straight. You will retain more.

Notice that the second example is much more specific. It even lists the hours of the days. This one isn't nearly as flexible and requires some dedication and commitment. This one is easier to follow after you have already established good study habits and have proven to yourself that you can follow such a schedule.

Once you set your starting time, do your best to stick to it. Have your paper, pens, pencils, books and anything else you need with you when you begin studying. Be realistic with your priorities and adjust your schedule accordingly, if you must.

Mon	Tues	Wed	Thur	Fri	Sat	Sun

Time Schedule

Week of _____

Hour	Mon	Tues	Wed	Thur	Fri	Sat	Sun
AM							
7-8							
8-9							
9-10							
10-11							
11-12							
12-1							
1-2							
2-3							
3-4							
3-4 4-5							
5-6							
6-7							
7-8							
8-9							
9-10							
10-11							

Developing Good Study Habits

Another area where we should spend some time is in developing good study habits. If you have followed the tips from the Organizing Your Time section you are already on the right track to better studying habits. Here are a few more tips for your consideration.

Arrange a study area that has good lighting, a comfortable chair and comfortable temperature. Create a good environment for studying, one without

distractions. Noise, whether from the radio or television, is a distracter. Some students like to study with the radio or television on, but in most cases, they could concentrate better and retain it longer without the noise.

Study while you are alert. Know when your best times are for studying. Some people study best in the morning, while others do best at night. Know what works for you. Don't force yourself to stay awake. You must be alert to get the most out of your studying. Also, know where you study best. It might be at the library, your home, or somewhere else, but know where it is.

Set realistic amounts of time for studying. Know how long you can study before taking a break. When you find yourself daydreaming, stop, take a quick break and then get back at it. If you are fighting boredom and are unfocused, get up and move around, have a drink of water, or turn down the heat. It's all right to take breaks. The key is to keep them short and get back to your studies.

Finally, work on one assignment at a time, and if you can, finish it before moving on to the next task.

These few pages on studying were meant to give you some ideas about how to study better and be more efficient with your time. They are not a comprehensive list of all the do's and don'ts on studying. However, we do hope these tips are helpful to you.

Calculating Reading Time

Here is a quick way to figure how much time it should take you to read an assignment:

- 1. Count the number of pages you must read.
- 2. Use the following formula to calculate the number of pages you must read each day:

Total pages ÷ Number of days x 4 (average minutes per page)

3. Divide the total number of pages you must read by the number of days you have in which you have to read them.

Example: you have 40 pages of aerospace reading due in 4 days; divide 40 by 4 $(40 \div 4 = 10)$. You need to read 10 pages each day.

4. Multiply the number of pages you must read each day by the number of minutes it takes to read a page.

Example: $10 \ge 4 = 40$. You must read 40 minutes per day for 4 days to complete your assignment. Remember, this is an average. Your time may vary.

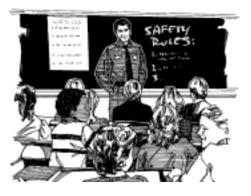
Developing Good Reading Skills

Let's go over a few steps which can improve your reading skills. First of all, you should understand how the text is organized. You can do this by going over the table of contents. This will give you a chapter-by-chapter-listing. Then read the introduction, which is written by the author and usually gives a detailed overview of the book.

The next step should be to skim over your reading. Skimming includes reading subheadings and illustrations, as well as thoroughly reading introductory paragraphs and summaries at the end of the chapters. Be sure also to read the first sentence of every paragraph, which usually includes the main idea of the paragraph.

Next, go back over the material and read for details. Read one chapter at a time. Don't go on to the next chapter until you've written definitions of key terms and written some questions and answers to clarify the material.

To increase your reading speed, focus your attention and concentration. Eliminate outside distractions and provide a comfortable environment. Finally, try to grasp general concepts rather than every detail.


To increase your comprehension try to learn sequentially by building on what you already know. Review the main points and test yourself to see what you remember. Summarize what you've studied, writing it in your own words.

Listen Effectively

Here are a few things to help you listen more effectively:

Sit in front of the class or auditorium, if possible.

Pay close attention to the first and last 5 minutes of the lecture. Listen for what the instructor is going to talk about and then for the summary of what was discussed.

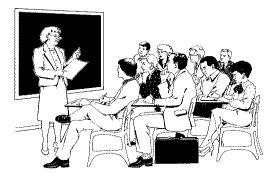
Concentrate on what the speaker is saying, not what he/she looks like or how he/she is dressed.

Listen with your mind, not your emotions.

Be prepared by reading your assignment ahead of time.

Relate ideas from the lecture to any previous lectures or personal experiences.

Seek answers to information you don't understand.


Avoid conduct distracting to others.

Participate constructively in discussions.

Taking Notes

Be sure to list the date of the lecture and the chapter of the material being covered.

When a lecturer writes on the board it is usually important, so take notes on it.

When reading, watch for key phrases like: "There are three main reasons....", "This is important because....", or "The main point is.....".

Use your own system for abbreviations, symbols, underlining, etc. Highlight or mark important information.

Compress sentences into shorter phrases using your own words.

Write down facts accurately.

Summarize the main points of a lecture or chapter.

Study the text and the lecture notes together.

Improving Your Memory

Don't study when you are hungry, disorganized or upset.

Make sure your facts are correct before trying to remember them.

Get the proper amount of sleep. At least 4 to 6 hours is necessary for good memory retention the

next day. Many people require 6 hours or more.

Build your memory with several shorter study sessions over several days. Five hours spread out over a few days is better than five hours straight in the same day.

After a lecture, review your notes for 5-10 minutes. Then do it again the next day.

Consider joining a study group. It can help you obtain a complete understanding of the material.

Taking a Test

Before discussing taking a test, let's look at getting ready for a test. Many students experience test anxiety. This is very common, and it includes everything from just being a little nervous, to some students becoming very ill. Many students will get sweaty palms and feel like their mind is going blank. Probably all of us have experienced some of this at one

time or another. Once you realize you have this problem, for the most part, there are things you can do to help.

One way to help is to be prepared; study. Conduct regular reviews of the material for up to a week before the test. Ask yourself questions from the text and your notes. This will help with the problem of cramming and pulling all-nighters. Regular studying will help you feel you are ready for the test, and will give you some added confidence which should help with your anxiety. Be confident, think positively, and relax. Take a deep breath. Actually, take a few deep breaths, lean back in your chair and try to relax you muscles.

Another thing, don't be in a hurry to take a test. Take your time, think while you are answering the questions. However, don't be slow and methodical either, but work at a steady, comfortable pace and keep moving. Don't worry about being the first one done, or about being one of the last students still working. Being the first one done doesn't insure a good grade, it just means you have turned your paper in and can't go over it anymore. When you are finished with your test, go back over it, and make sure you've answered all of the questions.

When it comes to actually taking the test, always read the instructions carefully. Read or listen for any special rules, such as extra penalties for guessing or for certain questions being worth more points than others. If either of these occur, it should impact on your test strategy. For instance, if you lose additional credit for guessing, you must stop and decide if you are relatively sure, or making an educated guess, or whether it's a wild guess. If there is no additional penalty for guessing, make sure you answer every question. If some questions count more points you'll probably want to spend more time on them, so gage your time accordingly.

Some students will begin with the first question and go right through the test in order. Others will start with number one, but will skip ones they are unsure of and save them for later. If you subscribe to this philosophy, be sure you allow enough time at the end to go back and answer the ones you left. Also, be sure to mark them somehow so you can find them quickly. Either one of these strategies work fine, just remember not to spend too much time on any one question. Always be aware of the time factor so you can pace yourself. If the teacher doesn't remind you in some way, you might jot the time down on a piece of paper every 10 minutes or so.

Here are a few tips for **multiple-choice tests**.

Read the question carefully and look for any key qualifying words such as: not, never, none, always, all or every.

Watch for answers which state "all of the above" or "none of the above"; give them careful consideration. If you find that two of the responses are correct, then they all are.

Watch for one response being longer and more detailed than the rest; many times this will be the right answer.

Here are a few tips for essay questions.

If there is more than one question, read or at least skim all of the questions.

Underline important phrases, words, or facts within the question. Be able to emphasize what is important and what you have to address in your answer.

Off to the side or on a separate sheet of paper, jot down pertinent facts and key ideas that should be included in your answer, so when you begin answering the question you can refer to your notes, and you won't forget. Don't take a lot of time, use short phrases or single words that will trigger your memory. Take a moment and organize these facts and ideas in order so you will know how to move through the question.

Most importantly with essay questions, make sure you are answering the question and are addressing what the teacher wants.

Care about your spelling, grammar and legibility; these things can affect your grade.

AEROSPACE DIMENSIONS

MODULE 1

INTRODUCTION TO FLIGHT

Instructions: This STUDY GUIDE is designed to help you prepare for the examinations after each module. This guide is designed for self-study; however, it is suggested that cadets use the study guide to quiz each other in a group session. This is fun and very often, will help promote a better understanding of concepts.

Chapter 1 – Flight

Learning Outcomes

Upon completion of this chapter, the cadet should know:

- The relationship between Bernoulli's Principle, Newton's three laws of motion and how they were used to develop a machine that could fly.
- The coefficient of lift and the parameters involved.
- The parts of an airplane and an airfoil.
- The four forces affecting an airplane in flight.
- The three axes, movement around those axes and the control surfaces that create the motion.

Chapter 2 – To Fly By The Lifting Power of Rising Air Learning Outcomes

Upon completion of this chapter, the cadet should know:

- How gliders use the environment to obtain altitude.
- Why gliders look differently than powered airplanes.
- How gliders can achieve great distances without power.

Chapter 3 – Balloons, They Create Their Own Thermals Learning Outcomes

Upon completion of this chapter, the cadet should know:

- The principle of buoyancy and how this relates to the flight of a balloon.
- The components of a balloon and how each works in the flight profile.
- The history of the balloon and why it's recognized as the first powered, manned flight.

Why Aerospace Education?

1. Aerospace education is defined as that branch of ______ and ______ about aerospace activities and the total _______ of air and space vehicles upon society.

- 2. Aerospace education is a mission of the Civil Air Patrol. It was derived from a Public Law that was signed into existence on what date? _____, _____
- 3. What nation leads the world in aerospace technology?_____

Chapter 1--Flight

- 4. An ______ is any machine that is capable of flying through the air.
- 5. This aircraft is kept aloft by the aerodynamic forces upon it wings and is thrust forward by a propeller, or other means of propulsion such as a jet or rocket.
- 6. The word *aerospace* is a combination of ______ and _____
- 7. Air is made up of several gases. Which one of these gases makes up the greatest percentage in the atmosphere? _____
- 8. If "sub" means *below*, trans" means *between*, and "super" means *above* or *beyond*, develop three words from these prefixes for the range of speeds below, between, and beyond the speed of sound: ______, _____,
- 9. If a control surface, such as a vertical or horizontal stabilizer, does not move or provide lift, can it still be considered an airfoil?_____.
- 10. If you mount a ski rack on top of an automobile, it creates aerodynamic ______and this can affect gas mileage.
- 11. Forces in motion are said to be ____
- 12. If the air is dead calm at an airport, can airplanes still fly?_____(Y/N)
- 13. When an airplane moves down the runway, for takeoff, a flow of air is created in the opposite direction to the direction of the takeoff. This is known as the
- 14. There is a line between the leading and trailing edges of a wing. What is it called?_____
- 15. In the myth about Icarus and Daedulus, it gives an account of a man and his son flying from an island across the Aegean Sea. There is an error in the myth that has to do with their flight. Which of the following answers best describes that error.
 - a. As Daedulus flew higher, the wax on his wings melted.
 - b. As Icarus flew higher, the temperature of the air should have been cooler.
 - c. Sea bird feathers don't provide lift.
 - d. Warm bee's wax won't stick to human arms.
- 16. A very significant date in history was November 21, 1783. What happened on that date?
 - a. Joseph and Etienne Montgolfier first flew in a hot air balloon.
 - b. The first hydrogen balloon flew over Paris, France.
 - c. Marco Polo first flew the English Channel in a Montgolfier balloon.
 - d. None of the above are correct.

17. In 1299 AD, Marco Polo observed _______sailors being used as observers aboard what kind of a flying device?_____.

18 A bird is a living _____machine.

19.A large bubble of warm air is used to lift what kind of flying machine?_____. Who is given credit for inventing this flying machine?

- 20. When you learn the *Important Terms* in the new *Introduction To Aerospace*, you are learning a new ______.
- 21. The action of a bird's wing that moves the air downward and backward can be compared to a _______ on an airplane.
- 22. A bird has two "control surfaces" for maneuvering. They are the ______ and the ______.
- 23. Sir Isaac Newton's three laws of motion can be used to explain how a bird flies. When the wings move downward, this propels a bird forward as well as providing lift. This is an example of Newton's _____ Law.
 24. The curvature, or camber, on the upper surface of a bird's wing, is an example of
- 24. The curvature, or camber, on the upper surface of a bird's wing, is an example of what kind of "lift." (Bernoulli or Newton) ______.
 25. As a fluid, like air, is accelerated, the ______drops. This is an
- 25. As a fluid, like air, is accelerated, the ______drops. This is an example of ______Law.
- 26. As the air flows over the top of a wing, it is accelerated. What happens to the pressure? _____.
- 27. As air passes under a wing, a certain amount of lift is generated. This is an example of _____Law.
- 28. The _______is an imaginary line, in an airfoil, that connects the leading and trailing edges.
- 29. A curvature on the top of a wing, is called the _____.
- 30. Name the two natural forces acting upon and airplane in flight: ______ and
- 31. Name the two artificial forces acting upon an airplane in flight: ________.
- 32. A person weighing 160 pounds is flying a high performance fighter. In one combat maneuver, that person weighs 1280 pounds. How many "Gs" is that?_____
- 33. Bicycle helmets now have a distinct "tear drop," or streamlined shape. This is an effort to reduce what natural force?_____
- 34. When an airplane is ready for takeoff, the pilot applies power. This power provides an artificial force called _______and it overcomes a natural force known as _______. As the plane gathers speed, a mechanical device, called an airfoil, or _______, causes a fluid, commonly known as _______, to accelerate over under and around the airfoil. This causes a _______ in pressure on the upper curvature, known as the _______. When the pressure on the top is _______ and on the bottom is _______, the airfoil will rise away from gravity. This creates an artificial force called _______. The oncoming air, known as the ________ also impacts the underside of the airfoil. This is an example of _______ Law. State that law in its entirety:
- 35. The control surfaces on the trailing edge of a paper airplane's wing are called
- 36. There are four ways of increasing lift in an airfoil. They are:
 - a._____
 - b._____ c.____
 - d.

- 37. When a wing is angled upward, this is called "increasing the ______of _____? At a certain point, the airflow over the top of the wing will separate. This causes the boundary layer of air to break away from the upper camber of the wing. When this happens, a loss of lift occurs. This is called a ______.
- 38. What is that point at which a wing will stall?
- 39. The word "burble" means turbulent, tumbling air. This occurs over the top of a wing during a ______.
- 40. That axis which passes through an airplane from nose to tail?
- 41. That axis which passes through an airplane from top to bottom?
- 42. That axis which passes through an airplane from wingtip to wingtip?_____
- 43. Movement around the axis in question #43 is called?
- 44. Movement around the axis in question #44 is called?
- 45. Movement around the axis in question #45 is called?
- 46. The point where all three axes come together is called the _____
- 47. What control surface, on an airplane, makes it roll about the vertical axis?
 - a. The rudder
 - b. The ailerons
 - c. The elevator
 - d. None of the above are correct.
- 48. The elevator causes the nose to _____ up and down.
- 49. The ailerons cause the aircraft to _____about its longitudinal axis.
- 50. The ______causes the aircraft to yaw about its vertical axis.
- 51. If an elevator and stabilizer are combined to make one control surface that acts by changing angle of attack, it is called a ______.
- 52. When one aileron moves down, the other _______.
- 53. A propeller is actually a wing lifting _____.
- 54. In close to the hub of a propeller, the ______ of _____ is greater than at the tip.
- 55. The tip of a propeller achieves most of its "lift" because of greater ______.
- 56. The "wing" of a propeller is called the _____.

Chapter 2-To Fly By The Lifting Power of Rising Air

- 57. Fluid motion due to regions of unequal heating is called?
- 58. The ratio between the span of a wing and its chord is called?
- 59. The mathematical relationship between the distance a glider will travel forward to the loss of altitude is known as the ______.
- 60. A column of air that moves vertically is known as ______.
- 61. What is the great force that drives the motion of our atmosphere? ______.
- 62. If the average worldwide temperature at 59 degrees Fahrenheit, what would be average temperature for a city 5000 above sea level.
- 63. To find the Celsius equivalent of a Fahrenheit temperature, use the formula C=5/9(F-32). Based on this formula, what is the average Celsius equivalent temperature, worldwide, if the average Fahrenheit temperature at sea level is 59 degrees. Ans.

- 64. If a glider's wing has a span of 80 feet and a chord of 4 feet, what is the aspect ratio?
- 65. If the Air Force Academy TG-4A glider has an aspect ratio of 11.85 to 1, what is the chord of its wing? _____.
- 66. The dive brakes, or spoilers, on the TG-4A create a _____ of _____ when deployed in flight.
- 67. Adding a penny to a foam glider adds weight ahead of the ______of _____.

Chapter 3—Balloons—They Create Their Own Thermals

- 68. The heat source for filling an envelope with hot air is known as the ______.
- 69. A lightweight, low carbon fuel used in hot air balloon burners?_____
- 70. The main body of a hot air balloon?_____
- 71. A balloon operates on the principle of _____
- 72. A typical hot air balloon will derive about _____of lift per 1,000 cubic feet. If a balloon has a volume of 68,500 cubic feet, how much weight can be lifted?_____
- 73. Based on the weight of an average human being 170 pounds, four tanks of propane at 290 pounds, an envelope weighing 160 pounds, a basket and burner assembly at 150 pounds, how many passengers and miscellaneous pieces of equipment will the balloon in question #76 carry? ______.
- 74. A ______ inside of the envelope of a hot air balloon allows the pilot to release hot air for the purpose of descent.
- 75. Although a hot air balloon has no horizontal control, pilots can achieve some directional changes by seeking out changes in ______ at various altitudes.

MODULE 2

AIRCRAFT SYSTEMS & AIRPORTS

Chapter 1 – Airplane Systems

Learning Outcomes

Upon completion of this chapter, the cadet should know:

- How a reciprocating aircraft engine operates.
- Be able to recognize parts of the engine when viewed externally.
- How a jet engine operates.
- The basic cockpit-mounted power plant controls.
- The basic flight instruments.

Chapter 2 – Airports

Learning Outcomes

Upon completion of this chapter, the cadet should know:

- The basic layout of a general aviation airport.
- The taxiway and runway signs and markings.
- The role of the Federal Aviation Administration in controlling air traffic.
- The flight profile.
- The phonetic alphabet.

Chapter 3 – Airport to Airport – Aeronautical Charts Learning Outcomes

Upon completion of this chapter, the cadet should know:

- The basic layout of the sectional chart.
- The sectional chart legend.
- How to read latitude and longitude.
- How to find features, such as railroads, pipelines, obstructions and highways.
- How to read all of the information given about an airport.

Chapter 1 – Airplane Systems

1. The ratio of fuel to air in which, upon combustion, all of the fuel is burned, is known as the ______.

as the ______. 2. An ______ engine converts chemical energy into mechanical energy.

3. The four stroke operating cycle of a reciprocating engine are: (a) ______,
(b) ______, (c) ______ and (d) _____.

4. In a jet engine, air is mixed with fuel and ignited in ______stage.

5. In a jet engine, fuel is often sprayed into the exhaust stage. This gives additional thrust and is called an _____.

6. When a mixture contains more fuel than is needed for normal combustion, it is called a _____ mixture.

7. When a mixture contains less fuel than needed for normal combustion, it is called a mixture.

8. When the fuel tanks are mounted above the engine, as you would find in high wing (Cessna type) airplanes, what force keeps the fuel moving toward the power plant?

9. What is the source of electrical power for the spark plugs?

10. A recurring series of events is called a

11. As an airplane climbs higher, the air becomes thinner. This means that there is less air than at altitudes closer to the Earth. What control, located in the cockpit, does the pilot use to decrease the amount of fuel that is allowed to enter the intake phase?

12. Most aircraft carburetors are located on the ______of the engine.

13. A carburetor has a restriction called the _____. When air enters the restriction, it speeds up and the _____drops. This is an example of Principle.

14. Referring to the illustration of the Pratt & Whitney turbofan jet engine, as the air enters the front end, it immediately starts being compressed. From this stage, the air enters the ______ chamber where ______ occurs. The exhaust gases from this stage then pass through a ______ which in turn rotates a shaft and powers the ______ located up front. 15. A jet engine, like a standard reciprocating engine, has four stages. They are:

_____, ____, ____, ____ and _____. 16. The two primary functions of the oil system in an airplane engine is and

17. Inside the cockpit, there are two gages that monitor the operation of the oil system. They are the ______ and _____ 18. The engine instrument that monitors engine speed is known as the

19. There are three main flight instruments that operate from the pitot/static system. They are ,

20. The three flight instruments that operate on the principle of a spinning gyroscope are: _____, and _____. 21. The standard pressure at sea level is 29.92 inches of mercury. What is the equivalent

of this in millibars?

22. As we go higher in the atmosphere, the pressure _____.

23. The pressure drops approximately _____ inch per 1000 feet of altitude.

24. One flight instrument, other than the altimeter, monitors the rate of change in altitude. This is known as the

25. Another flight instrument records the difference between static air and air being rammed into the system. This is the

26. Some airspeed indicators show their numbers in knots. A "knot" is actually short for

the "naut," or nautical mile. What is the length of a nautical mile in feet?

27. What is the length of a statute mile in feet?

28.	If the	distance	between	point A	and point	B is 25	statute	miles,	will t	he n	autical
equ	ivalent	t number	be (a)	longer	or (b)	sho	rter?				

29. The spinning "wheel" inside a gyro is called the _____.

- 30. What aircraft instrument was once known as the "artificial horizon?"_____
- 31. What flight instrument is actually and artificial compass?_____
- 32. What flight instrument can be monitored to give precise rate of turn information?

33. If an aircraft is moving toward the inside of a turn, it is said to be ______. If it is moving toward the outside of the turn it is ______.

Chapter 2 - Airports

34. If an airport has a control tower, it is said to be a ______ airport.35. The letters "FAA" stand for _______

36. What is an airports "parking lot?" _____

37. Some airports have a problem with excessive noise and the governing authorities will set policies that deal with this problem. This is called ______

38. A passageway between the parking area and the runway system is called a

39. There are basically two sets of rules that govern flight. They are known as VFR and IFR. Which set will you follow in early flight training?

40. Once an airplane becomes airborne from an airport, it is subject to traffic rules. The first "leg" of the traffic pattern begins at takeoff and it is known as the ______leg. 41. When an airplane is approaching an airport for the purpose of landing, it is required to enter a standard traffic pattern. The first part of this pattern is known as "entry." From the entry leg, a pilot will turn ______. This part of the pattern is followed until the pilot turns onto the ______leg. The next leg points directly toward the runway and this is known as ______.

42. There are two numbers, one at each end of the runway. These numbers are abbreviated ______.

43. If you were watching a movie and a control tower operator in that movie said to a pilot, "..... you are cleared to land on runway 44," you would know this is wrong. Why?

44. If runway 9 is actually three runways in parallel, their numbers would be _____, _____ and ______.

45. In the photograph of Jefferson County Airport, Broomfield, Colorado, you will see runway 29R in the center of the picture. After examining the runway markings you should be able to see that this is a ______ runway. (precision, non-precision)

46. In the same photograph, there is a runway that crosses runway 29R and it is exactly 90° to Runway 29R. What numbers would this runway have at each end?

49. What color are threshold lights when viewed from the landing end? ______.

50. What color are the border lights at most non-precision runways? ______.

51. If you are a pilot on final approach to land, and you notice the VASI lights are both red, this is an indication that you are 52. The beacon is a light that guides pilots to airports at night. If you see two white flashes, followed by a green flash, you know this is a ______airport. 53. If a beacon has one white flash, followed by a yellow flash, it is a ______ airport. 54. What indicator uses the power of the wind to give direction? ______.

55. The phonetic alphabet for the letter "U" is______.

Chapter 3 - Airport to Airport - Aeronautical Charts

56. A system of lines that run parallel to the equator?________57. All longitude lines converge at either the _______ or the _______.

58. A chart that is scaled 1:500,000 inches, or approximately 8 mile?

59. Every degree, on a sectional chart, has _____ minutes.

60. If an airport symbol is blue, it means that the real airport has a _____

61. In the example of Cherokee, Oklahoma, airport, there is a block of information just above the symbol. It reads "CHEROKEE (OK6Ø)," followed on the next line by "1177 L 38 122.9 ©." Answer this and following questions using the CHEROKEE example. The question is: The Cherokee airport symbol is magenta in color - this means the airport has

62. Cherokee's airport symbol has a star at the top of it. This means that the actual airport has

63. The number "1177" in the airport information is the ______.

64. The number 1177 is followed by "L 38." This means:

65. What is the location identifier for Cherokee's airport?

66. What is the frequency for the Cherokee airport UNICOM?

67. What is the height above sea level of the town of Cherokee, Oklahoma?

68. There is a large dotted, light blue symbol to the east of the town of Cherokee, Oklahoma. What is this symbol? _____? 69. The towns of Jet and Cherokee, Oklahoma, are connected by two "roads." One is a

and the other is a .

MODULE 3

AIR ENVIRONMENT

Chapter 1 - Air Circulation

Learning Outcomes

After completing this chapter, you should be able to:

- Describe how the sun heats the Earth.
- Describe the Earth's rotation and revolution, and its effort on the Earth's seasons.
- Explain the various theories of circulation.
- Describe Coriolis Force.
- Define the jet stream.

Chapter 2 - Weather Elements

Learning Outcomes

After completing this chapter, you should be able to:

- Define wind.
- Describe the Beaufort Scale.
- Define heat.
- Explain what temperature is and how it can be expressed.
- Describe what wind chill is and what it does.
- Describe how a microburst can affect a plane.

Chapter 3 - Moisture and Clouds

Learning Outcomes

After completing this chapter, you should be able to:

- Describe the condensation process.
- Describe how saturation occurs.
- Define dew point.
- Define what precipitation is and give some examples.
- Define fog.
- Define turbulence.

Chapter 4 - Weather Systems and Changes Learning Outcomes

After completing this chapter, you should be able to:

- Define an air mass and identify air mass characteristics.
- Define a front and describe the types of fronts.
- Describe hurricanes, thunderstorms and tornadoes.
- Identify the stages of a thunderstorm.
- Outline safety precautions for thunderstorms and tornadoes.

Chapter 1 - Air Circulation

- 1. The sun heats the _____ and is the fundamental cause of our _____.
- 2. The sun heats parts of the earth _____ than others.
- 3. This ______ or _____ heating causes ______ and _____ differences. This creates ______ or the ______ of air.
- 4. The sun heats the earth through a method known as _____.
- 5. Heat from the sun is ______ depending on the _____ or the
- 6. About _____% of the sun's radiation is absorbed by the Earth's surface. The other % is ______ and _____ in the atmosphere and space.
- 7. Warm air _____. This is an ingredient for producing _____.
- 8. Warm air molecules are spaced ______ than cool air molecules.
- 9. The Earth ______ around the sun. The Earth's revolution takes _____ days, ___ hours and <u>minutes</u>.
- 10. The Earth rotates on its axis at an angle of <u>degrees</u>. The rotational tilt causes the length of the to vary and the rotation plus the revolution cause the to occur.
- 11. The Northern Hemisphere is tilted directly toward the sun on _____. This is called the
- 12. On December 22, the Northern Hemisphere is tilted directly _____ from the sun. This is called the ______.
- 13. The ______ occurs on March 21, and the ______ occurs on September 22. On both occasions, the sun's direct rays strike the equator.
- 14. The Earth rotates on its axis in a ______ direction in the Northern Hemisphere. This rotation causes an object moving freely in the Northern Hemisphere to be deflected to the right of its intended path. This deflection is called
- 15. Between 30° north and south latitude and the equator, the movement of air toward the equator is called ______.
- 16. Converging trade winds can cause an area of calm winds. This area of calm is called
- the _____.
 17. _____ in the Northern Hemisphere are responsible for many of the weather movements across the US and Canada.
- 18. Winds at about 60° latitude result from the air over the poles cooling, sinking and spreading out. This area of winds is called the
- 19. The ______ is wind that usually crosses the US at 30,000-35,000 feet and generally moves in a west to east direction.

Chapter 2 - Weather Elements

- 20. _____ is a body of air in motion.
- 21. ______ is defined as the direction from which the wind is blowing.
- 22. A knot equals _____ mph.
- 23. A scale for estimating winds on either land or sea is called the ______
- 24. To determine ______ you use temperature and wind speed to explain how cold it feels.
- 25. Airplanes takeoff ______ the wind because the wind gives the plane more lift.

- 26. A strong tailwind will ______ a plane's air speed.
- 27. A ______ is defined as a downdraft or downburst of wind.
- 28. _____ is the total energy of all molecules within a substance.
- 29. ______ is a measure of molecular motion expressed on a man-made scale.
- 30. Fahrenheit's freezing point is _____° and its boiling point is _____°.
- 31. Celsius' freezing point is _____° and its boiling point is _____°.
 32. Kelvin's freezing point is _____° and its boiling point is _____°.
- 33. Warmer temperatures require ______ runways for takeoff.
- 34. Extreme heat can cause heat _____, ____, ____, ____ and _____ and _____. Always drink plenty of ______ when it is extremely hot.
- 35. In extreme cold, _____ and _____ may occur.
- 36. The weight or push on the Earth's surface is called ______
- 37. Scientists and meteorologists mainly use a _____ barometer.
- 38. A ______ is found in weather stations and gives a permanent record of pressure readings.

Chapter 3 - Moisture and Clouds

- 39. ______ is the most important element in the development of weather.
- 40. Moisture, in its gaseous state, is called ______
- 41. When a parcel of air is holding all of the water it can, ______ is reached.
- 42. The temperature at which the air becomes saturated is called the _____.
- 43. Converting water vapor to a liquid is called ______.
- 44. Clouds and fog are products of .
- 45. ______ is the amount of humidity in the air compared to its total water vapor capacity at a given temperature. It is expressed in a
- 46. _____ is composed of tiny droplets of liquid water in contact with the surface. It is actually a cloud that is touching the ground.
- 47. Clouds are made up of minute droplets of _____ or _____ of ____ or both.
- 48. There are three basic cloud forms: _____, ____ and _____.
- 49. ______ is a fair weather cloud indicating good weather.
- 50. _____ has a very uniform appearance with very little vertical development.
- 51. ______ clouds are white, thin, wispy clouds, usually in patches, filaments, hooks or bands and are mainly composed of ice crystals.
- 52. ________ is heavier and darker than stratus and produces rain that can last for hours.
- 53. _________ is the cloud that produces thunderstorms with thunder and lightning.
- 54. The cumulonimbus occurs at the base of the cloud and looks like bulges or pouches.
- 55. ________ is the unrest or disturbance of the air and refers to its instability.
- 56. Many types of ______ clouds are associated with turbulence.
- 57. ______ is the general term given to the various types of condensed water vapor that fall to the Earth's surface, such as rain or snow.
- 58. Rain that freezes on contact with the ground or highway is called ________.

Chapter 4 - Weather Systems and Changes

- 59. An _____ is a huge body of air, usually 1,000 miles or more across that has the same temperature and moisture characteristics.
- 60. An air mass' place of origin is called its ______. The ideal source region must be very ______ and the ______ must be consistent throughout. ______ and _____ locations are the best source regions.
- 61. Air masses are classified by their _____ and the _____ of the surface in their ______.
- 62. Air masses are identified by a two-letter code consisting of a _____ letter and a _____ letter.
- 63. An air mass' temperature or latitude is placed into four categories: _____(P), ____(A), ____(T) and ____(E).
- 64. The lowercase letter of an air mass is either an ___ (____) or ___ (____).
- 65. A boundary between two air masses is called a ______.
- 66. A ______ occurs when warm air moves into an area of colder air and they collide.
- 67. A ______ occurs when the air moving into the area is colder than the already present warmer air.
- 68. When air masses bump against each other, but not strong enough to force movement, it is called a _______.
- 69. When three differing air masses are involved with each other, it is called an _____
- 70. _____ come from cumulonimbus clouds and always possess thunder and lightning.
- 71. Thunderstorms have three stages: _____, ____ and _____.
- 72. The ______ stage of a thunderstorm is dominated by updrafts.
- 73. ______ is the most dangerous part of a thunderstorm.
- 74. A tornado's _____ are the main reason for the tremendous destruction associated with tornadoes.
- 75. The ______ explains the categories of wind speed and expected damage for tornadoes.
- 76. If a tornado is coming and time permits, get to a ______ or underground.
- 77. If a tornado is coming and you are in open country, move at _____ angles away from it.
- 78. To be classified as a hurricane, the winds must go above _____ miles per hour.
- 79. Hurricanes are classified into _____ categories. These categories are presented on the

80. The center of a hurricane is called an _____.

MODULE 4

ROCKETS

Chapter 1 - History of Rockets Learning Outcomes

After completing this chapter, you should be able to:

- Identify historical facts about the Greeks, Chinese and British, and their roles in the development of rockets.
- Describe America's early contributions to the development of rockets.
- List the early artificial and manned rocket launches and their missions. _

Chapter 2 - Rocket Principles Learning Outcomes

After completing this chapter, you should be able to:

- Define acceleration. _
- Define inertia.
- _ Define thrust.
- Describe Newton's Laws of Motion. _

Chapter 3 - Rocket Systems and Controls Learning Outcomes

After completing this chapter, you should be able to:

- Identify the four major systems of a rocket.
- Describe the purpose of each of the four major systems of a rocket. -
- Define payload. _

Chapter 1 - History of Rockets

- 1. A Greek named developed the first rocket engine. It was propelled by
- 2. The ______ were the first people to develop gunpowder.
- 3. In the 1200s, the Chinese and Mongols used rockets as ______ of ______.
- 4. In England, ______ increased the range of rockets.
- 5. In France, ______ achieved more accuracy by launching rockets through tubes.
- 6. In the 17th century, _____ laid the scientific foundations for modern rocketry when he developed his laws of _____.
 7. In the 18th century, _____ designed rockets for military
- use.
- 8. _____ conducted many practical rocket experiments and became known as the Father of Modern Rocketry.
- 9. Goddard's first successful flight was fueled by _____ and _____.
- 10. The V-2 rocket was built under the directorship of ______.

- 11. On October 4, 1957, the ______ launched the first artificial satellite. It was called ______.
- 12. The United States' first artificial satellite was called _____
- 13. A Russian, _____, was the first man to orbit Earth.
- 14. _____ was the first American in space.
- 15. _____ was the first American to orbit the Earth.
- 16. On July 20, 1969, Apollo 11 astronaut _____ became the first man to walk on the Moon.
- 17. The United States' first space station was called ______.
- 18. The space transportation system used for transporting to space and returning to Earth is called the ______.
- 19. A ______ is the rocket system that lifts the spacecraft.
- 20. When John Glenn orbited the Earth he was launched by the powerful ______ rocket.
- 21. The _____ was the launch vehicle for the Apollo 11 mission.

Chapter 2 - Rocket Principles

- 22. ______ is the rate of change in velocity with respect to time.
- 23. Newton's _____ Law of Motion states that a body at rest remains at rest and a body in motion tends to stay in motion at a constant velocity unless acted on by an outside force.
- 24. _____ is the tendency of an object at rest to stay at rest and an object in motion to stay in motion.
- 25. ______ is defined as the amount of push used to get the rocket traveling upwards.
- 26. Newton's Second Law of Motion states that the rate of change in the _____
- of a body is ______ to the force acting upon the body and is in the direction of the force.
- 27. Newton's _____ Law of Motion states that to every action, there is an equal and opposite reaction.
- 28. Newton's Second Law of Motion can be explained by a mathematical formula. The formula has three parts ____ = ____.

Chapter 3 - Rocket Systems and Controls

- 29. Modern rockets consist of four major systems: _____, ____, ____, ____, ____, ____, ____, _____, ____, _____, ____, _____, ____, _____, ___, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ___, ____, ____, _
- 30. The ______ provides the shape of the rocket.
- 31. The airframe of a rocket must be lightweight, yet structurally _____.
- 32. The ______ is defined as whatever the rocket is carrying.
- 33. The astronauts and their data are also part of the _____.
- 34. The ______ is the brain of a rocket.
- 35. The _______ system is responsible for getting the rocket to its destination.
- 36. A computer is programmed to guide the rocket on a desired ______.
- 37. The _______ system steers the rocket and keeps it stable.

- 38. The ______ system consists of everything directly associated with propelling the rocket.
- 39. There are two rocket propellants, _____ or _____.
- 40. In a solid propellant, the fuel is usually a mixture of ______ compounds and _____. The oxidizer is made up of ______ compounds.
- 41. Liquid propellants are carried in compartments separate from the _____ 42. The liquid propellant is usually ______ or _____; the
- oxidizer is usually ______.
- 43. The ______ propellant is what is commonly used today.
- 44. The ______ system takes information from the guidance system, and keeps the rocket in the proper position and makes any needed corrections.
- 45. The system is small compared to the rest of the rocket. It is a selfcontained electronic unit with a computer.
- 46. The ______ is the skin of the rocket and serves as the wall of the propellant tanks.

MODULE 5

SPACE ENVIRONMENT

Chapter 1 - Space Learning Outcomes

After completing this chapter, you should be able to:

- Describe microgravity.
- Identify characteristics of space.
- Describe what makes up the universe.
- Define constellation.
- Define galaxy.
- Describe nebulae.
- Define interplanetary and interstellar space.

Chapter 2 - Solar System

Learning Outcomes

After completing this chapter, you should be able to:

- Describe our solar system.
- State basic facts about the planets in our solar system.
- Define a comet.
- Explain the differences between an asteroid, meteoroid and a meteor.
- Recall the differences between solar flares, solar prominences and sunspots.

Chapter 1 - Space

- 1. _____ is a region beyond the Earth's atmosphere where there is very little molecular activity.
- 2. Many people generally agree that space occurs at about _____ miles outward from Earth.
- 3. The ______ includes everything, stars, planets, galaxies, animals, plants and humans.
- 4. Space is characterized by a lack of ______.
- 5. Small or low gravity is called ______.
- Our sun, which is the center of our solar system, is but a tiny spot in our _________
 In fact, there are _______ in our galaxy, and our galaxy is just one of ________ of galaxies.
- 7. A ______ is an enormous collection of stars, and these stars are arranged in a particular shape. The three main shapes are ______, _____ and ______
- 8. _____ is oval shaped. _____ has arms spiraling outward from a center. _____ has no particular shape.
- 9. Our galaxy is called the ______. It is ______ shaped.
- 10. Galaxies contain giant clouds of gas and dust called ______.

11. _____ are bodies of hot gases.

- 12. The ______ is a part of the atmosphere divided by its electrical activity.
- 13. The ______ is the primary cause of the Van Allen belts.
- 14. Most stars are composed of ______ and _____ in their gaseous state.
- 15. About half of all stars come in pairs with the stars sharing the same gravitational center. These are called ______ stars.
- 16. A ______ is a grouping of stars that look like imaginary figures.
- 17. The Big Dipper is an example of a ______.

Chapter 2 - Solar System

- 18. Our ______ is the sun and the bodies that orbit around it.
- 19. Without heat and light, the Earth would be a _____, ____ planet.
- 20. The central star of our solar system is the _____.
- 21. The Earth is _____ miles from the sun.
- 22. The sun is composed of about ____% hydrogen, ___% helium and minor amounts of several other elements. The temperature of the sun ranges from _____°C in its coolest regions to over _____°C at its center.
- 23. _____ are darker, cooler areas of the sun.
- 24. _____ are short-lived high-energy discharges.
- 25. ______ are larger and longer lasting high-energy discharges.
- 26. The Earth's Moon has a diameter of about _____ miles, which is about ____ of the Earth's diameter. The distance from the Earth to the Moon varies from approximately _____ miles at its farthest point to _____ miles at its nearest point.
- 27. The Moon rotates on its axis in the same amount of time it takes to orbit the Earth, _____ days. Therefore, the same side of the Moon, the _____ side, always faces the Earth.
- 28. When the Moon is on the side of the Earth nearer the sun, the Moon is _____. When it is on the opposite side of the Earth, the Moon is _____.
- 29. Primarily, the Moon has two types of terrain, _____ and _____.
- 30. Temperatures on the Moon range from about _____° in the day, to below _____° at night.
- 31. ______ is the closest planet to the sun, and it revolves around the sun every _____ days. Its daytime temperature reaches ______°F, while its nighttime temperatures reach ______°F.
- 32. ______ is the closest planet to Earth. It revolves around the sun in _____ days. It is the ______ planet in the solar system with temperatures in excess of _____^.
- 33. _____ is the only known planet to rotate in a _____ manner.
- 34. The atmosphere of Venus is 96% ______ and 4% _____.
- 35. The Earth's atmosphere contains 78% _____ and 21% _____.
- 36. The surface of our planet is covered with over 67% ______.
- 37. The Earth revolves around the sun in _____ days.
- 38. Mars is known as the _____ planet and even with the naked eye we can see this _____ color. This color is due to the _____ and _____ covering the surface of Mars.

- 39. The surface of Mars is covered with deserts, high mountains, deep craters and huge ______. One of Mars' ______ is the highest known mountain in our solar system.
- 40. The atmosphere of Mars consists of 95% ______. Daytime temperatures on Mars reach _____°F, while nighttime temperatures can dip to °F.
- 41. In July 1997, the space probe called the ______ landed on Mars. The next day the rover, ______, began its exploration of the planet. The rover was _____ feet long and _____ foot tall.
- 42. Next to Earth, _____ has the most favorable conditions for life of any of the other planets in our solar system.
- 43. _____ is the largest planet in our solar system. It is _____ times larger than Earth.
- 44. Jupiter is a gas giant, with ______ accounting for about 90% of the atmosphere, followed by _____, ____ and _____.
- 45. A distinguishing feature of Jupiter is ______ Spot. This spot is a giant storm that is ______ miles long and ______ miles wide. Also, Jupiter is known for its _____ moons.
- 46. The rings are the most recognizable feature of _____. The rings are made of _____. to large _____.
- 47. The main rings are made up of hundreds of narrow ______.
- 48. The entire ring system is about _____ thick and extends about _____ miles from the planet.
- 49. Saturn has an _____ core surrounded by metallic _____ with an outer layer of _____ and _____.
- 50. It takes Saturn _____ years to revolve around the sun.
- 51. The winds of Saturn have been known to reach _____ mph.
- 52. Saturn is _____ miles from the sun.
- 53. _____, one of the moons of Saturn, is the only moon in the solar system to have its own _____.
- 54. ______ is about 1.7 billion miles from the sun. It has a rocky core surrounded by ______, _____ and _____, in both _____ and _____ form.
- 55. Uranus revolves around the sun in _____ years. Daylight lasts for ____ years followed by ____ years of night.
- 56. Uranus also has 11 very narrow and black ______ around it.
- 57. Neptune is about _____ miles from the sun and takes _____ Earth years to complete an orbit.
- 58. Neptune's atmosphere consists of _____, ____ and _____.
- 59. The ______ gives Neptune a bluish color.
- 60. ______ is the most windy planet in the solar system. It has recorded winds of ______ mph.
- 61. _____ is the smallest planet in our solar system. It is a dark and _____ planet. Its surface is made up of ______.
- 62. Asteroids, comets and meteoroids are collectively thought of as ______ orbiting in space.

- 63. ______ are chunks of rock that range in size from particles of dust to some that are a few hundred miles across.
- 64. Most ______ travel in an orbit between Mars and Jupiter. This area is known as the ______.
- 65. A ______ is described as a giant dirty ______. It is composed of ______ gases, ______ and ______.
- 66. ______ are tiny particles of dust and sand that are usually leftover from a comet.
- 67. If a meteoroid enters the Earth's atmosphere it is called a _____.
- 68. Meteors that actually hit the Earth are called ______.

MODULE 6

SPACECRAFT

Chapter 1 - Unmanned Spacecraft Learning Outcomes

After completing this chapter, you should be able to:

- Define a satellite.
- Describe an orbit.
- Define apogee and perigee.
- Identify Sputnik.
- Define a space probe.
- Describe the related parts that make up a satellite system.

Chapter 2 - Manned Spacecraft

Learning Outcomes

After completing this chapter, you should be able to:

- List the manned space flight projects and their missions.
- Identify the American and Russian joint manned spacecraft mission.
- Describe the accomplishments of Alan Shepard and Neil Armstrong.
- State specific facts about the Hubble Space Telescope.

Chapter 3 – Living and Working in Space Learning Outcomes

After completing this chapter, you should be able to:

- Describe Space Station Alpha.
- Explain the differences between Mir and Skylab.
- Define Spacelab.
- Recall the significance of Salyut 1.
- Describe the living and working conditions in space.
- Describe the different space suits.

Chapter 1 – Unmanned Spacecraft

- 1. In 1957, the Russians launched ______, the first artificial satellite.
- 2. The term ______ is used for either a natural or an artificial object in space.
- Communication satellites began in 1958 when taped messages were broadcast from orbit on the ______ satellite. In 1962, ______ became the first commercial satellite.
- 4. Intelsat stands for ______ It is made up of 109 nations worldwide that control _____ satellites.
- 5. TDRSS stands for _____ and _____. It provides full-time coverage for the _____.

6. The Deep Space Network provides continuous communications for planetary
spacecraft probing into
7. The first navigational satellite,, was developed to provide Polaris missile
 submarines with the ability to fix accurate positions. 8. GPS is the NAVSTAR that offers a precise
9. The Natural Resources Satellites locate and monitor other
conditions on the Earth's surface. This is the task of the series of
satellites.
10. In 1960, Tiros 1 became the first satellite.
11. GOES stands for
GOES provides pictures of the Earth's, pictures of and provides
information which helps with
12. The
13. Satellites or spacecraft that either fly by, orbit or land on a celestial body, other than
Earth, are called
14. The took pictures of the Moon in preparation of the Apollo landings.
The series flew by Venus and Mercury and gave us pictures of Venus'
clouds and Mercury's cratered surface.
15. In the 1970s, the probes gave us pictures of Jupiter and Saturn. Then in
the late 1970s, and also encountered Jupiter and Saturn.
16. In 1975, the series explored the environment of Mars.
17. Satellites as a system are made up of four parts:,,,
and a
18. Customers define the overall and for satellites.
19, and are potentially
dangerous for satellites.
20 and can also harm satellites. Some 20,000
tons of make it into the Earth's atmosphere every year.
21. Manmade or is also a threat.
22. The first aspect that ties the sub-systems together is the satellite's The
first step of the design of the sub-system is the
 23. The of a satellite is like a building. 24. The system provides the boost to get the satellite into orbit.
 25. To make minor corrections in direction, the system is used. 26. The main source of electricity while the satellite is in orbit is the
27. Temperature data is part of the sub-system.
28. The and function of a satellite is a communication system.
29. The sub-system that gets the satellite into orbit is the
30. An is the movement or path a satellite takes around a celestial body.
31's First Law states that the orbit of each planet is an ellipse, with the sun at
the focus.
32. The highest point of an orbit is called the, and the lowest point is called
its

Chapter 2 – Manned Spacecraft

- 33. America's first manned space flight program was called _______.
- 34. _____ was the first American in space.
- 35. _____ was the first American to orbit the Earth. His orbit lasted for _____ hours and _____ minutes and orbited the Earth _____ times.
- 36. Project Mercury answered the basic questions about ______ in _____.
- 37. _____ was the first two-man capsule, and it also achieved the first ______
- 38. _____ landed on the Moon on July 20, 1969, and _____ was the first man to walk on the Moon. After we landed on the Moon, only one of the next six flights _____ didn't land on the Moon.
- 39. ______''s mission was to put a laboratory into space. Scientists were interested in continuing their studies of the effects of ______ space flights.
- 40. The first crew manned Skylab for <u>days</u>. The final crew spent <u>days</u> in space.
- 41. The ______ was the linkup in space of an American and a Soviet manned spacecraft.
- 42. In 1981, the Space Transportation System, commonly called the ______, was launched. It provides a system for ______ into space and a ______ to Earth. The major advantage of this system is that it can be used ______ and _____.
- 43. The Space Shuttle consists of three main parts: the _____, the _____, the _____, and the _____. The part that looks like an airplane is called the
- 45. It 1993, the shuttle carried the European developed ______ into orbit.

Chapter 3 – Living and Working in Space

- 46. Russian launched the first space station, _____, in April 1971.
- 47. _____ stayed in space for six months then burned up when it reentered the Earth's atmosphere.
- 48. The next model of Russian space station was called _____. It was launched in February 1986.
- 49. The US' first space station was _____. It was launched in 1973. Three different crews lived abroad, with the last crew staying the longest, ____ days.
- 50. The European Space Agency also built a space station called .
- 51. Zero gravity or ______ exists inside the space stations.
- 52. The air inside the space stations is a mixture of ______ and _____. This mixture works better than breathing ______.
- 53. For sleeping, the astronauts place sleeping bags ______ along the walls.
- 54. The general term used for going outside the Space Shuttle is ______

- 55. Russian ______ accomplished the first space walk in March 1965. Less than three months later, ______ was the first American to walk in space.
- 56. In 1973, _____ set the record for the longest EVA with seven hours and one minute.
- 57. It was during Gemini 7 that space suits were _____ inside the spacecraft for the first time.
- 58. In 1984, astronauts used the ______ (____) for the first time, allowing them to move around in space without being tied to the spacecraft.

60. The _____, ____ and _____. will replace the Space Shuttle in the 21st century.

APPENDIX 1

ANSWERS

Module 1 – Introduction To Flight

Answers **Reference Page** Why Aerospace Education 1. general education, knowledge skills attitudes, impact vi 2. July 1, 1946 vi 3. United States vi Chapter 1 – Flight 4. Aircraft 1 5. Airplane 1 6. Aeronautics and space 1 7. Nitrogen 1 8. Subsonic, transonic, supersonic 1 9. Yes 1 10. Drag 1 11. Dynamic 1 12. Yes 4 13. Relative wind 1 14. Chord 1 15. a & b 2 16. d 3 2 17. Chinese 18. Flying 4 19. Balloon, Montgolfier brothers 3 20. Language 1 21. Propeller 4 22. Tail feathers and wing feathers 4 23. Third 6 24. Bernoulli 5 5 25. Pressure Bernoulli's 5 26. It decreases or drops 27. Newton's 6 28. Chord 7 29. Camber 7 30. Gravity and drag 8 31. Thrust and lift 8 32.8 8 8

33. drag

Answers	Reference Page
34. thrust, drag, wing, air, drop, camber, decreased, increased, lift, relative wind, Newton's, for every action, there is an equal and	7,8
opposite reaction.	10
35. elevons	18
36. a. increase speed	9
b. increase camber	
c. increase area	
d. increase angle of attack	0
37. angle of attack, stall	9
38. critical angle of attack	9
39. stall	9
40. longitudinal	11
41. vertical	11
42. lateral	11
43. roll	11
44. yaw	11
45. pitch	11
46. center of gravity	11
47. d	11
48. pitch	12
49. roll	12
50. rudder	12
51. stabilator	12
52. moves upward	12
53. forward	14
54. angle of incidence (or attack)	14
55. speed	14
56. blade	14

Chapter 2 – To Fly By the Lifting Power of Rising Air

57. convection	23
58. aspect	23
59. glide ratio	23
60. thermal	24
61. Sun	24
62. 41.5	24
63. 15°C	24
64. 20 to 1	25
65. 4.3 feet	25
66. loss, lift	26
67. center, gravity	26

Answers

Reference Page

Chapter 3 – Balloons – They Create Their Own Thermals

68. burner	33
69. propane	33
70. envelope	33
71. buoyancy	33
72. 17-20, 1164.5 – 1370.0	34
73. Balloon with envelope, propane, burner $= 600$ lbs	34
At 68,500 ft ³ , it will lift 1164.5 lbs (17lbs/1000ft ³)	
68,500 ft ³ , it will lift 1370.0 lbs (20lbs/1000ft ³)	
17 565lbs will be the payload	
20 700lbs will be the payload	
4 humans weigh 680	
3 humans weigh 510	
2 humans weigh 340	
based on the low 17 lbs lift, the balloon can carry 3 humans an	d 55 lbs of equipment
based on the high 20 lbs lift, the balloon can carry 4 with 20 lb	s of equipment
74. parachute	35
75. wind direction	34

MODULE 2 – AIRCRAFT SYSTEMS & AIRPORTS Chapter 1 – Airplane Systems

1	stoichiometric ratio	1
	internal combustion	3
		J 1
	a) intake b) compression c) power d) exhaust	I T
	intake	5
5.	afterburner	5
6.	rich	6
7.	lean	6
8.	gravity	6
9.	magneto	10
10.	cycle	1
11.	mixture	6
12.	bottom	8
13.	Venturi, pressure, Bernoulli's	8
14.	combustion, ignition	13
15.	intake, compression, power, and exhaust	13
16.	lubricate, cool	14
17.	oil temperature and oil pressure	14
18.	tachometer	14
19	airspeed, altimeter, vertical speed indicator	15
	attitude indicator, turn coordinator and heading indicator	18
	1013.2 mb	16
<u>~</u> 1.	1015.2 mb	10

Answers

Reference Page

16
16
17
17
18
18
18
18
18
19
19
19

Chapter 2 – Airports

34.	controlled	22
35.	Federal Aviation Administration	21
36.	Ramp	21
37.	Noise abatement	21
38.	Taxiway	22
39.	VFR	23
40.	Departure	23
41.	downwind, base, final approach	23
42.	magnetic headings	24
43.	the highest runway number is 36	24
44.	9 right, 9 center, and 9 left	24
45.	precision	25
46.	2/20	25
47.	information	26
48.	destination	26
49.	green	27
50.	white	27
51.	below the glide path	28
52.	military	29
53.	water	29
54.	windsock	22
55.	uniform	30

Chapter 3 – Airport to Airport – Aeronautical Charts

56. latitude	33
57. north pole, south pole	33
58. sectional	33

Answers	Reference Page
59. 60	34
60. control tower	36
61. no control tower	36
62. a rotating beacon in operation sunset to sunrise	38
63. field elevation	39
64. lighted runway 3800 feet long	39
65. OK60	40
66. 122.9 Mghz	40
67. 1177 feet	40
68. wild life refuge	40
69. railroad, highway (US 64)	36

MODULE 3 AIR ENVIRONMENT

Chapter 1 Air Circulation

1. Earth weather	1
2. more	1
3. uneven unequal temperature pressure circulation movement	1
4. radiation	1
5. absorbed differently surface substance	1
6. 50 50 reflected absorbed	1
7. rises clouds	2
8. farther apart	2
9. revolves 365 days 5 hours 48 mins	2
10. 23.5 day seasonal changes	2
11. June 21 summer solstice	2
12. away winter solstice	2
13. spring (vernal) equinox fall (autumnal) equinox	2
14. counterclockwise Coriolis Force	2
15. trade winds	3 3
16. doldrums	
17. Prevailing Westerlies	3
18. polar easterlies	3
19. jet stream	4
Chapter 2 - Weather Elements	

20. wind	9
21. wind direction	9
22. 1.1	9
23. Beaufort Scale	10
24. wind chill	10
25. into	11
26. increase	11

Answers	Reference Page
27. microburst	11
28. heat	12
29. temperature	12
30. 32 212	12
31.0 100	12
32. 273 373	12
33. longer	13
34. cramps, fainting, heat exhaustion heatstroke water	13
35. hypothermia frostbite	13
36. atmospheric pressure	13
37. mercury	13
38. aneroid barometer	13

Chapter 3 – Moisture and Clouds

	10
39. moisture	19
40. water vapor	19
41. saturation	19
42. dew point	19
43. condensation	19
44. condensation	19
45. relative humidity percentage	19
46. fog	19
47. water tiny crystals of ice	20
48. cumulus, status cirrus	20
49. cumulus	20
50. stratus	20
51. cirrus	20
52. nimbostratus	20
53. cumulonimbus	20
54. mammatus	21
55. turbulence	21
56. cumulus	21
57. precipitation	21
58. freezing rain	21

Chapter 4 – Weather Systems and Changes

59. air mass				27
60. source region	large	physical features	tropical and polar	27
61. source region	nature	source region		27
62. capital low	ercase			27
63. polar arctic	tropical	equatorial		27
64. m (maritime)	c (contin	ental)		27
65. front				28

Answers	Reference Page
66. warm front	28
67. cold front	28
68. stationary front	28
69. occluded front	28
70. thunderstorms	29
71. building mature dissipating	29
72. building	29
73. lightning	29
74. winds	30
75. Fujita Wind Damage Scale	31
76. Basement	31
77. Right	31
78.74	31
79. 5 Saffir-Simpson Hurricane Damage Potential Scale	31
80. eye	32

MODULE 4 - ROCKETS

Chapter 1 - History of Rockets

1.	Hero	1
2.	Chinese	2
3.	arrows flying fire	2
4.	Roger Bacon	2
5.	Jean Froissart	2
6.	Sir Isaac Newton	2
7.	Colonel William Congreve	2
8.	Dr. Robert Goddard	3
9.	liquid oxygen and gasoline	3
10.	Wernher von Braun	4
11.	Soviet Union Sputnik I	4
12.	Explorer I	4
13.	Yuri Gagarin	5
14.	Alan Shepard	5
15.	John Glenn	5
16.	Neil Armstrong	6
17.	Skylab	6
18.	Space Shuttle	7
19.	launch vehicle	4
20.	Atlas	6
21.	Saturn V	6

Chapter 2 - Rocket Principles

22. Acceleration	12
------------------	----

Answers		Reference Page
23. First		12
24. Inertia		12
25. Thrust		12
26. momentum	proportional	12
27. Third		12
28. f = ma		13

Chapter 3 - Rocket Systems and Controls

29. airframe	guidance	control	propulsion	21
30. airframe	;			21
31. strong				21
32. payload				21
33. payload				21
34. guidance	e			21
35. guidance	e			21
36. trajector	У			21
37. control				21
38. propulsi	on			22
39. liquid	solid			22
40. hydroge	n carbon	oxygen		22
41. combust	ion chamber,	fuel or	kidizer	22
42. kerosene	e liquid hydr	ogen	liquid oxygen	22
43. liquid				22
44. control				21
45. guidance	e			21
46. airframe	:			21

MODULE 5 – SPACE ENVIRONMENT

Chapter 1 – Space

1.	space			1
2.	250			2
3.	universe			2
4.	oxygen			2
5.	microgravity			2
6.	galaxy		2	4
7.	galaxy e	elliptical,	spiral and irregular	4
8.	elliptical	spiral	irregular	4
9.	Milky Way	spiral	2	4
10.	Nebulae		2	4
11.	Stars		:	5
12.	Ionosphere		(6
13.	Sun		(6

Answers	Reference Page
14. hydrogen and helium	5
15. binary	5
16. constellation	5
17. constellation	5
Chapter 2 - Solar System	
18. solar system	14
19. lifeless, ice-covered	14
20. sun	14
21. 93 million	14
22. 90, 9 4200 15 million	14
23. sunspots	15
24. solar flares	15
25. solar prominences	15
26. 2155 ¼ 252,000 221,000	15
27. 27	15
28. new full	16
29. highlands lowlands	17
30. 250 -250	17
31. Mercury 88 800 -300	17
32. Venus 225 hottest 850	18
33. Venus clockwise	18
34. carbon dioxide nitrogen	18
35. nitrogen oxygen	18
36. water	18
37. 365	19
38. red red rock dust	19
39. volcanoes volcanoes	19
40. carbon dioxide 65 -130	19
41. Mars Pathfinder Sojourner Truth two one	19
42. Mars	19
43. Jupiter 11	20
44. hydrogen helium methane ammonia	20
45. The Giant Red 30,000 10,000 16	20
46. Saturn icy rock particles boulders	20
47. Ringlets	20
48. one mile 250,000	20
49. icy rock hydrogen hydrogen helium	21
50. 29	21
51. 1100	21
52. 900 million	21
53. Titan atmosphere	21
54. Uranus water, ammonia and methane ice and liquid	21
55. 84	21

Answers	Reference Page
56. rings	21
57. 3 billion 165	22
58. hydrogen, helium and methane	22
59. methane	22
60. Neptune, 1340	22
61. Pluto frozen	22
62. Debris	23
63. Asteroids	23
64. asteroids, asteroid belt	23
65. comet, snowball	23
66. meteoroids	24
67. meteor	24
68. meteorites	24

MODULE 6 – SPACECRAFT

Chapter 1 – Unmanned Spacecraft

1. Sputnik	1
2. Satellite	1
3. Score Telestar I	1
4. International Telecommunications Satellite Organization 16	2
5. Tracking and Data Relay Satellite System space shuttle	2
6. deep space	2
7. Transit	3
8. Global Positioning System positioning service	3
9. natural resources LANDSAT	3
10. weather	3
11. Geostationary Operational Environmental Satellites clouds	
weather forecasting	3
12. Explorer	4
13. space probes	4
14. Rangers Mariners	4
15. Pioneer Voyager 1 and 2	4
16. Viking	4
17. people, space environment, sub-systems and launch	4
18. purpose and requirements	4
19. radiation, charged particles and solar flares	4
20. micrometeorites space debris natural materials	5
21. debris or junk	5
22. mission payload requirements	6
23. structure	6
24. propulsion	6
25. attitude control	6
26. sun	6

Answers	Reference Page
27. thermal control	7
28. command and control	7
29. launch	7
30. orbit	7
31. Kepler	8
32. Apogee	8

Chapter 2 – Manned Spacecraft

33. Project Mercury	12
34. Alan Shepard	13
35. John Glenn	13
36. survival in space	13
37. Project Gemini walk in space	13
38. Apollo 11 Neil Armstrong	14
39. Project Skylab long-duration	15
40. 28 84	15
41. Apollo-Soyuz Test Project	15
42. Space Shuttle transportation return back a	gain and again 16
43. orbiter, solid rocket boosters external tank	orbiter 16
44. Hubble Space Telescope	17
45. Spacelab	17

Chapter 3 – Living and Working in Space

46. Salyut 1	26
47. Salyut 1	26
48. Mir	26
49. Skylab 84	27
50. Spacelab	27
51. Weightlessness	28
52. oxygen and nitrogen	28
53. vertically	28
54. Extravehicular Activity (EVA)	28
55. Aleksei Leonov Ed White	29
56. Skylab 4	29
57. taken off	30
58. Manned Maneuvering Unit (MMU)	30
59. Space Station Alpha US, Europe, Canada, Japan and Russia	31
60. X-33	32