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Abstract. Dynamic cardiac SPECT and PET can be used to measure myocardial perfusion by
estimating the kinetic rate constant describing the washin of radioactive-labelled tracers from the
blood to the extravascular myocardial tissue. Because of differences in photon statistics and data
acquisition techniques, protocols which produce optimal estimates of the washin for dynamic
cardiac PET may give suboptimal estimates if applied in dynamic cardiac SPECT. Two important
factors in the estimation of washin are the shape of the tracer input function and the image
acquisition interval. This study uses computer simulations to investigate the effect of varying
the tracer infusion length and image acquisition interval on the bias and variance of estimates of
washin obtained with dynamic cardiac SPECT and99mTc-labelled teboroxime. Bias in parameter
estimates can be introduced by aliasing, integration of the time-varying radioactivity by the
detector, and detector motion. This bias can be reduced by decreasing the acquisition interval
and using a longer-duration input function. However, this results in poor photon statistics, which
generate large variance, and can also introduce bias in the estimates of the washin. Our studies
indicate that better estimates of the washin are obtained by using an acquisition interval that is of
sufficient duration to obtain adequate photon statistics even if this is at the expense of temporal
resolution. The increase in bias caused by using a 10 or 20 s acquisition interval instead of a
5 s acquisition interval is minimal when compared with the reduction in variance. Variance in
estimates is also reduced by using a sharp input function, resulting in higher peak counts during
washin. It is also shown that the variance of estimates of the washin increases generally when
faster kinetics are observed. This variance can, however, be reduced by using longer acquisition
intervals.

1. Introduction

Single-photon emission computed tomography (SPECT) is used to infer variation in cardiac
perfusion through visual interpretation of static images. It is possible, however, to obtain
measurements of myocardial perfusion by tracking the kinetics of the radioactive-labelled
tracer as it passes through the heart. Measures of myocardial perfusion are obtained by using
dynamic imaging to estimate the kinetic parameters describing the exchange of radioactive-
labelled kinetic tracers between the blood and the myocardial tissue. Estimates of these
kinetic parameters are correlated to perfusion and may give more sensitive measurements
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of ischaemia than visual interpretation of static images. Dynamic positron emission
tomography (PET) has been shown to be effective for estimating kinetic rate constants
(Muzik et al 1993, Herreroet al 1992, Bergmannet al 1989, Mullaniet al 1983), while
dynamic SPECT also can be used to estimate kinetic parameters (Smith and Gullberg 1994,
Smithet al 1994, 1996). Dynamic SPECT does, however, suffer from certain disadvantages
when compared to dynamic PET. These include poor resolution (Welchet al 1995), large
effects from photon attenuation (Gullberget al 1985, Smith and Gullberg 1994), and
increased blurring from geometric point response (Zenget al 1991, Zeng and Gullberg
1992). All of the aforementioned effects can introduce bias into estimates of myocardial
perfusion.

Another major drawback to dynamic cardiac SPECT is poor photon statistics which
introduce large variances into the estimates. SPECT has poorer photon statistics than PET in
large part because of the need for detector collimation, which severely decreases the number
of detected photons. Photon statistics are further degraded in dynamic SPECT because of
the need to acquire sufficient temporal information to adequately track the time-varying
dynamics of the radioactive labelled tracer. In a typical static SPECT scan, projection
data are obtained over 360◦ in approximately 20–30 min. In order to track the time-varying
tracer, dynamic SPECT usually requires acquisition of 360◦ projection data in approximately
5–40 s, over a total duration of 10–15 min. This results in much poorer photon statistics in
each dynamic projection set.

The poor photon statistics associated with these short acquisition intervals are evident
from ongoing canine studies being carried out by this research group. In these studies,
a three-detector SPECT system is used to track these dynamic changes. To do this, the
camera gantry is rotated at high rates with the maximum rotation rate giving 360◦ of
coverage in 5 s. Five second acquisitions are then acquired for a duration of 15 min after
the injection of teboroxime. In a dog weighing approximately 35 kg, a bolus injection of
15 mCi 99mTc-labelled teboroxime yields approximately 320 000 counts in the maximum
5 s projection set (64× 64× 60 angles). Welchet al (1995) demonstrated that kinetic
parameter estimates are severely degraded when count levels approach these low ranges. It
was shown, however, that slight improvements in count levels, e.g., from 320 000 counts in
the maximum projection set (5 s acquisition intervals) to 640 000 counts, result in significant
reduction in the variance of the kinetic parameter estimates.

Photon statistics can be improved by increasing the dose of99mTc-labelled teboroxime.
However, there are limits on photon counts set by injection levels of the radioactive-labelled
tracer, the counting rates of the camera, and other count-limiting factors such as body
attenuation. Once count rates have been maximized within these limits, count rates can be
further improved by increasing the image acquisition interval (slowing the detector gantry).
Another and perhaps more optimal approach would be to increase count rates by summing
projection data from several acquisitions.

Increasing the acquisition interval by slowing the detector gantry adversely affects
temporal resolution by not adequately sampling the time-varying dynamics of the tracer.
Aliasing arises from insufficient sampling of the time-varying tracer. To reduce aliasing the
acquisition interval can be decreased, resulting in better sampling, or the infusion can be
dispersed over time, resulting in a smoother time-varying activity with less high-frequency
content. The disadvantage of both of these techniques is that they result in fewer peak
counts in the dynamic projection sets, which in turn results in less accurate kinetic parameter
estimates.

Another effect which introduces bias into kinetic parameter estimates is the relative
starting point of the time–activity curves with respect to the acquisition interval of the
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photon detector over each dynamic sampling period. The counts in each projection bin are
not an instantaneous sample of the tracer, but rather are the result of photons detected over
a finite time interval. Thus, the sampled points are actually the result of integration of the
tracer and each acquired sample in the detector is the integral of all counts in the acquisition
period. This causes the kinetic parameter estimates to be sensitive to the time at which the
tracer is injected with respect to the time at which the detector begins acquiring data.

The rotation of the gantry also affects the kinetic parameter estimates. Data
inconsistencies arise because the tracer activity and the projection angle are changing as
data are being acquired. Detector motion is specific to the rotating gantry systems and
can be avoided by using a static ring system. Static ring detector systems are commonly
utilized in dynamic PET and have been introduced in dynamic SPECT (Stewartet al 1990);
however, their use in SPECT is not widespread due to the cost and their limited number of
applications.

This paper describes a study which investigates the effect of input function infusion
length and image acquisition interval on the bias and variance of estimates of the washin of
99mTc-labelled teboroxime from the blood to the myocardial tissue obtained with dynamic
cardiac SPECT. There have been research efforts investigating the effect of input function
shape and acquisition interval on kinetic parameter estimation in dynamic PET (Mazoyer
et al 1986, Cunningham and Jones 1993, Herreroet al 1989). However, dynamic cardiac
SPECT suffers from much poorer photon statistics than those observed in dynamic cardiac
PET. Because of this, protocols which produce optimal estimates of washin for dynamic
PET may give suboptimal estimates if applied in dynamic cardiac SPECT. Also, detector
motion can introduce bias which would not be present in dynamic PET studies. Computer
simulations are carried out to study the effects of input function shape and image acquisition
interval on aliasing, integration, detector motion, and photon statistics.

2. Background

To track the time-varying activity of the radioactive-labelled tracer injected into the body,
dynamic projection sets are acquired over a finite period of time which is sufficient to view
the temporal changes of the tracer. In experiments in our laboratory, the projections are
acquired from a triple-detector SPECT system in which the detector gantry can be rotated
through 120◦ in as little as 5 s toprovide 360◦ angular coverage. Generally, 5 or 10 s
rotation rates have been employed in our investigations. Projection sets are acquired over
15 min, resulting in 90–180 dynamic projection sets, depending on the gantry rotation rate.
Dynamic images are then reconstructed from these projection sets using the expectation-
maximization–maximum-likelihood (EM–ML) algorithm (Shepp and Vardi 1982, Lange and
Carson 1984).

Of interest is the time-varying activity in the ventricular blood pool and localized regions
of the myocardial tissue. The activity in these locations is determined by drawing regions of
interest (ROIs) on the reconstructed images and sampling the tracer activity in these ROIs
for each dynamic image. A one-compartment model is used to relate the time–activity
curves in the blood and myocardium ROIs to the exchange of tracer between the blood
and myocardial tissue. This exchange between the blood concentrationB(t) and the tissue
concentrationC(t) is modelled with the kinetic parametersk21 (washin) andk12 (washout)
with units of millilitres per minute per millilitre of extravascular space using the following
differential equation:

d

dt
C(t) = k21B(t)− k12C(t) (1)
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with solution

C(t) = k21

∫ t

0
e−k12τB(t − τ) dt. (2)

Equation (2) states that the tissue concentration is a convolution of the blood activity
and an exponential kernel which is a function of the rate constants. The tracer activity in
the myocardium region of interest depends not only on the tissue activity, but also on the
fraction of bloodfv that is present in the tissue, e.g., in the capillaries. Also, the activity
cannot be sampled instantaneously, but rather is sampled over integrated time periods1t

which are equal to the image acquisition interval (the rate of rotation of the SPECT system).
Taking these factors into account, the total activityA(t) in the tissue ROI is written as

A(t) = (1− fv)k21

∫ t

t−1t

[ ∫ t

0
e−k12τB(t − τ) dτ

]
dt + fv

∫ t

t−1t
B(t) dt. (3)

Given blood and tissue time–activity curves,B(t) andA(t), as well as the acquisition
interval1t , the kinetic parametersk21, k12, and the blood fractionfv are estimated with
RFIT (Coxsonet al 1992, Huesman and Mazoyer 1987, Huesmanet al 1995). RFIT uses
weighted least squares to estimate kinetic parameters from computational models with the
form of equation (3) and, if necessary, for a noisy input function.

RFIT requires for input the curvesB(t) andA(t) and the variance ofB(t) andA(t), as
well as the covariance betweenB(t) andA(t). In this paper the estimated blood and tissue
variances are approximated to be equal to the ROI counts. This estimate is expected to be
proportional to the error on the reconstructed count density using the EM–ML algorithm,
although it does not represent the true errors in the ROI (Wilson and Tsui 1993, Barrett
et al 1994, Wilsonet al 1994). The tissue–blood covariances are estimated to be zero in
this analysis. An incorrect estimate of the ROI variance and blood–tissue ROI covariance
generally gives rise to an increase in the bias and variance associated with the kinetic
parameter estimates (Gullberget al 1997, Huesman and Mazoyer 1987).

Once estimates of the kinetic parameters are obtained, they can be used to obtain an
estimate of flow multiplied by extraction in the myocaridal tissue. This measure can then be
correlated to flow. Washin,k21, has been shown to be correlated to myocardial perfusion in
dynamic cardiac SPECT (Smith and Gullberg 1994, Smithet al 1994, 1996). The parameter
k12 is also correlated to flow; however, this correlation is not as strong as that seen ink21.
Because of this, the results presented in this paper will focus only on the parameterk21.

3. Methods

The clinical dynamic SPECT system to be modelled consists of three detectors which are
each rotated through 120◦ (360◦ coverage) to acquire each dynamic projection set. The
detector can be rotated at different speeds; consequently the acquisition interval can be
varied, with a minimum 120◦ rotation time of 5 s. Four different acquisition intervals are
studied: 5, 10, 20, and 40 s. Four tracer infusion lengths are also studied: a bolus and
30, 60, and 90 s infusions. Sections 3.1 and 3.2 analyse ideal input functions which are
not obtained from tomography, while sections 3.3 and 3.4 analyse input functions obtained
from reconstructed tomographic images.

3.1. Aliasing

Effects due to undersampling of the blood and tissue time–activity curves are addressed
first. The time–activity curves are based on canine studies by Smithet al (1994) with the
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tracer time–activity in the blood pool for a bolus infusion modelled as

B(t) =
{

450t/20 t 6 20

400 e−0.1(t−20) + 50 e−0.001(t−20) t > 20.
(4)

Blood time–activity curves for 30, 60, and 90 s infusions are simulated by convolving
equation (4) with 30, 60, and 90 s step functions, respectively. The myocardial tissue
activity is simulated with kinetic values typical of those observed in a resting dog with
fv = 0.15, k21 = 0.8 min−1, and k12 = 0.4 min−1. Kinetic rate constants typical of
those observed in a dog vasodilated with adenosine were also used withk21 = 4.0 min−1,
k12 = 2.0 min−1, andfv = 0.15. The frequency spectra of the time–activity curves are
determined with an analytic Fourier transform of the time–activity curves. The spectra are
used to demonstrate the aliasing associated with the time–activity curves. To simulate the
finite acquisition period of the photon detector, the time–activity curves are sampled every
0.031 25 (132) s and these values are integrated over finite intervals which correspond to the
acquisition interval of the detector (5, 10, 20, and 40 s). The integrated data are used in
RFIT to estimate the kinetic parametersk21, k12, andfv.

3.2. Photon integration

Each data point that is used in the estimation of the kinetic parameters is the integral of
the continuously varying time–activity curve. This integration can potentially result in a
misrepresentation of the actual time–activity curve and subsequently introduce bias into
kinetic parameter estimates. The misrepresentation of the signal is most severe when the
integration period of the detector ends near the peak of the input function. This causes
the peak of the input function to be represented by approximately equal points on either
side of the peak. This misrepresentation of the signal can potentially introduce bias into
kinetic parameter estimates. This causes the kinetic parameter estimates to be dependent
on any time shift of the time-varying tracer with respect to the integration period of the
detector, which could occur by not properly timing the injection and the starting point of
the acquisition. A reduction in bias can be achieved by optimizing the starting time point
of the tracer infusion with respect to the starting acquisition interval of the detector. This
effect is investigated by shifting the starting point of the time–activity curves to optimize the
parameter estimates. The input functions are shifted by quarter intervals of the acquisition
interval to obtain optimum estimates of washin. Delay intervals of 0, 1.25, 2.5, and 3.75 s
are used for 5 s acquisitions; delay intervals of 0, 2.5, 5.0, and 7.5 s are used for 10 s
acquisitions; delay intervals of 0, 5, 10, and 15 s are used for 20 s acquisitions; and delay
intervals of 0, 10, 20, and 30 s are used for 40 s acquisitions.

3.3. Detector motion

The next group of simulations addresses effects from tomography and detector motion.
These simulations model a clinical three-detector SPECT system. The geometry is modelled
with a modified version of the MCAT heart and torso phantom (Tsuiet al 1994, Terryet al
1990). A single transaxial slice of the phantom is shown in figure 1. The phantom consists
of three regions; myocardial tissue, blood pool, and a uniform background with 20% of the
activity in the blood pool. Time-varying activity in the phantom is simulated with the time–
activity curves corresponding to a bolus infusion and a 90 s infusion. The MCAT phantom
is discretized into 128× 128 pixels and 60 angular unattenuated fan beam projections
are formed with a ray-driven, line-length weighting projector (Huesmanet al 1977). The
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Figure 1. A transaxial slice of the MCAT phantom used in the simulations to generate the
emission data.

projections are discretized into 128× 2 bins which are subsequently binned to 64× 1. The
size of each pixel is 0.712 cm, the radius of rotation is 34 cm, and the centre of rotation
is at the centre of the phantom. Because of the fan beam geometry, the projection data
truncates 32% of the MCAT phantom.

Each of the 60 projections in a 360◦ tomographic set is the average of a certain number
of subprojections (over six degrees). To simulate the varying image acquisition intervals
(360◦ detector rotation time), each subprojection is obtained every 0.03125 s; however,
the number of subprojections per 6◦ angular bin is varied. Thus a 5 simage acquisition
interval used eight subprojections per 6◦ angular bin, a 10 s interval used 16 subprojections,
a 20 s interval used 32 subprojections, and a 40 s interval used 64 subprojections. The
60 projections are then used to reconstruct a 64×64 transaxial image with the expectation-
maximization–maximum-likelihood algorithm (EM–ML) (Shepp and Vardi 1982, Lange and
Carson 1984). The bias in the parameter estimates is observed as a function of the number of
iterations of the EM–ML algorithm. The projection data are also reconstructed using filtered
backprojection with a ramp filter with cutoff frequency of 0.5 cycles/projection bin. Filtered
backprojection is used for comparison purposes with the EM–ML algorithm; however, it is
not used when photon noise is included in the simulations. A single transaxial slice is used
to draw blood and tissue ROIs. The blood ROI is 7.2 cm3 and the tissue ROI is 4.2 cm3.

3.4. Photon statistics

Poisson noise is added to the projection sets to simulate the statistics observed in canine
studies in our laboratory. In these studies, an injection of 15 mCi99mTc-labelled teboroxime
resulted in approximately 320 000 counts in the maximum 360◦ 5 s projection set over the
10 min dynamic acquisition, while injections of 30 mCi99mTc-labelled teboroxime resulted
in approximately double these counts.

Blood and tissue time–activity curves are obtained from dynamic images reconstructed
with 25 iterations of EM–ML using the moving detector system and the MCAT phantom.
The projection data are generated as described in section 3.3. Poisson noise is added
to each projection set with a scaling factor set to ensure that the appropriate statistics
were observed for all acquisition intervals and input functions. In all cases one hundred
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realizations were performed with different seeds used for the random number generator.
Estimates are obtained for each realization and the results show the population mean of
these estimates along with the population standard deviation. In addition, the variance in
the estimates is plotted against the absolute bias.

4. Results

The results of sections 4.1 and 4.2 were calculated with integration of the exact blood
and tissue time–activity curves. The results of sections 4.3 and 4.4 were calculated using
simulated projection data of the MCAT phantom. In sections 4.3 and 4.4, estimates are
obtained using time–activity curves obtained from ROI analysis on reconstructed transaxial
slices of the MCAT phantom.

4.1. Aliasing

The blood and tissue time–activity curves are shown in figure 2(a)–(c). The Fourier
transforms of these curves are shown in figure 3(a)–(c) respectively. The vertical lines
correspond to the frequency that could be recovered for a given acquisition interval (5,
10, 20, or 40 s) based on Nyquist’s theorem. For example, an acquisition interval of 5 s
can recover frequencies below 1/(2× 5 s). The frequency spectra of figure 3(a) show that
the vast majority of the blood signal is recovered with 5 s acquisition intervals. Higher
frequencies of the bolus infusion are lost with 10 s acquisitions, and a significant amount
of the spectrum is lost with 20 and 40 s acquisitions. As the infusion is lengthened, a much
smaller portion of the frequency response is lost.

Figure 3(b) and (c) shows the frequency spectra for the tissue curves. The majority of the
frequency components are recovered for 5 and 10 s acquisitions using resting parameters.
There are substantial frequency components lost with 20 and 40 s acquisition intervals,
particularly for the bolus and 30 s infusions. The frequency spectrum of the vasodilated
tissue curve shows that a much greater portion of the signal is lost than in the resting case.

Figure 4 shows estimates ofk21 for the resting kinetic parameters. The results are
obtained by integrating the time–activity curves over the acquisition interval and using RFIT
to obtain estimates ofk21. The plot shows that the most accurate estimates are obtained with
5 s acquisitions, with bias increasing as the acquisition interval is increased. In general,
bias is maximum for a bolus infusion because the aliasing is greatest, while the least bias is
seen with a 90 s infusion. There are apparent anomalous results for 20 and 40 s acquisition
intervals. For instance, when a bolus infusion is simulated, the bias in washin of a 20 s
acquisition is greater than that of a 40 s acquisition. Also, the bias for the 30 s infusion
is disproportionately large with 40 s acquisition intervals for the resting parameters. These
anomalies are due to integration effects which are related to the shape of the input fraction.

4.2. Photon integration

As mentioned in section 3.2, integration of the time–activity curve by the detector can
introduce bias into the kinetic parameter estimates. The sampled version of the time–
activity curve can vary depending on the duration of the acquisition interval and the time
at which the acquisition interval begins relative to the starting point of the input function.
This effect could be reduced by shifting the input function in time, in order to optimize the
injection of tracer with respect to the detector acquisition interval.
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Figure 2. Plots of time–activity curves: (a) blood,
(b) tissue for resting dog (k21 = 0.8 min−1, k12 =
0.4 min−1, fv = 0.15, and (c) tissue for vasodilated
dog (k21 = 4.0 min−1, k12 = 2.0 min−1, fv = 0.15);
——, bolus infusion; — — —, 30 s infusion;- - - -,
60 s infusion; —· · —, 90 s infusion.

This is demonstrated by shifting the time–activity curves of figure 2(a) to optimize
the parameter estimates. The time–activity curves are shifted by quarter intervals of that
sampling interval, e.g., delay intervals of 0, 1.25, 2.5, and 3.75 s are used for 5 s acquisitions.
Figure 5 shows results for estimates ofk21 with the input function optimized for minimum
bias. The optimization has little effect on bias for 5 and 10 s acquisitions because the
time–activity curves are sufficiently sampled. However, the bias is significantly reduced for
a 20 s acquisition with a bolus infusion and for a 40 s acquisition with a 30 s infusion.
This occurs because the peak of the blood time–activity curve for the bolus infusion is at
20 s, while the peak for the 30 s infusion is at approximately 40 s. Thus, integration effects
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Figure 3. Fourier transforms of time–activity curves:
(a) blood, (b) tissue for resting dog (k21 = 0.8 min−1,
k12 = 0.4 min−1, fv = 0.15, and (c) tissue for
vasodilated dog (k21 = 4.0 min−1, k12 = 2.0 min−1,
fv = 0.15). The vertical lines represent frequencies
which can be recovered for a given acquisition rate.
——, bolus infusion; — — —, 30 s infusion;- - - -,
60 s infusion; —· · —, 90 s infusion.

are greatest when the peak of the time–activity curve coincides with the integration period.
This will depend on not only the injection time, but also the uptake time of the tracer,
and would be difficult to control in practice. The most effective method of minimizing
integration effects is to reduce the acquisition interval. The remaining results do not utilize
any optimization.

4.3. Detector motion

The following results are obtained by modelling the three-detector rotating SPECT system
which acquires 60 projection sets as it rotates over 360◦. Also, a fixed detector SPECT
system was modelled which acquires 60 projection sets with no rotation. The heart is
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Figure 4. Estimates ofk21 for resting kinetic parameters:◦, bolus infusion;�, 30 s infusion;
♦, 60 s infusion;∗, 90 s infusion; - - - -, actual value ofk21.

modelled with the MCAT phantom as described in section 3.3. Figure 6(a) shows estimates
of washin against iteration number of the EM–ML algorithm for the fixed detector using a
bolus infusion and 5, 10, 20, and 40 s acquisition intervals. The estimates obtained using the
static detector system reach convergence at approximately 50 iterations. Results obtained
with filtered backprojection are shown at iteration zero and compare well to those obtained
with EM–ML as it asymptotically approaches convergence.

Figure 6(b) shows estimates of washin for the moving detector system using a bolus
infusion. Unlike the static detector, estimates of washin do not converge as the iteration
number is increased. The rate of divergence is least for a 5 sacquisition. Estimates obtained
with filtered backprojection show relatively small levels of bias for all acquisition intervals.
Figure 6(c) shows estimates of washin for the static detector system using a 90 s infusion.
As with the bolus infusion, convergence is seen in the static detector after approximately
50 iterations. The increased bias in the 40 s acquisition most likely corresponds to integration
effects and is present for both EM–ML and filtered backprojection. The results from the
moving detector using a 90 s infusion are shown in figure 6(d). For 5, 10, and 20 s
acquisition intervals, the divergence is not as rapid with the 90 s infusion as with the
bolus infusion. However, estimates obtained with the 40 s acquisition interval diverge more
rapidly with a 90 s infusion than with a bolus infusion. This estimate also had a large bias
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Figure 5. Estimates ofk21 for resting kinetic parameters. The input function is shifted to obtain
optimal estimates.◦, bolus infusion;�, 30 s infusion;♦, 60 s infusion;∗, 90 s infusion;
- - - -, actual value ofk21.

when it was obtained using filtered backprojection. This bias is possibly introduced from
integration effects as discussed in the previous section.

4.4. Photon statistics

Figure 7 shows results from estimates of washin with photon statistics included in the
simulations to coincide with a 15 mCi injection of99mTc-labelled teboroxime in a 35 kg
dog. The mean and plus/minus one population standard deviation are shown for resting
and vasodilated kinetics. One hundred realizations were performed. Noise in the projection
data introduces variance in the estimates, which tends to dominate the bias from aliasing,
detector motion, and integration. Variance and bias in the estimates is much greater for
vasodilated rate constants than resting rate constants.

Figure 8 shows results with photon statistics corresponding to a 30 mCi injection of
99mTc-labelled teboroxime in a 35 kg dog. Increasing the simulated activity to correspond
to a 30 mCi injection, rather than a 15 mCi injection, of99mTc-labelled teboroxime reduces
the variance of the kinetic parameter estimates. Variance reduction is greater than the factor
of the square root of two that one might expect from a nonpropagating Poisson process.
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Figure 6. Estimates ofk21 for varying iteration number of the EM–ML algorithm. Iteration
zero corresponds to estimates obtained using filtered backprojection. (a) Fixed detector, bolus
infusion; (b) moving detector, bolus infusion; (c) fixed detector, 90 s infusion; (d) moving
detector, 90 s infusion.◦, 5 s infusion;�, 10 s infusion;♦, 20 s infusion;∗, 40 s infusion;
- - - -, actual value ofk21.

Plots of absolute parameter bias against parameter variance are shown in figures 9–12.
The plots show an absolute bias–variance curve for each acquisition interval. The results
indicate that the optimal input function and acquisition interval is a function of both photon
statistics and myocardial tissue kinetics.
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Figure 7. Estimates ofk21 with noisy data generated to represent the counts in a 15 mCi
injection of 99mTc-labelled teboroxime into a 35 kg dog. The symbol represents the mean from
100 realizations while the error bars represent plus/minus one standard deviation. (a) Resting
kinetic parameters; (b) vasodilated kinetic parameters.◦, bolus infusion;�, 30 s infusion;
♦, 60 s infusion;∗, 90 s infusion; - - - -, actual value ofk21.

The plot of figure 9 corresponds to resting kinetic parameters with noise simulating a
15 mCi injection of99mTc-labelled teboroxime in a 35 kg dog. The largest variance occurs
for a 5 sacquisition interval. The variance is reduced by using a sharper input function.
Variance levels decrease when 10, 20, and 30 s acquisition intervals are used. The least
bias is observed with a 10s acquisition and a bolus infusion. The most bias (ignoring 5 s
acquisitions) is observed with a 20 s acquisition and a bolus infusion. This is most likely
attributed to integration effects, which are also observed when a 40 s acquisition interval is
used with 30 and 60 s infusions.

The results of figure 10 correspond to vasodilated kinetic parameters with noise
simulating a 15 mCi injection of99mTc-labelled teboroxime into a 35 kg dog. Variance levels
are much larger than observed for resting kinetics. The variance consistently decreases as
the acquisition interval is lengthened. Along with variance levels, bias is also decreased
as the acquisition interval is lengthened. This suggests that when kinetics are increased,
count levels become more critical than with resting kinetics. The reduction in aliasing and
subsequently in bias which is produced with a 5 sacquisition is not noticeable because of
the large levels of variance. Bias and variance are less sensitive to input function shape than
acquisition interval. For 5 and 10 s acquisitions, the least bias and variance was observed
with shorter infusion rates. This trend was reversed with 20 s acquisitions. Forty second
acquisitions had the least bias when 30 and 60 s infusions were used. In general as the
acquisition interval was increased and subsequently count levels were increased, the input
function shape had a less noticeable effect.

The results of figure 11 correspond to resting kinetic parameters with nose simulating
a 30 mCi injection of99mTc-labelled teboroxime into a 35 kg dog. Note that the higher
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Figure 8. Estimates ofk21 with noisy data generated to represent the counts in a 30 mCi
injection of 99mTc-labelled teboroxime into a 35 kg dog. The symbols represent the means from
100 realizations while the error bars represent plus/minus one standard deviation. (a) Resting
kinetic parameters; (b) vasodilated kinetic parameters.◦, bolus infusion;�, 30 s infusion;
♦, 60 s infusion;∗, 90 s infusion; - - - -, actual value ofk21.

photon count rates result in much smaller levels of variance than were observed for resting
parameters in figure 9. The bias is also much lower with better photon statistics, with
variance levels approximately an order of magnitude smaller than the bias levels. The
results show that effects from varying the acquisition interval are much less distinct when
count levels are increased. The minimum levels of variance are now observed with a 5 s
acquisition and a 60 s infusion, although the differences in variance are not large for any
of the estimates. The plots show no distinct trends, with the least bias arising with a 10 s
acquisition and a bolus infusion.

The results of figure 12 correspond to vasodilated kinetic parameters with noise
simulating a 30 mCi injection of99mTc-labelled teboroxime into a 35 kg dog. Note
that variance levels are now more sensitive to acquisition interval than with the resting
parameters. Five second acquisitions now give large levels of variance when 60 and 90 s
infusion rates are used. However, the variance levels are significantly lower than those
observed when the injection was only 15 mCi. Levels of variance for 10 s acquisition are
not as sensitive to input function shape as for a 5 sacquisition, although there is a slight
reduction in variance when a bolus infusion is used. Bias is reduced significantly by using
a sharper input function for both 5 and 10 s acquisitions. Figures 9–12 suggest that the
acquisition interval is in general more critical than the infusion length, particularly when
photon statistics are low.

Table 1 summarizes the optimal estimates obtained with each simulated protocol. The
results imply that the input function shape and acquisition interval must be selected carefully
depending on the count levels and kinetics associated with the protocol. However, a
careful analysis of the results shown in figures 9–12 show that in some cases there is
very little difference in kinetic parameter estimates for different input function shapes and
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Figure 9. Absolute bias against variance for resting kinetic parameter estimates with noise
simulating a 15 mCi injection of99mTc-labelled teboroxime into a 35 kg dog:◦, bolus infusion;
�, 30 s infusion;♦, 60 s infusion;∗, 90 s infusion.

image acquisition intervals. When resting kinetics are assumed with a 15 mCi injection of
99mTc-labelled teboroxime into a 35 kg dog, a bolus infusion always provided the optimal
estimates of kinetic parameters. The least bias was observed with a 10 s acquisition, the least

variance with a 20 s acquisition, and the estimates with the least total
√

bias2+ variance
were obtained with a 10 s acquisition. Longer acquisition intervals result in the most
accurate estimates of kinetic parameters when vasodilated kinetics are assumed. When the
count rates were doubled, longer infusions and shorter acquisitions provided more accurate
estimates of kinetic parameters when resting kinetics were simulated. When kinetics are
increased to simulate vasodilated parameters, longer acquisitions result in more optimal
estimates. This indicates that better signal-to-noise ratios are required when fast kinetics
are to be estimated.

5. Discussion

This study investigated the effect of input function shape and image acquisition interval on
estimates of washin for dynamic cardiac SPECT. Analogous studies have been carried out
in dynamic PET (Cunningham and Jones 1993, Raylmanet al 1993, Herreroet al 1989,
Mazoyeret al 1986); however, count levels in dynamic cardiac SPECT are much poorer than
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Figure 10. Absolute bias against variance for vasodilated kinetic parameter estimates with noise
simulating a 15 mCi injection of99mTc-labelled teboroxime into a 35 kg dog:◦, bolus infusion;
�, 30 s infusion;♦, 60 s infusion;∗, 90 s infusion.

Table 1. A summary of results from simulations with photon noise (100 realizations). Changes
in estimates of washin for different input function shape and image acquisition interval are not
always significant. Figures 7–12 should be addressed to best interpret the data.

Protocol 15 mCi resting 15 mCi vasodilated 30 mCi resting 30 mCi vasodilated

Minimum bolus infusion 30 s infusion 30 s infusion 30 s infusion
bias 10 s acq 40 s acq 10 s acq 20 s acq

Minimum bolus infusion 30 s infusion 60 s infusion 90 s infusion
variance 20 s acq 40 s acq 5 s acq 40 s acq

Minimum bolus infusion 30 s infusion 30 s infusion 90 s infusion√
bias2 + variance 10 s acq 40 s acq 10 s acq 40 s acq

those in dynamic cardiac PET studies. This causes variance levels in estimates of washin
to be much larger than in dynamic cardiac PET studies. This variance can be reduced by
increasing the dose, applying a faster input function, or increasing the acquisition interval.
This study showed that the choice of acquisition interval and input function shape depends
on both the count levels and the tissue kinetics. Although bias is present in the estimates
of washin, variance levels tend to dominate any effect from bias. When variance levels
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Figure 11. Absolute bias against variance for resting kinetic parameter estimates with noise
simulating a 30 mCi injection of99mTc-labelled teboroxime into a 35 kg dog:◦, bolus infusion;
�, 30 s infusion;♦, 60 s infusion;∗, 90 s infusion.

are high, the most effective method of reducing this variance is to use a longer acquisition
interval, and thus increase counts. When count levels are low, a sharp input function also
reduces variance levels. When simulated count levels are doubled, variance levels can be
greatly reduced. At these count levels, the acquisition interval does not have as significant
an effect on variance levels as observed with lower count levels, and shorter acquisition
intervals can be used to reduce aliasing.

Bias is introduced in estimates of washin through aliasing of the time–activity curves.
This bias can be reduced by acquiring dynamic images more rapidly, thus recovering more
of the temporal changes in the time–activity curves. Bias can also be reduced by spreading
the infusion of the radioactive tracer over time. This reduces the high frequencies in the
tracer, resulting in less aliasing and consequently less bias. This also has the advantage of
allowing longer acquisition intervals to be used, resulting in less data storage. However, the
input function must be sufficiently sharp that the system kinetics can be adequately tracked.

The relative starting time position of the time–activity curve with respect to the
integration interval of the detector can also introduce bias into estimates of washin. This
effect can be reduced by shifting the input function so that it is optimized with respect to the
acquisition interval. However, this optimization is impractical because the rate of uptake
will vary with patient and this rate will have a direct effect on bias caused by integration.
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Figure 12. Absolute bias against variance for vasodilated kinetic parameter estimates with noise
simulating a 30 mCi injection of99mTc-labelled teboroxime into a 35 kg dog:◦, bolus infusion;
�, 30 s infusion;♦, 60 s infusion;∗, 90 s infusion.

The best methods of reducing effects due to integration are to increase the infusion length
and reduce the image acquisition interval.

Another cause of bias is the detector motion necessary in the three-detector dynamic
SPECT system. Rotation of the detector heads introduces bias by producing inconsistent
projection data. When dynamic images are reconstructed with the EM–ML algorithm,
kinetic parameter estimates based on these images do not converge as the iteration number
of the algorithm increases. Thus divergence of the estimates with iteration of EM–ML
depends on both the shape of the input function and the acquisition interval, although the
effect is less severe when shorter acquisition intervals are used. It has been shown that bias
can potentially be reduced by estimating the kinetic parameters directly from the projections
(Zenget al 1995).

The aforementioned effects introduce bias into the estimates; however, for typical
dynamic SPECT count levels, variance in the kinetic parameter estimates tends to overwhelm
bias caused by these physical effects. Additionally, as shown by Welchet al (1995) and in
this study, bias in estimates of washin is also increased when photon counts are reduced to
levels observed for a 15 mCi injection of99mTc-labelled teboroxime. Variance and bias in
estimates were shown to be quite large for low count rates; however, both can be reduced
significantly by modest increases in photon statistics. In this study, doubling the counts
resulted in a reduction in variance greater than the expected factor of the square root of
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two. Both the reduction in bias and the greater-than-expected reduction in variance are
possibly attributable to the skewed Poisson distribution (Welchet al 1995), although more
work is necessary to clearly understand this. When count rates cannot be increased by using
a larger dose, variance can be reduced significantly by lengthening the acquisition interval.
Additional reductions in variance are obtained by using a sharper input function.

The results in this study compare well with results in the PET literature when 30 mCi
injections of99mTc-labelled teboroxime were simulated with resting kinetics. For instance,
in a study described by Raylmanet al (1993), 30 s infusions were found to result in the
optimum estimates of kinetic parameters when 5 and 10 s acquisitions were employed.
Also, in a study by Mazoyeret al (1986), it was found that the precision in the estimates of
kinetic parameters did not change greatly when the acquisition interval was reduced below
30 s regardless of input function shape. As the counts were reduced and kinetics increased,
however, longer acquisition intervals were required to obtain optimum estimates of washin.
This suggests that optimum protocols for dynamic cardiac PET are not directly transferable
to dynamic cardiac SPECT.

Variance of the washin estimates is affected by the kinetics of the myocardial tissue.
As the kinetics are increased, variance levels in the estimates are also increased. This
variance can be reduced by increasing the acquisition interval and thus increasing photon
counts. Although increasing the acquisition interval would be expected to increase bias
in the estimates due to undersampling, this increase in bias is insignificant compared to
the gains from improved signal-to-noise ratios. More work is necessary to understand the
effects of increased kinetic values on estimates of these kinetic parameters. This effect could
possibly be related to the ill conditioning of the transfer function matrix of the governing
equation. When washout,k12, is increased, the condition number of the transfer function
matrix increases because of the exponential kernel. This effect could possibly be reduced
through regularization in the fitting procedure. This ill conditioning is closely tied to the
signal-to-noise ratio of the system, as it is significantly reduced when counting statistics are
improved.

There are also other factors which affect bias through input function shape and image
acquisition interval which were not directly addressed in this study. Welchet al (1995)
demonstrated the importance of ROI location to bias and variance of parameters. The
location of the ROI could also affect the necessary temporal resolution and peak dynamic
projection set counts, which would in turn be affected by input function shape and image
acquisition interval. The use of rotated short axis slices when drawing ROIs will also affect
estimates, primarily by smoothing the data, thus increasing bias and reducing variance.
Because both bias and precision appear to be directly related to signal-to-noise ratios, another
issue to be addressed is the count levels associated with dynamic cardiac SPECT studies
with human patients. In addition, methods for regularizing the ill posedness associated
with faster kinetic rate constants should also be an area of investigation. More work
must also be done to understand the effects on kinetic parameter estimates of iteration
number in the EM–ML algorithm, attenuation, geometric point response, scatter, and angular
sampling.
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