
EMRI source modelling 
   and data analysis

¬EMRI waveforms
    --snapshots
    --w/ radiation reaction
    --kludged waveforms

¬EMRI searches
    -- t-f tracks
    -- semi-coherent 

¬EMRIs and confusion noise
 
    



¬Matched filtering required to dig EMRIs out of the noisy data, but full 

numerical relativity NOT required to produce the waveforms: one can do 

perturbation theory in the mass ratio                          ,  with small body 

treated as point particle.

¬Basically, the CO travels nearly on a 

geodesic, but radiation reaction causes

a slow inspiral.  The radiation reaction 

force diverges at the point particle, and 

so must be regularized. 

A prescription for doing 

the regularization was given by

Wald&Quinn (‘97) and Mino, Sasaki,

&Tanaka (‘97), but developing a 

practical numerical implementation 

remains an active area of research. An approximate, adiabatic

approach was developed by Mino(‘03).

  Calculating EMRI waveforms
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m/M ~ 10−5



How EMRI SNR builds up
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How EMRI SNR builds up

    

(Barack&Cutler 2004) 

Eccentric orbit, but BH spin = 0



     geodesic orbits in Kerr

    

       --from Drasco&Hughes (‘06)

There are 3 basic frequencies:  

€ 

fφ , fθ , fr
Gravitational waves measured at infinity have a discrete 
spectrum made up of harmonics of just these 3 frequencies: 

€ 

fmkn = m fφ + k fθ + n fr
with m,k,n integers.



Geodesics in Kerr

    

In Boyer-Lindquist coords:

where

and E, Lz, Q are the energy, ang. momentum, and Carter’s const. 
Can transform to “Mino time”      using                    .  Then
         are both periodic functions of         , and
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λ

€ 

dτ /dλ = ρ−2

€ 

r, θ

€ 

λ

--see Drasco&Hughes,
 astro-ph/0308479, for 
 more details



    

The 3 basic frequencies vs perihelion distance

--from E.E. Flanagan



   Snapshot waveforms

    

--from Drasco&Hughes (‘06)



Gravitational self-force

    

For pt particle or small BH traveling on 
(near) geodesic, gravitational self-force 
is entirely due to back-scattered 
radiation, or “tail” terms. 

General result due to Mino,Sasaki
&Tanaka(‘97) and Wald&Quinn(‘97) is:  

€ 

(gαβ + uαuβ )uλuσ

A great deal of effort has gone into using this equation to
calculate the self-force, but still no satisfactory implementation
for Kerr. (Successfully done by Barack&Lousto(‘05) for circular
orbits in Schwarzschild.)
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Adiabatic Eqs. of Motion

    

Inspiraling trajectory osculates through a series of geodesics,
with slowly time varying  E, Lz, Q:

€ 

dQ
dt

€ 

dQ
dt

= ...
€ 

dLz
dt

= ... Key observation by Mino: can solve for the
average value         , etc. using half-retarded minus
half-advanced solution for metric perturbation        , 
which is regular on particle’s wordline. 

€ 

hαβ



Controversy re adiabatic 
      radiation reaction

    
But……
in principle self-force can have a piece that does not show up
in        ,        , or          

e.g., for a circular orbit in Schwarzschild, consider a radial
force of constant magnitude.  Obviously it has no effect on
the particle’s angular momentum or energy. 

Pound, Poisson & Nickel (2005)  claim that this 
“conservative piece” of the self-force can have important
secular effects (based on a toy model where they
calculate the effect of E&M radiation reaction on a charged
particle on a nearly Newtonian orbit, in weak-field gravity).   
This claim is still controversial.     
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dQ
dt
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dE
dt
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dLz
dt



Eventual need for 2nd-order
      perturbation theory

    Expected phase error from 1st-order perturbation theory is: 

€ 

~ Φtot (m M) ~ 106 (10−5) ~ 10 radians

Therefore to extract all the information from the signal, one
probably has to go beyond 1st-order perturbation theory.



“Kludge” waveforms
Lacking very accurate waveforms, different “kludge”
waveforms have been developed 
1) to help scope out data analysis strategies,
2) for preliminary analyses of parameter estimation accuracy,
3) to perhaps serve in initial stages of actual searches, since
they’re relatively cheap to calculate.
E.g.:
Analytic “kludge” waveforms (Barack and Cutler):
Description: At any instant, binary described as an eccentric, 
Keplerian orbit emitting a (lowest-order) quadrupolar 
waveform—given analytically by Peters and Matthews (1963). 
However the orbital parameters evolve according to 
post-Newtonian equations of motion. Perihelion precession,
Lense-Thirring precession, and orbital decay are all included.
Easy to calculate, so are being used in Mock LISA Data Challenges.



“Kludge” waveforms

 Numerical “kludge:” waveforms (Gair et al.):
Description: At any instant, CO follows actual geodesic of
Kerr metric. E, L_z, Q  evolve using post-Newtonian equations.
Waveform calculated from quadrupole formula. Fairly straightforward
to calculate and quite accurate on short timescales:

 
Comparsion of
numerical kludge
and Teukolsky
“snapshot”
waveforms:



Comparison of numerical kludge w/ Teukolsky waveform
for circular, non-equatorial inspiral in Kerr

    

(thanks to S. Babak, H. Fang, J. Gair, K. Glampedakis, & S. Hughes)



SNR Threshold for Detection

    

Let       = total matched-filtering SNR for both A and E channels.

¬There are (very roughly)                        independent, ~year-long
templates. Significant detection requires                      , or

¬Gair & Wen have developed a search method based on looking for
excess power in a rectangular region in the time-frequency plane.
Requires                for detection.   Not yet fully optimized.

¬Barack, Creighton, Cutler & Gair have developed a semi-coherent
search method based on doing fully coherent searches for ~3-week
segments (the most one can afford) and then adding the powers from
different segments. Estimated to require                       for detection.
Also not yet optimized (could be made hierarchical).

¬Markov Chain Monte Carlo, Genetic Algorithms not yet
investigated, but they will be.

€ 

ρ
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Nt e
−ρ 2 2 <<1

€ 

ρ ≥14

€ 

ρ ≥ 30 − 35€ 

ρ ≥ 60
€ 

Nt ~ 10
35−40



EMRIs set minimum of LISA noise curve

    



Search for excess power in t-f plane

    

See talk by Wen, Fri @10:30.

Last 3 yrs of inspiral for case 10 + 10^6; SNR = 85



Stack-Slide Search Technique

    Basic idea:

• Break two-yr waveform into  ~3-wk segments;
implement coherent, matched-filter search for
segments.

• Add up the power from different segments, along
tracks determined  corresponding to different sets of
physical parameters.

(Barack, Creighton, Cutler, Gair)



Parameter Space for inspiral problem
(neglecting spin of CO)
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Template Counting:
Parameters can be divided into

extrinsic (hard) and intrinsic (easy)

¬  Use Buonanno-Chen-Vallisneri (2003) trick
to  search quickly over 5 extrinsic angles (2
sky positions and 3 Euler angles)

    giving orientation of source at  some t0

¬  Use FFT trick to search quickly over all t0



Counting Templates: Short
Segments

13-dim

all params
(except D)

7-dim

intrinsic params

Γ= ababg 2

1 〉〈=
ΑΒ ext

} { Proj gabγ



Computational Cost:  What can we afford?

Total cost (in floating point operations) of coherent filtering 
for T-length segments in data of total length         is  τ

Assuming we have 50 Teraflop machine , 1/3 of it goes into our  
coherent segment search,  have 2 years of data, 
f_max is 30 mHz, and guess                               , then10~/ 2Tτ

10
10

.int
≤N temp



Number of (intrinsic-space templates) for 3-week segments
 entered at           = 1 mHz.ν 0

€ 

Ntemp ∝
3.1

0ν M( )
4.3

0ν T( )



Incoherent step: Stack together the 
power from short segments

    

There are 3 rapidly
varying phase angles
in trajectory/waveform.
One saves computational
cost by NOT requiring
phase coherence from 
one stack to the next.



Detection Threshold for our Semi-coherent Search

By combination of analytic arguments and Monte Carlo simulations,
we have estimated that for a source to be detectable with our
semi-coherent (“stacked”) search algorithm, its matched-filter
SNR (for both synthetic detectors combined) must be:  

€ 

threshSNR = stack8N M( ) 1+ 4.5 stack
−1/ 2N( )

where Τ=τNstack

and  M (approx 0.8-0.9) is the average match factor (overlap)
between segment templates and actual waveform templates. 



Estimate of Detection Threshold, w/ 50 Tflops

and M = 0.8  implies

Even with infinite computing power, we’d need SNR approx 14
to insure a small false alarm rate—given the vast number of
possible templates. So LISA loses only a factor of about 2 in
sensitivity because of limitations of realistic computing power. 

€ 

stackN = 50 − 75 τ = 3yr Τ = 2 − 3wk( )

€ 

threshSNR ≈ 30−35



Confusion Noise from EMRIs 

    
We know “confusion noise” from WD binaries dominates
the LISA noise curve at f < 2-3 mHz.  What about EMRIs?

Thousands of EMRI sources
are “on” at any instant, so to
initial approx. they sum to a
Gaussian noise source. The
spectral density is the
weighted average of
spectral densities
of all the individual EMRIs:

  (Barack&Cutler 2004)

Spectrum for 10^6 Msun BH

€ 

Sh
emri( f )∝ f −27 / 8



Confusion background from EMRIs
(before subtraction of resolvable sources)

678WD 104,104,104 −−− ⋅⋅⋅=κ 78BH 106,106 −− ⋅⋅=κ

= ave. capture rate/yr for 10^6 Msun BHs

€ 

κ

~97% unresolvable ~30-90% unresolvable

WDs BHs



EMRI background vs. Gaussian noise w/ same spectral density

    

€ 

h(t')
0

t

∫ n(t ')dt 'Plot of

n(t) = gaussian noise

n(t) = 1000 chirping sources

(work in progress by Racine, Cutler, Drasco, Babak)



How 2 different chirping waveforms
    “interfere with” each other: 

t-f tracks for 2 merging NS binaries at different z

€ 

h1(t)h2(t)dt∫                               ---integral dominated by contribution

from short time around crossing of            and

€ 

f1(t)

€ 

f2(t)


