

Soft Computing and Current Trends in Supercomputing

Horst D. Simon

Director, NERSC Center Division, LBNL Berkeley, December 16, 2003 http://www.nersc.gov/~simon

Overview

- Introducing NERSC
- Current trends in supercomputing (high end computing)
- Computational science today
- Implications for soft computing

- Funded by DOE, annual budget \$28M, about 65 staff
 - Traditional strategy to invest equally in newest compute platform, staff, and other resources
- Supports open, unclassified, basic research
- Close collaborations between university and NERSC in computer science and computational science

Flagship facility for unclassified computing in the DOE Office of Science

computational projects in all areas of DOE science
about 2000 users in ~200 projects

 focus on large-scale computing

Overview

- Introducing NERSC
- Current trends in supercomputing (high end computing)
- Computational science today
- Implications for soft computing

Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years Called "<u>Moore's Law</u>"

Microprocessors have become smaller, denser, and more powerful.

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

Slide source: Jack Dongarra

TOP500 - Overview

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from Linpack
 Ax=b, dense problem
- Updated twice a year:
 - ISC'xy in Germany, June xy
 - SC'xy in USA, November xy
- All data available at www.top500.org

Size

U.S. DEPARTMENT OF ENERGY

22nd List: The TOP10

Rank	Manufacturer	Computer	R _{max}	Installation Site	Country	Year	Area of Installation	# Proc
1	NEC	Earth-Simulator	35.86	Earth Simulator Center	Japan	2002	Research	5120
2	HP	ASCI Q AlphaServer SC	13.88	Los Alamos National Laboratory	USA	2002	Research	8192
3	Self-Made	<i>X</i> Apple G5, Mellanox	10.28	Virginia Tech	USA	2003	Academic	2200
4	Dell	<i>Tungsten</i> PowerEdge, Myrinet	9.82	NCSA	USA	2003	Academic	2500
5	HP	<i>Mpp2</i> , Integrity rx2600 Itanium2, Qadrics	8.63	Pacific Northwest National Laboratory	USA	2003	Research	1936
6	Linux Networx	<i>Lightning</i> , Opteron, Myrinet	8.05	Los Alamos National Laboratory	USA	2003	Research	2816
7	Linux Networx/ Quadrics	MCR Cluster	7.63	Lawrence Livermore National Laboratory	USA	2002	Research	2304
8	IBM	ASCI White SP Power3	7.3	Lawrence Livermore National Laboratory	USA	2000	Research	8192
	IBM	Seaborg SP Power 3	7.3	NERSC Lawrence Berkeley Nat. Lab.	USA	2002	Research	600%
10	IBM/Quadrics	xSeries Cluster Xeon 2.4 GHz	6.59	Lawrence Livenhore National Laboratory	USA	2003	Research	1920
	Science							

Performance Development

Projected Performance Development

- Annual performance growth about a factor of 1.82
- Two factors contribute almost equally to the annual total performance growth
- Processor number grows per year on the average by a factor of 1.30 and the
- Processor performance grows by 1.40 compared 1.58 of Moore's Law.
- For more details see paper by Dongarra, Meuer, Simon, and Strohmaier in Parallel Computing

FERSC Opportunity: Dramatic Advances in Computing Terascale Today, Petascale Tomorrow

MICROPROCESSORS

2x increase in microprocessor speeds every 18-24 months ("Moore's Law")

PARALLELISM

More and more processors being used on single problem

INNOVATIVE DESIGNS

Processor in memory Blue Gene

Manufacturer / Systems

Architectures / Systems

Clusters (NOW) / Systems

• Commodity Clusters

VS

Custom architecture

U.S. DEPARTMENT OF ENERGY

22nd List: The TOP10

1NECEarth-Simulator35.86Earth Simulator CenterJapan2002Research51202HPASCI Q AlphaServer SC13.88Los Alamos National LaboratoryUSA2002Research81923Self-MadeX Apple G5, Mellanox10.28Virginia TechUSA2003Academic22004DellTungsten PowerEdge, Myrinet9.82NCSAUSA2003Academic25005HPMpp2, Integrity rx2600 Itanium2, Qadrics8.63Pacific Northwest National LaboratoryUSA2003Research19366Linux NetworxLightning, Opteron, Myrinet8.05Los Alamos National LaboratoryUSA2002Research23047Linux Networx/ QuadricsMCR Cluster7.63Lawrence Livermore National LaboratoryUSA2000Research81929IBMScaborg SP Power37.3Lawrence Livermore National LaboratoryUSA2002Research81929IBMScaborg SP Power37.3Lawrence Livermore National LaboratoryUSA2002Research81929IBMScaborg SP Power37.3Lawrence Livermore National LaboratoryUSA2002Research65610BM/QuadricsXSeries Cluster Xeon 2.4 GHz6.59Lawrence Livermore National LaboratoryUSA2003Research1920	Rank	Manufacturer	Computer	R _{max}	Installation Site	Country	Year	Area of Installation	# Proc
2HPASCI Q AlphaServer SC13.88Los Alamos National LaboratoryUSA2002Research81923Self-Made X Apple GS, Mellanox10.28Virginia TechUSA2003Academic22004DellTungsten 	1	NEC	Earth-Simulator	35.86	Earth Simulator Center	Japan	2002	Research	5120
3Self-MadeX Apple G5, Mellanox10.28Virginia TechUSA2003Academic22004DellTungsten PowerEdge, Myrinet9.82NCSAUSA2003Academic25005HPMpp2, Integrity rx2600 Itanium2, Qadrics8.63Pacific Northwest National LaboratoryUSA2003Research19366Linux Networx QuadricsLightning, Opteron, Myrinet8.05Los Alamos National LaboratoryUSA2003Research28167Linux Networx/ QuadricsMCR Cluster7.63Lawrence Livermore National LaboratoryUSA2002Research23048IBMSeaborg SP Power37.3Lawrence Livermore National LaboratoryUSA2002Research81929IBMSeaborg SP Power37.3Lawrence Livermore National LaboratoryUSA2002Research65510IBMQuadricsxSeries Cluster Xeon 2.4 GHz6.59Lawrence Livermore National LaboratoryUSA2003Research1920	2	H₽	ASCI Q AlphaServer SC	13.88	Los Alamos National Laboratory	USA	2002	Research	8192
4DellTungsten PowerEdge, Myrinet9.82NCSAUSA2003Academic25005HPMpp2, Integrity rx2600 Itanium2, Qadrics8.63Pacific Northwest National LaboratoryUSA2003Research19366Linux NetworxLightning, Opteron, Myrinet8.05Los Alamos National LaboratoryUSA2003Research28167Linux Networx/ QuadricsMCR Cluster7.63Lawrence Livermore National LaboratoryUSA2002Research23048IBMASCI White 	3	Self-Made	<i>X</i> Apple G5, Mellanox	10.28	Virginia Tech	USA	2003	Academic	2200
5HPMpp2, Integrity rx2600 Itanium2, Qadrics8.63Pacific Northwest National LaboratoryUSA2003Research19366Linux NetworxLightning, Opteron, Myrinet8.05Los Alamos National LaboratoryUSA2003Research28167Linux Networx/ 	4	Dell	<i>Tungsten</i> PowerEdge, Myrinet	9.82	NCSA	USA	2003	Academic	2500
6Linux NetworxLightning, Opteron, Myrinet8.05Los Alamos National LaboratoryUSA2003Research28167Linux Networx/ QuadricsMCR Cluster7.63Lawrence Livermore National LaboratoryUSA2002Research23048IBMASCI White 	5	HP	<i>Mpp2</i> , Integrity rx2600 Itanium2, Qadrics	8.63	Pacific Northwest National Laboratory	USA	2003	Research	1936
7Linux Networx/ QuadricsMCR Cluster7.63Lawrence Livermore National LaboratoryUSA2002Research23048IBMASCI White SP Power37.3Lawrence Livermore National LaboratoryUSA2000Research81929IBMSeaborg SP Power 37.3NERSC Lawrence Berkeley Nat. Lab.USA2002Research665610IBM/QuadricsXSeries Cluster 	6	Linux Networx	<i>Lightning</i> , Opteron, Myrinet	8.05	Los Alamos National Laboratory	USA	2003	Research	2816
8IBMASCI White SP Power37.3Lawrence Livermore USA2000Research81929IBMSeaborg SP Power 37.3NERSC 	7	Linux Networx/ Quadrics	MCR Cluster	7.63	Lawrence Livermore National Laboratory	USA	2002	Research	2304
9IBMSeaborg SP Power 37.3NERSC Lawrence Berkeley Nat. Lab.USA2002Research665610IBM/QuadricsxSeries Cluster Xeon 2.4 GHz6.59Lawrence Livermore National LaboratoryUSA2003Research1920	8	IBM	ASCI White SP Power3	7.3	Lawrence Livermore National Laboratory	USA	2000	Research	8192
10IBM/QuadricsxSeries Cluster Xeon 2.4 GHz6.59Lawrence Livermore National LaboratoryUSA2003Research1920	9	IBM	Seaborg SP Power 3	7.3	NERSC Lawrence Berkeley Nat. Lab.	USA	2002	Research	6656
	10	IBM/Quadrics	xSeries Cluster Xeon 2.4 GHz	6.59	Lawrence Livermore National Laboratory	USA	2003	Research	1920

Earth Simulator

- 40 Tflop/s system in Japan
- completion April 2002
- driven by climate and earthquake simulation requirements
- built by NEC
- 640 CMOS vector nodes

The Earth Simulator in Japan

- Linpack benchn TF/s = 87% of 4(
- Completed Apr
- Driven by climation
 earthquake simulation
- Built by NEC

Understanding and Prediction of Global	Understanding of Plate
Occorregice predigion	Understanding of long-
Saytence prediction	Hoderatanding of
Understanding of effect of global warming	standarion of
Establishment of simulation technology	underground water and materials transfer in strata
with TKM resolution	

PC Clusters: Contributions of Beowulf

- An experiment in parallel computing systems
- Established vision of low cost, high end computing
- Demonstrated effectiveness of PC clusters for some (not all) classes of applications
- Provided networking software
- Conveyed findings to broad community (great PR)
- Tutorials and book
- Design standard to rally community!
- Standards beget: books, trained people, software ... virtuous cycle

Linus's Law: Linux Everywhere

- All source code is "open"
- Software is or should be free (Stallman)
- Everyone is a tester
- Everything proceeds a lot faster when everyone works on one code (HPC: nothing gets done if resources are scattered)
- Anyone can support and market the code for any price
- Zero cost software attracts users!
- All the developers write lots of code
- Prevents community from losing HPC software (CM5, T3E)

"BigMac" at VATech

- 1100 dual Apple G5 2GHz CPU based nodes.
 - 8 Gflops/processor peak double precision floating performance (17.6 Tflop/s peak).
 - 4.4 TByte memory, 176 Tbyte disk
- Infiniband Interconnect

ERSC

Supercomputing Today

- Microprocessors have made desktop computing in 2003 what supercomputing was in 1993.
- Massive Parallelism has changed the "high end" completely.
- Today clusters of Symmetric Multiprocessors are the standard supercomputer architecture
- The microprocessor revolution will continue with little attenuation for at least another 10 years.
- Continued discussion over architecture for HEC (custom versus commodity)

Overview

- Introducing NERSC
- Current trends in supercomputing (high end computing)
- Computational science today
- Implications for soft computing

Simulation: The Third Pillar of Science

- Traditional scientific and engineering paradigm:
 1) Do theory or paper design.
 - 2) Perform experiments or build system.
- Limitations:
 - Too difficult -- build large wind tunnels.
 - Too expensive -- build a throw-away passenger jet.
 - Too slow -- wait for climate or galactic evolution.
 - Too dangerous -- weapons, drug design, climate experimentation.
- Computational science paradigm:
 - 3) Use high performance computer systems to simulate the phenomenon
 - Basd on known physical laws and efficient numerical methods.

Major Areas of Computational Simulation

Science

- Global climate modeling
- Astrophysical modeling
- Biology: genomics; protein folding; drug design
- Computational Chemistry
- Computational Material Sciences and Nanosciences

Engineering

- Crash simulation
- Semiconductor design
- Earthquake and structural modeling
- Computational fluid dynamics
- Combustion
- Business
 - Financial and economic modeling
 - Transaction processing, web services and search engines

Defense

Science – Nuclear weapons -- test by simulations

- Cryptography

Global Climate Modeling Problem

Problem is to compute:
 f(latitude, longitude, elevation, time) →

temperature, pressure, humidity, wind velocity

- Approach:
 - Discretize the domain, e.g., a measurement point every 10 km
 - Devise an algorithm to predict weather at time t+1 given t
- Uses:
 - Predict major events, e.g., El Nino
 - Use in setting air emissions standards

Source: http://www.epm.ornl.gov/chammp/chammp.html

High Resolution Climate Modeling on NERSC-3 – P. Duffy, et al., LLNL

Wintertime Precipitation

As model resolution becomes finer, results converge towards observations

Comp. Science : A 1000 year climate simulation

• Warren Washington and Jerry Meehl, National Center for Atmospheric Research; Bert Semtner, Naval Postgraduate School; John Weatherly, U.S. Army Cold Regions Research and Engineering Lab Laboratory et al.

• A 1000-year simulation demonstrates the ability of the new Community Climate System Model (CCSM2) to produce a long-term, stable representation of the earth's climate.

•760,000 processor hours used

http://www.nersc.gov/aboutnersc/pubs/bigsplas

Computational Science and Engineering (CSE)

- CSE (or CSME) is a widely accepted label for an evolving field concerned with the science of and the engineering of systems and methodologies to solve computational problems arising throughout science and engineering
- CSE is characterized by
 - Multi disciplinary
 - Multi institutional
 - Requiring high end resources
 - Large teams
 - Focus on community software
- CSE is not "just programming" (and not CS)
- Ref: Petzold, L., et al., Graduate Education in CSE, SIAM Rev., 43(2001), 163-177

Overview

- Introducing NERSC
- Current trends in supercomputing (high end computing)
- Computational science today
- Implications for soft computing

Projected Performance Development

The Exponential Growth of Computing, 1900-1998

\$1,000 OF COMPUTING BUYS

The Exponential Growth of Computing, 1900-2100

Growth of Computing Power and "Mental Power"

Megabytes-per-MIPS

Adapted from Moravec, Progress in Robotics: An Acclerated Rerun Of Natural History?

Why I don't share this vision

- Fundamental lack of mathematical models for cognitive processes
 - that's why we are not using the most powerful computers today for cognitive tasks
- Complexity limits
 - we don't even know yet how to model turbulence, how then do we model thought
- past experience: people bring technology into their lives, not vice versa
 - the slow rate of change of human behavior and processes will work against this change

Moore's Wall — The Real (Exponential) View

Conclusion

- Research opportunities in bringing scientific computing in soft computing together
- Near term:
 - high end parallel computers get rapidly less expensive and easier to use
 - soft computing community is missing a scientific opportunity by not using this technology more aggressively
- Long Term:
 - floating point intensive computational science has driven development of current high end technology
 - in order to make real progress in soft computing, we need research into appropriate high end architectures for the task

