(Some) Fundamentals of Weather

Jon Nese and Jen Carfagno The Weather Channel February 22, 2004

Meteorology 101 Outline

 Weather and Air Quality: The Issues Basic Weather Concepts Weather Observations The "Models" Your Questions

Weather & Air Quality: Keys: Air motion, clouds, and precipitation.

Horizontal: Vertical: Wind Vertical Motions, mixing

Wind, mixing disperse Pollutants!!

 Clouds reduce sunlight and slow production of some pollutants.

• Precipitation cleanses the atmosphere.

Meteorology 101 Questions to Answer

 How, why, when, where does the wind blow?

What controls vertical motions?

 When and where do clouds and precipitation form?

Meteorology 101 Geographical Terminology...

Meteorology 101 Layering of the Atmosphere

Stratosphere

6-8 Altitude (mi)

Troposphere

Temperature

Planetary Boundary Layer

Meteorology 101
Some Fundamentals

• Earth is heated unevenly: Tropics are warmer than the Polar Regions.

• Nature tries to try to even out temperature differences.

• Uneven heating sets atmosphere in motion and is the fundamental cause of all weather.

Meteorology 101 Air Pressure

"Top"

1 // 1 /

On average, air weighs about 14.7 lb/in²

14.7 lb/in² =29.92 "inches of mercury"

Air Pressure varies over the globe

Meteorology 101 Changing Pressure - Winds

Take more out than put in – decrease pressure Put more in than take out – increase pressure

Meteorology 101 Changing Pressure - Temperature

Warm

Coldest column = highest pressure ** Warmest column = lowest pressure **

Meteorology 101 Pressure Differences Create Wind

$\leftarrow H \rightarrow L \leftarrow H \rightarrow L \leftarrow H \rightarrow$

Air moves from higher toward lower pressure

Air "converges" at lows, and rises. Air "diverges" at highs, and sinks.

Actual winds around highs and lows

Meteorology 101 Rising Air near ows

 Rising air cools; water vapor in the air condenses to form clouds/precipitation

Lows tend to bring cloudy, wet weather

Sinking air near 🗌 ighs

- Sinking air warms and dries out.
- Highs tend to bring fair, dry weather.

_ow or lowering pressure = "Lousy" weather

Front = Battleground of Air Masses

Temperature
 differences
 concentrated

 Zone of lower pressure where lows (storms) often form

What happens when air masses meet at fronts?

Cold air lifts the warmer air. Clouds and precipitation form.

Cold

Upper-Level Features

Westerlies - High-Altitude winds blow generally west-to-east 3-6 miles above midlatitudes.

Jet Stream – River of fastest-moving air within the westerlies.

Reality is messier ...

Still, highs and Lows move with the westerlies and the jet stream.

Highs and Lows form and dissipate in synch with ridges and troughs in the westerlies.

Stationary Front separates air masses

Area of low pressure develops along front

Circulation around low sends cold air and warm air advancing

Low and fronts move with the upper-air westerlies while circulating low-level air

Typical cloud and precipitation shield of a low-pressure system and fronts

Intense lows often take on a "comma-cloud" shape when viewed from space.

Meteorology 101 Local Winds

Uneven heating working on a smaller scale

Another control on vertical motions Vertical temperature structure of the atmosphere

Pillows (Light)

Books (Heavy)

Books (Heavy)

Pillows (Light)

STABLE Inhibits Overturning

More likely to overturn

Meteorology 101 In the Atmosphere...

• Typically, temperature decreases with altitude, so the lighter stuff (warmer air) is below the heavier stuff (colder air).

 Typically supports some overturning, especially in the boundary layer.

Cumulus clouds

Temperature

Inversion – A layer of the atmosphere in which temperature increases with height.

Inversions inhibit vertical mixing. Can trap pollutants in the lower atmosphere.

Air sinks and warms near high pressure.

Creates an inversion 1000s of feet above the ground.

Temperature

Inversions inhibit vertical mixing. Can trap pollutants in the lower atmosphere.

Colder, heavier air trapped in valleys.

Meteorology 101 Key Ideas

- Wind and rising air disperse pollutants.
- When air rises, clouds/precipitation can form.
- Clouds reduce sunlight, which slows production of some pollutants; precipitation cleanses the air.
- Air rises, and winds are strongest, in the vicinity of low pressure and fronts.
- Air sinks, and winds tend to be light, in the vicinity of high pressure.

Meteorology 101 Weather Forecasting

• Knowledge of how atmosphere works (e.g., high and low pressure, fronts, etc)

• Observations, observations, observations (surface, upper-air, satellite, radar, etc)

• Computer guidance (the "models")

Personal experience ("I've seen that before")

A LEAST DE L

Surface observations

Sources of Surface Observations

ASOS – Automated Surface Observing System AWOS – Automated Weather Observing Station

ASOS – Owned and maintained by the NWS

- Federal AWOS Owned and maintained by the FAA
- Non-Federal AWOS Owned and maintained by state, city, and county agencies (incl. DOT), and private airports
- Military bases manually taken observations
- CoOp observers NWS volunteer network, manually taken observations

*All are transmitted via FAA data lines to NWS to WSI to TWC.

Other Sources of Surface Observations

- Private Mesonets such as AWS (Weatherbug), etc.,
 - Owned and operated by private network
 - Not available for use by other private companies
- Public Mesonets including RWIS, etc.
 - Owned and operated by government agencies
 - May not be centrally collected
- Academic/Research Mesonets
 - Owned and operated by universities and research institutions
 - May be available for use by private companies

Upper-air observations

weather.com

Doppler Radar

Tornado on Doppler Radar

Reflectivity

Velocity

Doppler radar network

Weather forecasts have improved

Meteorology 101 Computer Models: Numerical Weather Prediction

+

Temp future = time

Change in Temp between now and future time

What processes change temperature?

- Sunshine
- Wind Direction
- Evaporation
- Pressure changes
- Etc, etc, etc

Computer is programmed with mathematical representations of these processes.

ENIAC - University of Pennsylvania, 1945

Modern Computer Model Output (map form)

Modern Computer Model Output (map form)

FOUS62 KWNO 171200 OUTPUT FROM ETA 12Z FEB 17 04

TTPTTR1R2R3VVVLIPSDDFFHHT1T3T5TTPTTR1R2R3VVVLIPSDDFFHHT1T3T5DCA//5040260252337070734989496ORF//766649-10143405154003999906000527423013193310073401959606007938417020083103144103000012000736828-06153007093401969612015968326-18052701204103000018000885821-08142802123200969618001968328-60092535183902000024000925418-11142636143098979524000966327012132334223401989730000562608-31152434143003979430000784707-16122335213202979636000552244-16192333163501979536000602016-24182031134002999948000485637062121524154101009948000534040-271618262043020399

Modern Computer Model Output (tabular form)

Evening

WEST

Some "folklores" are useful

EAST

(Some) Fundamentals of Weather

Jon Nese and Jen Carfagno The Weather Channel February 22, 2004

TWC Mission

Making a difference in people's lives, one forecast at a time.

• What value can we add (eg, experts).

 Communication of uncertainty - the atmosphere is a very complicated system (hurricanes, March 2001 snowstorm)

• Educate the public

Meteorology 101 Operations Overview

