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Timeline of Sensor and Transportation History

In 1622 the invention of the slide rule along with 
fundamental physical sensors (thermometer and Pitot p y
tube) led the way for the earliest mechanically fuel 
propulsion system – steam locomotion.
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Timeline of Sensor and Transportation History

The first electric motor in 1821 came in use along with 
the Venturi tube  This year also marked the invention of the Venturi tube. This year also marked the invention of 
the thermocouple still in common use today!
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Timeline of Sensor and Transportation History

Sensor engineering was revolutionized with the invention 
of the magnetic flow meter and the Wheatstone bridge. g g
A few decades later the first gasoline powered 
automobile hit the streets.
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Timeline of Sensor and Transportation History

Man’s first powered flight followed on the heels of the 
earliest magnetic recordings, the resistance thermal earl est magnet c record ngs, the res stance thermal 
device (RTD) and the optical pyrometer. 
Still a century to go!
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Timeline of Sensor and Transportation History

No significant sensor development

With electronic amplifying tubes and the 1908 
development of the strain gauge Man’s first steps are development of the strain gauge Man s first steps are 
taken toward space with the first liquid fueled rocket. 
Sadly, this also begins a void in fundamental sensors 
i ti  
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Timeline of Sensor and Transportation History

No significant sensor development

In 1930 computer solutions to differential equations 
 l bl  E   h l d  d  were available. Existing sensors helped engineer and test 

larger chemical rockets.
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Timeline of Sensor and Transportation History

No significant sensor development

The1947 supersonic flight followed the creation 
of the ENIAC  Data systems and supporting electronics of the ENIAC. Data systems and supporting electronics 
continue to advance. Still no significant sensor 
development!
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Timeline of Sensor and Transportation History

No significant sensor development

Enter in the age of the transistor  Electronics Enter in the age of the transistor. Electronics 
are revolutionized. Mankind challenges the Moon. Again, 
no sensor advancement
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Timeline of Sensor and Transportation History

No significant sensor development

Man’s first powered flight followed on the heels of the 
earliest magnetic recordings, calculators and optical 
pyrometer  There is still a century to go!
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Sensor Enabled Technology Advancements

The mechanical configuration of automobiles have changed marginally 
while improvements in sensors and control have dramatically improved while improvements in sensors and control have dramatically improved 
engine efficiency, reliability and useful life.

The aviation industry has also taken advantage of sensors and control 
t  t  d  ti l t    S  d hi h fid lit  systems to reduce operational costs.   Sensors and high fidelity 

control systems fly planes at levels of performance beyond human 
capability.  

Sophisticated environmental controls allow a greater level of comfort 
and efficiency in our homes.

Sensors have given the medical field a better understanding of the Sensors have given the medical field a better understanding of the 
human body and the environment in which we live.
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Sensor Applications

Sensor applications are the process of selecting the correct 
sensor for the desired measurement.

• Define a well thought out measurement problem.
• Define how the data will be used.
• Have an open mind regarding the best solution to the measurements 

l   ’   d  “ l  
p g g

problem.  Don’t get trapped by “catalog engineering”.
• Identify all of the desired parameters to be measured.
• Identify all of the environmental parameters that will affect the 

measurement.
• Determine a validation plan.
• Determine calibration requirements
• Write a statement and assessment of necessary technical 

assumptionsassumptions
• Write a statement and assessment of the risks to the data.
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Data Validation

“Valid Data are data that represent the process 
being observed as though the Measurement 
System had not been there  interfering with the System had not been there, interfering with the 
process being observed and distorting the 
information  flow through the system.”

Peter K. Stein

Validation is the process of analyzing the complete Validation is the process of analyzing the complete 
measurement system for undesired sensitivities or 
insensitivities that will distort data.
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Sensor ApplicationsSensor Applications
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Sensor Applications 

Sensor Applications
– What is a Measurement ?
– Measurement Tenets
– The Complete Measurement Systemp y

• Measurand
• Boundary LayersBoundary Layers
• Sensor Sensitivities
• Sensor ResponseSensor Response
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Sensors Measure Physical Parameters

Pressure
TemperatureTemperature

Flow
A l tiAcceleration

Heat Flux
Optical Intensity

Etc  Etc, 
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What is a Measurement ?
A measurement is the process of converting energy from A measurement is the process of converting energy from 
some physical phenomena into a form that can be analytically 
manipulated into engineering units in order to obtain 
information about the phenomena under consideration.p

Information Transfer Requires Energy Transfer !
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1 What do you really need to measure?

Measurement Tenets
1. What do you really need to measure?

2. How are you going to use the measured information?

3 Recognize that each boundary layer or component between 3. Recognize that each boundary layer or component between 
you and the fundamental measurand affects delay, response, 
repeatability, linearity and hysteresis.

4 D  t h  h t   tt ti  t   b  ki  4. Do not change what you are attempting to measure by making 
the measurement!

“What would the measurement system have read if it had not y
been there transferring energy with the physical phenomena 
you are measuring?” 

Peter K. Stein
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The Complete Measurement System

Electronic 
Signal Conditioning
•Frequency to DC 

Digital Data Acquisition 
(DAQ)
FilteringFrequency to DC 

•Amplification
•Bridge conditioning
•Temp reference

Temporal Response
Frequency Response
Boundary Layers
EquationsUndesiredP O t t

Sensors/Transducers
•Pressure
•Temperature

Lookup Tables
Undesired
Physical 

Phenomena 

Power Output

Human Data 
Analysis

p
•Optical Detector

Boundary Layers
Sense Lines
Diaphragms Input

Measurand
Desired Physical Phenomena

p g
Wires

R f  2
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Basic Sensor Model

Desired Inputs:

Desired Sensor Sensitivities

Pressure
Temperature
Etc.

Sensor Output:

U d i d I t

Undesired Sensor Sensitivities

Undesired Inputs:
Temperature 
Strain
Etc.

!! Both Desired and Undesired inputs will produce an output if the sensor 
is sensitive to those inputs !!

Undesired Sensor sensitivities are physical phenomena that that causes your sensor or 
electronics to produce an output.
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The Measurand -Desired Physical Phenomena
Mass Flow Measurement Example

The physical phenomena that you would like to measure.  
This is also your desired sensor sensitivity.

AtmMRate Flow Mass ××=∂∂== υρ
r&

Fluid Flow
A=Πr2

Density (ρ)

kg/m3

Velocity (  )

m/s

υ
r

Cross-Sectional Area ( A )

m2

x x=M&
Kg/s
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Analytic & Physical Boundary Layers
2
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Sensor Response

• Temporal Response
– The time constant or rise time of the sensor.The time constant or rise time of the sensor.

• Frequency Response
– The “bandwidth” of frequencies that the sensor h  an w th  of fr qu nc s that th  s nsor 

can respond to.
• Phase Response

– The associated delay of individual frequencies 
the sensor responds to.

I di i l R  • Indicial Response 
– Sensor system response to a step function 

input
Alabama A&M University 
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Temporal Response

• Rise Time Rise Time 
– The time it takes for a sensor to go from 10% to 

90% of a step input.
• 1st Time Constant (tau)

– The time it takes for a sensor to go from 0 to 
% l63.2% of a step input.  It takes approximately 5 

tau to reach 99.9% of a step input.
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Temporal Response
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Indicial Response
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Time Domain Deconvolution

The systems indicial response can be 
separated from the phenomena you are 

   d  d l  measuring using time domain deconvolution. 

ij
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Sensor Frequency Response 
Where do you see frequency ?
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Frequency Response (Butterworth)
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Frequency Response (Chebychev)
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Frequency Response (Elliptic)
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Boundary Layers

• Physical Boundary Layers
– Pressure sense line tubesPressure sense line tubes
– Material Thickness 
– Gradients; density, thermal, acousticy

• Analytic Boundary Layers
– Undesired sensor sensitivities
– Complex equations

l b– Calibrations
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Analytic Boundary

C= discharge coefficient [unitless]
Y1= adiabatic expansion factor [unitless]
df= primary contraction diameter during actual flow conditions [m]df  primary contraction diameter during actual flow conditions [m]
Df= pipe diameter during actual flow conditions [m]

= density at flowing conditions [kg/m3]
∆P= pressure differential [Pa]
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Analytic & Physical Boundary Layers, Insensitivities
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Sensor Insensitivities 
Sometimes there are physical phenomena that goes undetected by your 
sensor that can cause error in your.

All sensors are sensitive or insensitive to physical phenomena other than p y p
what you are trying to measure!

Raw dataTurbine flow 
meter

Processed image

R f  3
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Sensor Insensitivities can result in invalid data 
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Pressure Sense Lines
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Attenuation of pressure measurement
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Helmholtz Frequencies

Tube length must be an odd integer number of Tube length must be an odd integer number of 
quarter wavelengths, i.e.,

12 +n λ
4

12 +
=

nL for n = 0,1,2…

Substituting λ = v/f, we obtain

)12(
4

+= n
L
vf for n = 0,1,2…
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Resonance
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)
Empirical Helmholtz Frequencies

f (
H

z)
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Pressure Sense lines with thermal Gradients
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Thermal Gradients in Pressure Sense Lines
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Material Thickness Affects Temporal Response
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Analytic & Physical Boundary Layers Data
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Undesired Sensor Sensitivities – Mass Flow Example
Pressure, Temperature and Turbine Flow Meter Data

LN2 Turbine 
Flow Meter 
Upstream

LN2 Turbine 
Flow Meter
Downstream

Temperature at 
Optical Flow Meter 

Pressure at Optical 
Flow Meter

Gaseous Helium Inlet
Turbine Flow Meter

Helium Injection
~2.5 Seconds

Helium Injection
~3.5 Seconds
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Processed Optical Flow Meter Data

Helium Injection

Helium Injection
~3.5 Seconds

Calculated 
Volume Fraction 
Density Optical 

Calculated 
Rayleigh Density 

Calculated 
Peng-Robinson 
Density Model

Helium Injection
~2.5 Seconds

Density Optical 
Flow Meter 
Model

Rayleigh Density 
Model
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Data ValidationData Validation
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Data Validation
• Data Validation

– Validation versus calibrationVa a n r u  a ra n
– System characterization
– Data acquisitionData acquisition
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Data Validation

“Valid Data are data that represent the process 
being observed as though the Measurement 
System had not been there  interfering with the System had not been there, interfering with the 
process being observed and distorting the 
information  flow through the system.”

Peter K. Stein

Validation is the process of analyzing the complete Validation is the process of analyzing the complete 
measurement system for undesired sensitivities or 
insensitivities that will distort data.
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Calibration
S  t t lt  d t  t  Sensors output voltages and current, not pressure, 

temperature, acceleration, etc.

Calibration is the process of establishing a traceable Calibration is the process of establishing a traceable 
mathematical relationship between the physical parameter 

measured in engineering units (psi, degrees, g’s, btu/hr, etc.) 
and the output voltage or current of the sensor.  For example 
a pressure sensor calibration would determine the following:a pressure sensor calibration would determine the following:

Sensitivity-volts/psi
Offset-psi

psi = volt*psi/volt + offset psi (linear relationship)

Calibrations should be relevant to the environment the sensor 
ill b  us d in!will be used in!
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Data Collection and Sensors

• Data collected should correctly reflect the 
phenomena being observed pressure, temperature, 
velocity  time  etcvelocity, time, etc.

• Sensor data is always at least one step removed 
from reality

  i  i   f ili  ff• Sensor response time is a familiar effect
• Dynamic range of the sensor is always a concern
• Linearity: 50 mV/psi is not always the caseLinearity: 50 mV/psi is not always the case
• Averaging as a low-pass filter
• A low digital sampling rate is comparable to a low 

 filt  (i i  li i  bl )pass filter (ignoring aliasing problems)

Alabama A&M University 
July 2008

Sensor Applications and Data Validation 53



Analytic & Physical Boundary Layers
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Analytic Sensor Model
A measurement system performs a series of convolutions on the information from A measurement system performs a series of convolutions on the information from 
the energy from the physical parameter as it “passes” through each component.  
The physical environment parameters are convolved with each component.

Signal Conditioning Alias Filter 

The Physical Environment

Sensor Digitization

Information
Paths

Sensor Digitization

Discr t  R pr s nt ti n
Physical Phenomena 

Discrete Representation
Of 

Physical Phenomena
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Convolution
C l i  i   h i l  h  k   f i  d Convolution is a mathematical operator that takes two functions and 
“convolves” them into a third function.
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Transfer Functions

S  OS  I System Output
go(t)Transfer FunctionSystem Input

gi(t)

A transfer function maps the input of a system to the A transfer function maps the input of a system to the 
output of that system.  For time invariant systems, 
transfer functions are multiplicative in the frequency 
domaindomain.

(t)}S{g(t)g io =
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H(ω), the Transfer Function

)(G)H( o ωω =
)Gi(

)H(
ω

ω =

If the right sort of function is inputted into the system, 
this quotient will yield the transfer function of the this quotient will yield the transfer function of the 
system.

Flat Spectrum Inputs are good choices !
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Frequency Response

Frequency response of the system is a plot of 
the transfer function (H(ω)) of the system.  ( ( )) y
The transfer function can be determined by 
inputting a flat spectrum signal such as an 
i l   f i   hi  iimpulse response function or white noise.
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Impulse Response Function

∫ −=
∞

ττδτ )d(t )(g(t)og i (sifting property)∫
∞− })d-(t)(gS{(t)g io ττδτ∫=

∫ }() {(( ) ∫= ττδτ }d-(t)S{(g(t)g io

)}(tS{)h(t τδτ ≡ )}(tS{)h(t, τδτ −≡
The function h(t,  ) is called the impulse 
response function.

τ
p f

We can now write

∫= τττ )d)h(t,(g(t)g io
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Time Invariant Systems

A system having components whose 
ch r ct ristics d  n t ch n  in tim  characteristics do not change in time 
is considered time invariant.  For 
such a system  the impulse response such a system, the impulse response 
function depends only on the time 
since the impulsesince the impulse,

)h()h( τ)h(tτ)h(t, −=
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Time Invariant Systems (cont.)

∫ −= τττ )d)h(t(g(t)g io ∫
which is a convolution, and can be written as:

hg(t)g io ∗=
Fourier transform both sides, using a capital letter to 
represent the F.T.  Since the F.T. of the convolution is 
the product of F.T.’s:the product of F. . s

))H((G(G io ωωω =)
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Using Empirically Derived Transfer functions to 
Determine the System’s Frequency Response

Electrical and Mechanical system transfer functions can 
be empirically derived using impulse response functions.

Thrust Structures- Smart Hammers
El i l S Pi k/Whi  N iElectrical Systems-Pink/White Noise
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Analytic White Noise
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Phase Response

• The phase response of a system defines 
the delay (phase shift) of individual the delay (phase shift) of individual 
frequencies.  Poor phase response of a 
measurement system will distort the final y
time domain waveform.

• Constant Phase- All frequencies are 
delayed by the same increment of time.

• Linear phase- The phase shifts for all 
f   l l  l dfrequencies are linearly related.
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Phase Response
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Phase Response
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Analog to Digital Conversion
Data Sampling

Analog Signal Digital SignalAnalog to Digital Conversionnalog S gnal
Continuous

Digital Signal
Discrete

Analog to Digital Conversion

A/D Converter
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Data Sampling

The sampling rate or sampling frequency is the number of samples per unit 
of time.

A sample rate of (Hz is 1/sec) 

50Hz = 50 samples per secondp p

The sample period or sample time is the amount of time between samples 
and is the reciprocal of the sample rate.

sample period = 1/sample rate

A sample rate of 50 Hz would have a sample period of

1/50 Hz = 20 milliseconds
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Is the Nyquist theorem good enough?

1.06 samples/cycle

0.65 samples/cycle

2.00 samples/cycle
Nyquist Theorem

Adherence to the Nyquist criteria will not result in an accurate temporal 
!

1.00 samples/cycle
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LLT 1.5 Inch Nozzle, Test
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