
X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 1

Nuclear Weapons Design Codes:
A 50 Year Perspective

Bill Chandler -- chandler@lanl.gov
Mike Berry -- mberry@lanl.gov

X-3 Group
Los Alamos National Laboratory

NTS Grable
25 May 1953
15 kT Airburst

LA-UR-04-2501

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 2

Abstract

TITLE: Nuclear Weapons Design Codes: A 50 Year Perspective

From Von Neumann using the Eniac to today’s ASCI code developers using tens of
teraflops on the ASCI computers; enormous progress has been made in modeling and
understanding the physics and performance of nuclear explosives. And yet – we still
have a long way to go if we truly expect to use our codes for predictive capability instead
of relying on nuclear tests. This talk will review the significant hardware and software
developments of the past decades and its impact on the development of nuclear design
codes. There have been successes and failures, and despite the billions of dollars spent,
significant challenges remain. How many flops and how many processors will it take to
answer the questions? This talk will present the author’s perspective on the problem, dig
into a little history and try to speculate on the future.

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 3

• What is THE application?
– Answer: weapons design codes

• The Challenges:
– Physics
– Numerics
– Computational

• Some History

• The Future

Outline

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 4

So…what is a design code?

time

“object” at
time zero

“object” at
time “T”

• Model the evolution of the “object” from t=0 to t=T. Determine nuclear energy
created and characteristics of the energy.

• Solve time dependent, non-linear, highly coupled, multi-physics, multi-dimensional
differential equations describing “object” between t=0 and t=T.

• And get it right…and the stakes are HUGE…

And….you currently cannot test to see if you’ve got it right!

Simulate this process

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 5

Weapons Simulation: The Physics Challenge

time

“object” at
time zero

“object” at
time “T”

Physics considerations
1. Assembly of critical mass - hydrodynamics
2. Materials (nuclear fuels) fission and/or fusion - (they “burn”)
3. Materials go from room temperature (solids) to extremely high temps…rapidly
4. Interaction of nuclear products and energy with materials allows “object” to

burn efficiently (or to not burn efficiently - ie., it doesn’t work)
5. Fundamental physical data over temperature and density space (cross-sections,

material properties, etc.) is an enormous challenge
6. Effects of aging (What are the physical properties of the parts after 50+ years?)

Simulate this process

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 6

Weapons Simulation: The Numerical Challenge

time

“object” at
time zero

“object” at
time “T”

Numerical considerations:
1. Complex time dependent, non-linear, coupled differential equations
2. 3D
3. Enormous matrices to be “solved”
4. Quantify uncertainty without experiments

Simulate this process

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 7

Weapons Simulation: The Computational Challenge

time

“object” at
time zero

“object” at
time “T”

1. Huge codes:
a. 0.5-1.0 million lines of code, massively parallel
b. Complex SQA problems
c. Code components in multiple languages

2. Really BIG massively parallel computers (tens/hundreds of tera-ops)
3. Massive I/O (data transfer) challenges
4. Visualization challenges
5. Language issues
6. Cosmic radiation (keep the nodes running)

Simulate this process

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 8

Hydrodynamics: the momentum equation

(F = MA)

Differential eqn => difference equation:
How many spatial cells to resolve? 1000/D? => 1000**3
How many time steps to resolve? 10,000?

That’s a pretty BIG problem! A minimum 3D problem needs ~ 10**10 dp

The historic solution….reduce the dp’s to fit the computer and your lifestyle.

* dp = discretization points

10**13 dp*}

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 9

Neutron transport: the Boltzmann equation

Differential eqn => difference equation:
How many spatial cells to resolve? 1000/D? => 1000**3?
How many energy groups to resolve? 100?
How many angular groups to resolve? 100?
How many time steps to resolve? 10,000?

That’s a really BIG problem!

The historic solution…reduce the dp’s to fit the computer and your lifestyle.

} 10**17 dp

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 10

There is a whole lot more to solving the transport equation than dp’s!
(re: Jim Morel’s talk)

• Books have been written on the subject and many careers have been dedicated to the
subtleties of the numerics particularly when the dp’s are “few” and the dp spacing is
complex.

• Matrix solvers, pre-conditioners and acceleration schemes are critical.

• Getting the limits correct…through thick and thin.

The Transport Equation

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 11

• 1951 - the ENIAC (Von Neumann, LANL) (10**4 dp):
– the first design code
– 50 cells, 100 time steps, clock time 6 months
– language - HPT (holes in paper tape)

• The 60’s - IBM 709,7090, STRETCH (10**6 dp):
– 10**3 cells, 10**3 time steps, clock time 10’s of hours
– assembly language

• 1968 - CDC6600 (10**7 dp):
– Von Neumann’s “code”
– 600 cells, 10**4 time steps, clock time 100’s of hours
– FORTRAN

• 1970 - the CDC STAR (LLNL):
– vectorization - but not productive

Some History….the early years

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 12

• The early 70’s - The CDC 7600 (10**8 dp):
– 10**4 cells, 10**4 time steps, clock time 10’s of hours,

• The mid 70’s - CRAY 1 (10**9 dp):
– vectorization works!
– 10**5 cells, 10**4 time steps, clock time 10’s of hours,

• 1981
– Salishan #1
– WPC “designs” parallel CRAY architecture for Monte Carlo!

• Vectorization of Monte Carlo was difficult (but doable) => Bill Martin, Forrest Brown
• Parallel architecture seems a natural for Monte Carlo

• The late 80’s - Cray XMP, YMP (10**10 dp):
– Parallel architecture
– 10**5 cells, 10**4 time steps, 10’s of hours
– but codes still mostly serial

Some History….the mid years

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 13

• The early 90’s - Connection Machine (LANL), the Meiko (LLNL) and others:
– Nuclear testing ends
– No vectorization
– some venturing into parallel processing
– Not heavily used by design codes
– Code porting issues

• The mid 90’s - DEC Alpha Clusters (LLNL), UNIX workstations:
– Vectorization goes away
– codes ported to UNIX workstations (the end of LRLTRAN, LTSS)
– C, C++ for a few but FORTRAN for most
– Some parallelism, but minimal

• The late 90’s - ASCi Blue (SGI, IBM) (10**11 dp):
– Lots of $$$ being spent
– Emphasis on 3D
– 10**6 cells, 10**4 time steps, clock time 100’s hours
– Full parallel implementation - finally!

• The early 2000’s - ASCi HP-Compaq Q (10**13 dp):
– 10**8 cells, 10**4 time steps, clock time 100’s hours

Some History….the recent years

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 14

Dp’s vs time

1950 60 8070 90 2000

10**3

5

7

9

11

10**15

13

x

x

x

x

x

Moore’s Law ?!

dp’s

time

x

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 15

• 0.5 - 1.0 Million lines

• Spatial discretization may be extremely complex

• Fortran 77 - 95, C, C++

• Planned 25-40 year life cycle

- Expected moderate rewrites every ~15 years

• MPI, maybe some threading

• Totalview debugger (and “print”)

• Of order 10 terabytes of output data per BIG run

The Typical ASCI Code

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 16

• Turn around for many problems - less than a day.

• Turn around for “hero” problems – week(s) to month(s).

• Typically months of debugging and trial runs prior to the
“successful” hero run.

• The goal: Provide answers while we still remember what we’re
looking for.

Historically speaking: we need to turn problems around in less than
a week (~ 50 hrs of machine time) if not a day!

A nuclear design study could easily require 10**3 runs!

User ASCI experiences

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 17

• Fast CPUs
- not all problems are communications bound

• Lots of memory
- would like a homogenous resource
- some problems using 2GB/PE

• High speed interconnect network
- “maintain” ratio (processor speed/network speed) 10-20 Flop/Byte

• Truly global parallel file system
- data on PFS to be visible from any processing element in the computing center

What do we need (architecture)? (1)

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 18

• High bandwidth secondary storage (including the supporting network)
- How do we efficiently save data without slowing down on-going processing?
- generating up to 200 GB per restart dump (every 30-60 minutes).

• High Capacity Visualization
- tied to data movement issues, real-time processing, and data reduction
- generating 140 GB of data per time slice

• Robustness
- (see next page)

What do we need (architecture)? (2)

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 19

• Example: on Q series ASCi machines, Mean Time To Interrupt ~ 6
hours.
- MTTI might become more of an issue as we scale to PetaFlop processing
using a cluster approach with many more parts that can randomly fail.

• Scheduling of resources - a painful issue.

• User productivity
- <100 PEs: very high (+90%)
- >1000 PEs: not so high (~50%)

• Frequent restart dumps and automated submission/monitoring
scripts ease the pain.

Robustness issues

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 20

• We will use all the capacity that is provided.

• Some of our applications scale well to 1000’s of PEs.
- Two of our main ASC codes scale optimally to at least 1800 PEs.

• We are a flexible and inventive bunch.
- We will overcome or at least minimize shortcomings in any architecture.
- We waste a lot of time overcoming.

• Keep it standard! We can’t spend years porting our codes.
- UNIX
- MPI
- …

What have we learned?

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 21

• Fast CPU’s - YES
- in conjunction with a fast network interconnect

• Lots of memory - YES

• Vectorization - YES…but keep it “simple” to implement

• Parallelization - YES…but it’s getting very complicated!

• Languages - most of us (code physicists) still prefer FORTRAN and C (I think
procedures) but I do like the heirarchal OO design.

• Debuggers - are critical; appreciate any help we can get to improve them.

• FLOPS - what comes after “peta”?

In reflection….

X-3Salishan Conference on High Speed Computing - 2004
04/20/04 - 22

The End

