FORTRAN Test Programs

The career of Frances E. (Betty) Snyder Holberton,
the lead author of SP 399, NBS FORTRAN Test
Programs [1], closely tracks the evolution of information
technology (IT) for the four decades following World
War II. Her work at NBS (1966-1983) and her leader-
ship in preparing this landmark publication are best
understood in the context of her earlier career.

Her first work remains perhaps the most notable:
she was a member of the first team of programmers
(composed of six women) to work on the ENIAC [2,7],
the first operational, general purpose, electronic digital
computer. “Programming” in those early days did
not consist of writing code; rather, it meant setting
thousands of switches and connecting dozens of cables
so as to route data correctly through the machine.
ENIAC was built at the Moore School of Electrical
Engineering at the University of Pennsylvania.
Completed in late 1945, it is widely regarded as a mile-
stone in the history of computer technology. After five
years at the Moore school, Holberton left in 1947 to
work at the Eckert-Mauchly Electronic Control
Company to participate in the development of the
UNIVAC.

Her work on the UNIVAC included the development
of the C-10 language, one of the first to use mnemonic
(symbolic) instructions (e.g., “a” for add, “b” for bring).
She also wrote the first sort-merge software, notable as
perhaps the first case of a program whose function was
to generate another program—a key idea in the notion of
a programming language compiler. Compilers make it
possible to express computer programs in high-level
languages, such as FORTRAN, C, or Java, instead of the
low-level instructions which are directly processed by
the computer hardware. A line of FORTRAN, such as

ANGLE = ATAN (SGMENT / SQRT(X*X + Y*Y))

will typically generate several instructions in machine
language (so-called object code); producing this
machine code directly would be quite tedious and
error-prone.

From the appearance of the line of FORTRAN above,
one might reasonably guess that its purpose is to square
two quantities, labeled X and Y, add them, take the
square root of that sum, divide that quantity into
SGMENT, take the arctangent of the quotient and save
the result as ANGLE. All well and good, but will this
line of code work equally well (or work at all) when

258

processed on different vendors’ machines? Note that
vendors A and B may well have completely different
underlying hardware (i.e., their low-level machine codes
are not the same). Furthermore, each has very likely
written its own compiler—so the translation process
itself from FORTRAN (the so-called source code) to
machine code may well be different. Even assuming that
the A and B compiler-writers make no unintentional
errors, we still need to make sure that they are working
toward the same goal. The very notion of a formal
language implies strict rules about the spelling and
meaning of its expressions [4,6]. For instance, the
square root function must be spelled “SQRT,” not
“SQROOT.” Furthermore, even assuming that both
compilers accept the standard spelling (i.e., they accept
the source code and generate machine code), the
problem of semantics remains. For instance, in our
example, does the arctangent function return its result
in degrees or radians? COBOL and FORTRAN
standards committees were established [8] to ensure that
just such issues were resolved in a uniform way, and
Betty Holberton was an active participant on these
committees. As a result, software written according to
the standard could be expected to run consistently on a
wide variety of machines. Given the cost of developing
large software products, this is no small benefit.

By the early 1960’s, industry standards for high-level
languages such as FORTRAN and COBOL were
becoming widely accepted. One problem remained:
how to be sure that the standard was being implemented
correctly by the various vendors? Put another way:
how to measure the validity of the compiler software
itself?

Although metrology had always been a core function
of NBS, devising measurement methods for information
technology nonetheless represented a novel challenge.
Previous work had typically addressed the measurement
of physical quantities, such as temperature, electrical
charge, mechanical strength, composition, etc. But
many of the artifacts of information technology are
essentially logical structures. True, software is realized
on some physical medium, but most often it is the
logical behavior of the software that is of greatest
interest, not the details of its physical implementation.
(Of course, NBS has had a hand in developing tests for
the physical media of computers as well.)

One way to determine the validity of a piece of soft-
ware is simply for a skilled programmer to read it;



indeed, code review is an important part of the software
engineering process. Nonetheless, such a subjective
procedure could hardly serve as the basis for an
“official” determination that a compiler did or did not
conform to the language standard. Moreover, there are
operational issues: how well trained are the reviewers?
How long would it take them to verify a single compiler?
There was a need for a largely automated and objective
method for checking compiler conformance to the
standard.

This was the problem addressed by Holberton and her
colleague Elizabeth Parker in NBS FORTRAN Test
Programs. Their solution was a set of test programs that
methodically exercised all the features of the language
to be checked. If the routines were accepted by the
compiler and generated the expected output, then the
compiler was basically reliable (although no finite set of
tests could ever prove that a compiler is completely
correct). If not, then the errors would be noted and
reported back to the vendor for correction. At first, the
only official use of the test sets was to certify conform-
ing implementations, which were then eligible for
purchase by Federal agencies. Of course, this provided
a strong incentive for vendors to produce standard-
conforming software. In time, the idea of test sets to
support software standards became widely accepted.
This basic strategy is used to this day to validate
software development tools, such as language compilers
for C and Java and so-called Application Programmer
Interfaces (APIs) such as SQL (for database operations)
and OpenGL (for 3-D graphics). Since the same
programs are used for all vendors, the testing process is
transparently fair and objective. Of course, a human
operator has to run the tests and examine the output, but
this is not much different than a chemist obtaining the
results of an experiment from a balance or other
measuring instrument.

Furthermore, the test programs were ordered, check-
ing the most basic language features first and then
progressing to the more sophisticated aspects. This gave
the operator good evidence about which features were
the cause of any failures detected. NBS/NIST has since
participated in the design, development, and operation
of several comprehensive software test sets [3]. It should
be stressed that, while the operation of the tests is mostly
automated, the development of the tests requires a high
degree of skill and understanding of the standard being
applied. Test sets often comprise tens, or even hundreds

259

of thousands, of lines of code. Conformance testing
remains an important part of the NIST mission [10].

Betty Holberton worked for Remington-Rand in the
early fifties, and then began her long career in govern-
ment, first at the Applied Mathematics Laboratory of
the David Taylor Model Basin (1953-1966), then at the
National Bureau of Standards until her retirement in
1983. Her government work was spent largely in the
development and testing of standards for computer
languages. In 1997, her many achievements were
recognized by the Association for Women in Comput-
ing, which presented her with its highest honor, the
Augusta Ada Lovelace Award [9]. Also in 1997, Women
in Technology International (WITI) inducted all six of
the original ENIAC programmers into their Hall of
Fame [5].

Prepared by John Cugini.

Bibliography

[1] Frances E. Holberton and Elizabeth G. Parker, NBS FORTRAN
Test Programs, NBS Special Publication 399 (3 volumes),
National Bureau of Standards, Washington, DC, October 1974.

[2] Rachel K. Adelson, Programmed to Succeed: Betty Holberton

(http://www.awc-hq.org/livewire/199705.html), Association for

Women in Computing.

J. Cugini, Interactive Conformance Testing for PHIGS,

Eurographics '91, September 1991 (ftp:/ftp.nist.gov/pub/vvrg/

pvt/pvt-design.ps). This paper discusses some recent issues in

the application of conformance testing to graphics.

I. D. Hill and B. L. Meek, Programming Language Standardisa-

tion, Ellis Horwood Ltd., Chichester, England (1980).

Kathryn A. Kleiman, Speech for WITI 1997 Hall of Fame

Ceremony (http://www.witi.com/center/witimuseum/halloffame/

1997/eniac.shtml), Women in Technology International.

Terrence W. Pratt, Programming Languages: Design and

Implementation, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ

(1984).

[7] Thomas Petzinger, Jr., The First Computers Were The
Women Who Invented Programming (http://members.aol.com/
douglaseby/Page83.html). Wall Street Journal article on ENIAC
programmers, November, 1996.

[8] American National Standard FORTRAN, ANSI X3.9-1966. This
is the original FORTRAN standard, long since superseded by
more recent versions.

[9] Announcement of the 1997 Augusta Ada Lovelace Award (http://
www.awc-hq.org/lovelace/1997.htm), Association for Women in
Computing.

[10] Homepage of the NIST Software Diagnostics and Conformance

Testing Division (SDCT) (http://www.itl.nist.gov/div897/),
National Institute of Standards and Technology.

(31

[4

=

[5

—

[6

[



