New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

Melissa Molnar
Ohio University, Athens, Ohio
C. John Marek
Glenn Research Center, Cleveland, Ohio

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peerreviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301-621-0134
- Telephone the NASA Access Help Desk at 301-621-0390
- Write to:

NASA Access Help Desk
NASA Center for AeroSpace Information 7121 Standard Drive
Hanover, MD 21076

New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

Melissa Molnar
Ohio University, Athens, Ohio
C. John Marek
Glenn Research Center, Cleveland, Ohio

National Aeronautics and
Space Administration

Glenn Research Center

Available from

NASA Center for Aerospace Information 7121 Standard Drive
Hanover, MD 21076

National Technical Information Service 5285 Port Royal Road Springfield, VA 22100

New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

Melissa Molnar
Ohio University
Athens, Ohio 45701
C. John Marek
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1×10^{-20}. The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction.

The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NO_{x} were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of $2 / 1$ water to fuel.

A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering the turbine (T4) was also correlated as a function of the initial combustor temperature (T3), equivalence ratio, water to fuel mass ratio, and pressure.

INTRODUCTION

A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two step kinetic scheme presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method (Reference 1) to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at initial with smaller water concentrations of less than $1 \times 10^{-20} \mathrm{moles} / \mathrm{cc}$. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole fractions, pressure and temperature (T4). The simple correlations would then be used with the turbulent mixing times to determine the limiting properties of the reaction.

Water injection into gas turbine engines can be useful in many ways. This includes reduced NO_{x} formation, a lower temperature entering into the turbine (T4) and improving the efficiency and performance of the engine. Water injection has been used in industrial applications, including turbo machinery and diesel engines. Aeronautical applications are still being developed and studied. (Reference 2). The chemical kinetic times for Jet-A fuel and methane with water injection is the focus of the research presented here.

Reaction rates are kinetically limited at low temperatures and mixing limited at very high temperatures. According to the Magnussen model (Reference 3), the fuel oxidation rate will be determined by the maximum of either the chemical kinetic time or the turbulent mixing times of the fuel and air. However, for large numerical solutions it is very tedious to use detailed classical calculations to compare both the kinetic and turbulent mixing times to determine the limits of the reaction. Detailed chemical kinetic schemes are extremely time consuming for two and three dimensional computer calculations for combustors.

Large mechanisms with many intermediate species and very fast radical reactions which cause the equations to be stiff (extremely fast compared to the overall rate, requiring a large number of small time steps), making them very difficult to integrate. Calculations for these extensive mechanisms are repetitive and complex. Using the simplified kinetic scheme developed here to calculate the three chemical kinetic times greatly reduces the amount of time required to compare kinetic reaction times with turbulent mixing times and will reduce the time required to obtain a converged solution. The advantage of extracting the chemical kinetic time for only the species of interest from a detailed computation is that we have only the differential equations of interest to solve, resulting in a much smaller set of equations.

This method is for use in Computational Fluid Dynamics (CFD) calculations where chemical kinetics is important. The current version of NCC requires the user to decide to use either chemical kinetics or the turbulent mixing rates for computing the overall conversion rate. Following detailed conventional methods would not allow for the calculation of both in a reasonable amount of time. The derived method allows for a quick and easy comparison over the complete spectrum of conditions. This scheme is intended for use in numerical combustion codes, but it can also be used as a quick and accurate method to calculate chemical reaction rates.

We have also curve fitted T4 and the equilibrium concentrations of CO_{e}, and $\mathrm{NO}_{\mathrm{x}_{\mathrm{e}}}$ using data generated by the NASA Chemical Equilibrium Application code (CEA). Jet-A fuel was represented as $\mathrm{C}_{12} \mathrm{H}_{23}$, using Krishna Kundu's twenty three step mechanism (References 4 and
5). The methane combustion was represented using the GRI-mech version 2.1 mechanism (Reference 10).

GLSENS (Reference 6) was used to integrate the system of equations at constant temperature and pressure, at over 2000 conditions to derive the rate expressions. We have massively correlated the output from GLSENS, the NASA detailed kinetics code, into simple exponential expressions for the chemical kinetic times. It may be reasoned that the presented equations are only as good as the overall mechanism that calculates the data. However, performing the calculations in the conventional manner is also only as good as the mechanism equations and constants that go into them. The first sections of the report, including Mixing and Kinetics, Model Equations, $\mathrm{H}_{2} \mathrm{O}$ Mass Balance, Determination of the Chemical Kinetic Time, and the kinetic schemes pertain to both Jet-A and methane fuels. The Jet-A equilibrium and chemical kinetic time correlations will then be presented, followed by the methane correlations. Suggestions for using the correlations and a comparison of NO_{x} production data (Reference 2) and the NO_{x} produced by the chemical kinetic time correlations will then be given.

MIXING AND KINETICS

The Magnussen model (Reference 3) proposes that the maximum of either the turbulent mixing or the chemical kinetic times will be the limiting factor of a chemical reaction. This model could be explored by numerically calculating both times to compare them. However, using detailed mechanisms, this is a long and tedious process. The calculations would be extremely complicated for the detailed chemical kinetic time. By using the equations presented here to determine the chemical kinetic times and using conventional numerical methods to determine mixing times, the Magnussen model can be applied in a much more convenient way.

$$
\begin{equation*}
\text { Net rate } \quad \varpi_{r}=\min \left(\frac{A \varepsilon}{k} y_{\text {fuel }}, \frac{A \varepsilon}{k} \frac{y_{\text {oxygen }}}{r_{f}}, \varpi_{\text {kinetic }}\right) \tag{1}
\end{equation*}
$$

Where $\frac{k}{A \varepsilon}$ equals the turbulent mixing time, τ_{m}, with k being the turbulent kinetic energy, ε is the dissipation rate, y is the mass fraction, and r_{f}, is the stoichiometric coefficient written on a mass fraction basis. The mixing constant, A, is usually given as 4.0. The factor $\frac{y_{\text {fuel }}}{\varpi_{\text {kinetic }}}$ is the chemical kinetic time τ_{c} computed in this report from the correlations presented. In order to obtain the chemical source term ϖ_{r}, a comparison is made of the mixing rate, $\frac{1}{\tau_{m}}$ and the chemical kinetic rate $\frac{1}{\tau_{c}}$, and the lowest rate or the longest time is used in the expression; see Figure 1. This may also be represented by the following relationship:

$$
\begin{equation*}
\tau=\max \left(\tau_{m}, \tau_{c}\right) \tag{2}
\end{equation*}
$$

MODEL EQUATIONS

The following equations can be used to model the chemical system.

$$
\begin{array}{cc}
\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+(\mathrm{x} / 2+\mathrm{y} / 4) \mathrm{O}_{2} & \xrightarrow{\tau_{\text {Fuel }}} \mathrm{x} \mathrm{CO}+\mathrm{y} / 2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} & \\
& \mathrm{CO}_{2} \\
\mathrm{~N}_{2}+\mathrm{O}_{2} & \xrightarrow{2 \tau_{\mathrm{NO}}} \tag{S3}\\
& 2 \mathrm{NO}
\end{array}
$$

The following first order reaction was used to represent the rate of fuel burning. (In this report, t and τ are given in milliseconds, except $\tau_{\mathrm{NO}_{\mathrm{x}}}$ which is in $\frac{m s \cdot c c}{g m o l}$, while concentrations are given in gmoles/cc):

$$
\begin{equation*}
\frac{d \text { Fuel }}{d t}=-\frac{\text { Fuel }}{\tau_{\text {Fuel }}} \tag{3}
\end{equation*}
$$

For a constant $\tau_{\text {Fuel }}$, the fuel concentration is then represented by a simple exponential decay expression, where F_{0} is the initial fuel concentration.

$$
\begin{equation*}
\text { Fuel }=F_{o} e^{\left(\frac{-t}{\tau_{F}}\right)} \tag{4}
\end{equation*}
$$

The carbon monoxide reaction rate was represented by Equations (5) and (5a). The fuel concentration is multiplied by a factor of 12 because the Jet-A fuel takes the formula $\mathrm{C}_{12} \mathrm{H}_{23}$. Equation (6) is the solution to the differential equation showing the CO concentration as a function of initial fuel concentration, CO equilibrium concentration and the chemical kinetic times for fuel and CO.

$$
\begin{equation*}
\frac{d C O}{d t}=-\frac{(C O-\text { COeq })}{\tau_{\text {Co }}}+\frac{12 \text { Fuel }}{\tau_{\text {Fuel }}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d C O_{2}}{d t}=\frac{C O}{\tau_{C O}} \tag{5a}
\end{equation*}
$$

$$
\begin{equation*}
C O-C O_{e q}=e^{\frac{-t}{\tau_{C O}}}\left[C O(t=0)-C O_{e q}-\frac{12 F_{o} \tau_{C O}}{\tau_{f}-\tau_{C O}}\right]+\frac{12 F_{o} \tau_{C O}}{\tau_{f}-\tau_{C O}} e^{\frac{t}{\tau_{f}}} \tag{6}
\end{equation*}
$$

Finally, the nitrogen oxide formation rate, a species important for combustor emissions, was modeled as a simple zero order expression.

$$
\begin{equation*}
\frac{d N O x}{d t}={\frac{1}{\tau_{N O x}}}^{*} \quad \text { (7) } \quad \text { or } \quad N O x=\frac{t}{\tau_{\text {NOX }}} \tag{8}
\end{equation*}
$$

${ }^{*} \tau_{\text {NOX }}$ has units of $\frac{m s \cdot c c}{g m o l}$

$\mathrm{H}_{2} \mathrm{O}$ MASS BALANCE

The inlet mixture contains only fuel, $\mathrm{H}_{2} \mathrm{O}$, and air, so the initial mole fractions can be easily calculated using the method of LSENS (Reference 7). This procedure is described in detail below. The mixture is completely specified by fixing the equivalence ratio, Eratio, and the water to fuel ratio, H 2 OF (weight $\mathrm{H}_{2} \mathrm{O}$ /weight fuel). We have chosen to keep the weight of the $\mathrm{H}_{2} \mathrm{O}$ separate from the weight of the fuel so that the stoichiometric fuel/air ratio is always 0.068 for all Jet-A water to fuel ratios and 0.059 for all methane water to fuel ratios. This $\mathrm{H}_{2} \mathrm{O}$ mass balance was used for both Jet-A and methane fuels. The term MWF can be used to represent the molecular weights of either fuel.

$$
\begin{equation*}
\text { Let } y_{i}=\frac{\text { moles } i}{\text { mole mixture }}(9) ; \quad \text { let } x_{i}=\frac{\text { moles } i}{\operatorname{moles}_{2} \text { in air }} \tag{10}
\end{equation*}
$$

For the general chemical equation:

$$
\begin{align*}
& C_{n_{c}} H_{n_{h}} O_{n_{o}}+\frac{4 n_{c}+n_{n}-2 n_{o}}{4} O_{2}=n_{c} C O_{2}+\frac{n_{h}}{2} H_{2} 0 \tag{11}\\
\text { let } \phi= & \frac{f / o_{2}}{\left(f / o_{2}\right)_{\text {stoich }}}(12) ; \tag{13}
\end{align*} \quad \frac{y_{f}}{y_{o_{2}}}=\frac{4 \phi}{4 n_{c}+n_{h}-2 n_{0}} .
$$

The above equations are the same as with water injection and n_{0} is equal to zero for Jet-A and methane. The sum of the mole fractions of all species in the system is equal to one.

$$
\begin{gather*}
y_{f}+y_{\mathrm{H}_{2} \mathrm{O}}+y_{0_{2}}+y_{\mathrm{N}_{2}}+y_{\mathrm{Ar}}+y_{\mathrm{CO}}=1.0 \tag{14}\\
\text { let } \mathrm{H} 2 \mathrm{OF}=\frac{\mathrm{lbs} \mathrm{H}_{2} \mathrm{O}}{\text { lb fuel }} ; \quad \mathrm{H} 2 \mathrm{OM}=\frac{\text { moles } \mathrm{H}_{2} \mathrm{O}}{\text { mole fuel }}=\frac{H 2 \mathrm{OF} * M W F}{18} \tag{15}
\end{gather*}
$$

where MWF for Jet-A is 167 and MWF for methane is 16 .

$$
\left.\begin{array}{rl}
y_{\mathrm{H}_{2} \mathrm{O}} & =y_{f}\left(\frac{H 2 O F}{} * M W F\right. \\
18 \tag{17}
\end{array}\right)
$$

Or,

$$
\begin{equation*}
y_{O_{2}}=\frac{4 n_{C}+n_{H}-2 n_{O}}{4 \phi\left(1+\frac{H 2 O F^{*} M W}{18}\right)+\left(4 n_{C}+n_{H}-2 n_{O}\right)\left(1+x_{N_{2}}+x_{A r}+x_{C O_{2}}\right)} \tag{18}
\end{equation*}
$$

(See the computer code modifications in Appendix C)

DETERMINATION OF CHEMICAL KINETIC TIME

With the approach derived here, a simple direct comparison can be made between the mixing and chemical kinetic times and the minimum rate used for the computation as shown in Figure 1. The integration was performed for 2160 cases shown below for Jet-A and methane fuels with water injection.

Table Input

Input Parameter	Range
Pressure	1 to 40 atmospheres (increments of 10 atm)
Temperature	1000 to 2500 K (increments of 500 K)
Lean Equivalence ratios	0.3 to 1.0 (increments of 0.1)
Rich Equivalence ratios	1.0 to 2.0 (increments of 0.1)
Water to fuel mass ratio	0.0 to 2.0 (increments of 0.5)
Step One Time	1×10^{-6} to 2 ms
Step Two Time	0.05 to 6 ms

Calculations were performed isothermally using GLSENS for each condition over a time of 0 to 6 milliseconds. By computing the progress isothermally, the chemical rate constants were fixed and the chemical kinetic time was determined as a unique value of temperature, pressure and instantaneous mole fractions of fuel and water. GLSENS computes the cumulative rate of reaction for each species from all equations in the mechanism, so it is a simple matter to then compute the chemical kinetic time for each species. For the fuel equation (3) the chemical kinetic time is given as

$$
\begin{equation*}
\tau_{f}=-\frac{\text { Fuel }}{\left(\frac{d F u e l}{d t}\right)} \tag{19}
\end{equation*}
$$

This simple calculation was done using additional steps in Subroutine Out2 in the GLSENS code (see Appendix D). Values for the chemical kinetic time were calculated for each concentration at each output time and each set of conditions. For time step 1, the trapezoidal rule (using $1 / \tau$) was then used to average the chemical kinetic time to calculate the best value for each set of conditions and the final numbers regressed over the complete set of cases to obtain the final correlation.

A correlation could then be developed that determines the chemical kinetic time as a function of the initial overall cell fuel/air ratio, water to fuel mass ratio, pressure and temperature. The data was correlated using the same method as previously mentioned for the equilibrium equations. Two correlations for each step for each of the three species, one for the lean side and one for the rich side, were obtained. This results in a total of 12 Jet-A correlations and 12 Methane correlations. As OH is formed, the reaction rates get faster and the chemical kinetic time gets smaller. Chemical kinetic time was correlated using two different steps to increase the accuracy of the calculation. Step one is an average chemical kinetic time taken over 2.0 milliseconds. Step two is an instantaneous value that depends on the instantaneous amounts of fuel, water and oxygen. Since we were not tracking the radical concentrations, we were using $\mathrm{H}_{2} \mathrm{O}$ to indicate the state of the radical species. In other words for the reactions

$$
\begin{aligned}
& \mathrm{H} 2+\mathrm{OH}=\mathrm{H} 2 \mathrm{O}+\mathrm{H} \\
& \mathrm{CO}+\mathrm{OH}=\mathrm{CO} 2+\mathrm{H} \\
& \mathrm{CH} 4+\mathrm{OH}=\mathrm{CH} 3+\mathrm{H} 2 \mathrm{O} \\
& \mathrm{~N}+\mathrm{OH}=\mathrm{NO}+\mathrm{H} \text { etc. }
\end{aligned}
$$

The radicals could be correlated with H 2 O because of the first reaction.
The user should want to switch from step one to step two when the molar concentration of water is greater than 1×10^{-20} moles/cc. Step two can not be used with small concentrations of water because if the value of the water concentration was zero, the entire correlation time would go to zero.

JET-A KINETIC SCHEME FOR STEP 1(AVERAGE) AND STEP 2 (INSTANTANEOUS) METHODS

The following is GLSENS input for the 23 step, 16 species mechanism from Krishna Kundu that was used for the Jet-A calculations. The water and fuel were added as a liquid to the equilibrium program, but they were added as gases to the kinetic program to make up the reacting mixture. We did not alter the mechanism equations to compute the chemical kinetic times for water injection. The additional water took part in the reaction set as the rate equations dictated.

For example the last three body mechanism step the rate is given by $2.5 \times 10^{10} \mathrm{~T}^{0} \mathrm{e}^{-30000 / \mathrm{RT}} \mathrm{N}_{2}{ }^{0.8} \mathrm{C}_{12} \mathrm{H}_{2} 3^{0.8}$ in an irreversible step.

Note the fuel is $\mathrm{C}_{12} \mathrm{H}_{23}$. The last two steps are irreversible fuel breakup reactions to CH and $\mathrm{C}_{2} \mathrm{H}_{2}$.

Note, some reactions are bimolecular and some are trimolecular expressions. The code follows the method of LSENS developed by Radhakrishnan (Reference 7).

PARTIAL METHANE KINETICS SCHEME

Whereas Jet-A is broken down in an irreversible molecule breaking step which has a given rate, methane, CH 4 is broken down by radicals $\mathrm{OH}, \mathrm{H}, \mathrm{O}$, etc so the fast reaction is delayed until the radical pool builds up. This forces the modeling scheme to use a two step method to predict the chemical time constants. We have just listed the CH 4 reactions to illustrate this process. The complete GRI-mech mechanism is listed in Appendix B. The complicated nature of the methane mechanism makes it very difficult to obtain a correlation with so few variables over a wide range of conditions (so the resulting R^{2} is low).

CH4 partial mechanism showing free radical attack

OH	CH 4	$=\mathrm{CH} 3$	H 2 O	$1.000 \mathrm{E}+08$	1.600	3120.00
OH	CO	$=\mathrm{H}$	CO 2	$4.760 \mathrm{E}+07$	1.228	70.00
N	OH	$=\mathrm{NO}$	H	$7.333 \mathrm{E}+13$.000	1120.00
2.0 O		$=\mathrm{O} 2$	M	$1.200 \mathrm{E}+17$	-1.000	.00
H	H	$=\mathrm{H} 2$	M	$1.000 \mathrm{E}+18$	-1.000	.00
O	H 2	$=\mathrm{H}$	OH	$5.000 \mathrm{E}+04$	2.670	6290.00
H	O 2	$=\mathrm{O}$	OH	$8.300 \mathrm{E}+13$.000	14413.00
H	HO 2	$=\mathrm{O} 2$	H 2	$2.800 \mathrm{E}+13$.000	1068.0
OH	H 2	$=\mathrm{H}$	H 2 O	$2.160 \mathrm{E}+08$	1.510	3430.00
O	CH 4	$=\mathrm{OH}$	CH 3	$1.020 \mathrm{E}+09$	1.500	8600.00
OH	CH 2	$=\mathrm{CH}$	H 2 O	$1.130 \mathrm{E}+07$	2.000	3000.00
OH	CH 3	$=\mathrm{CH} 3 \mathrm{OH}$	M	$6.300 \mathrm{E}+13$.000	.00
CH	CH 4	$=\mathrm{H}$	C 2 H 4	$6.000 \mathrm{E}+13$.000	.00
CH	CH 4	$=2.0 \mathrm{CH} 3$		$2.460 \mathrm{E}+06$	2.000	8270.00
CH	CH 2 O	$=\mathrm{HCO}$	CH 4	$3.320 \mathrm{E}+03$	2.810	5860.00
CH	CH 3 OH	$=\mathrm{CH} 2 \mathrm{OH}$	CH 4	$3.000 \mathrm{E}+07$	1.500	9940.00
CH	CH 3 OH	$=\mathrm{CH} 3 \mathrm{O}$	CH 4	$1.000 \mathrm{E}+07$	1.500	9940.00
CH	C 2 H 4	$=\mathrm{C} 2 \mathrm{H} 3$	CH 4	$2.270 \mathrm{E}+05$	2.000	9200.00
CH 3	C 2 H 6	$=\mathrm{C} 2 \mathrm{H} 5$	CH 4	$6.140 \mathrm{E}+06$	1.740	10450.00
N	O 2	$=\mathrm{NO}$	O	$2.650 \mathrm{E}+12$.000	6400.00
NO	O	$=\mathrm{NO} 2$	M	$1.060 \mathrm{E}+20$	-1.410	.00

JET-A EQUILIBRIUM CORRELATIONS WITH AND WITHOUT WATER INJECTION

Equilibrium correlations were generated by using Microsoft Excel to perform a multivariate linear regression on the large data set generated by the CEA program of Reference 8. (A detailed procedure describing the regression used for both equilibrium and finite rate chemical times can be found in Appendix A). CEA has a plot f option for direct tabulation of the output data, for ' $\mathrm{f} / \mathrm{a}, \mathrm{P}, \mathrm{T} \mathrm{H2O}, \mathrm{CO}, \mathrm{NO}$ '. Although the equilibrium correlations were not usually used in the calculation of the chemical kinetic times, we feel that these equations could still be very useful for other calculations. Table 1 shows the Jet-A equilibrium correlations for

T4, CO and NO_{x} for both the lean and rich cases. Figures 2 is a parity plot showing the strength of the lean Jet-A CO equilibrium correlation. This plot shows a minimal amount of scatter, mostly at an equivalence ratio of 1.0 , indicating a strong correlation (R^{2} values greater than 0.9). Note that the units of $\mathrm{CO}_{\mathrm{eq}}$ and $\mathrm{NO}_{\mathrm{x}_{\mathrm{eq}}}$ are moles/cc. This parity plot is typical of all the variables because of the high R^{2} values obtained. This was a correlation for all of the range of independent variables in the Table Input.

Table 1. EQUILIBRIUM Lean Jet-A with Water Injection Correlations

Species	Lean $(\mathbf{f} / \mathbf{a} \leq \mathbf{0 . 0 6 8)}$	R-squared
$\mathbf{T 4}$	$T 4=1725(T 3)^{0.241}(f / a)^{0.442}(1+h 20 / f)^{(-0.151)} P^{0.00301}$	$\mathbf{0 . 9 4 9}$
$\mathbf{C O}$	$C O_{e q}=22.6(f / a)^{2.22}(1+h 20 / f)^{0.0658} P^{0.524} \exp \left[\frac{-31647}{T}\right]$	$\mathbf{0 . 9 9 5}$
$\mathbf{N O}_{\mathbf{x}}$	$N O x_{e q}=2.65 e^{-8}(f / a)^{(-1.52)}(1+h 20 / f)^{(-0.133)} P^{0.980} \exp \left[\frac{-9953}{T}\right]$	$\mathbf{0 . 9 5 8}$

Table 2. EQUILIBRIUM Rich Jet-A with Water Injection Correlations

Species	Rich $(\mathbf{f} / \mathbf{a}>\mathbf{0 . 0 6 8)}$	R-squared
$\mathbf{T 4}$	$T 4=163(T 3)^{0.186}(f / a)^{(-0.613)}(1+h 20 / f)^{(-0.296)} P^{0.00231}$	$\mathbf{0 . 9 5 9}$
$\mathbf{C O}$	$C O_{e q}=3.85 e^{-4}(f / a)^{2.86}\left(1+h 20 / f^{(-0.369)} P^{0.995} \exp \left[\frac{185}{T}\right]\right.$	$\mathbf{0 . 9 9 0}$
$\mathbf{N O}_{\mathbf{x}}$	$N O \chi_{e q}=1.80 e^{-8}\left(f / a^{(-6.08}(1+h 20 /)^{0.418} P^{0.530} \exp \left[\frac{-38952}{T}\right]\right.$	$\mathbf{0 . 9 9 3}$

CHEMICAL KINETIC TIMES FOR JET-A WITH AND WITHOUT WATER INJECTION

Step OneEquations for Jet-A

The following form of equation was used for the Jet-A step one correlations:

$$
\begin{equation*}
\tau=A(P)^{a}(f / a)^{b}\left(1+\frac{h 2 o}{\text { fuel }}\right)^{c} \exp \frac{D}{T} \tag{26}
\end{equation*}
$$

where τ is the chemical kinetic time in milliseconds, P is pressure in atm, f / a is the initial or overall mass fuel air ratio as in reference $1, \frac{h 2 o}{f u e l}$ is the initial mass water to fuel ratio and T is the temperature in Kelvin. The correlation is switched to Step Two when the water molar concentration is greater than 1×10^{-20}.

The initial or overall fuel air ratio can be determined as follows:

$$
\begin{equation*}
f / a=\left(\text { fuel }+\frac{\left(\mathrm{CO}+\mathrm{CO}_{2}\right)}{12}\right) * 167 / \frac{0.79}{28 \mathrm{~N}_{2}} \tag{27}
\end{equation*}
$$

The coefficients for each of the parameters in the correlations may be found in Table 3. R-square values have been included to demonstrate the strength of the correlation. R-squared is a measure of the error that the model accounts for; an R -squared value of one is ideal.

Table 3. Step One Jet-A With Water Injection Chemical Kinetic Time Correlations

Component	Rich or lean	\mathbf{A}	\mathbf{a}	\mathbf{D}	\mathbf{b}	\mathbf{c}	R- squared
Fuel	Lean	7.47×10^{-5}	-0.60	14202	0.238	0.0712	1.00
CO	Lean	7.13×10^{-2}	-0.758	9295	-0.314	0.159	0.933
NO_{x}	Lean	1.00×10^{6}	-1.30	26139	0.110	1.30	0.994
Fuel	Rich	8.19×10^{-5}	-0.60	14206	0.296	0.153	1.00
CO	Rich	1.39×10^{-3}	-0.882	6803	-0.222	-0.328	0.988
NO_{x}	Rich	93.2	-1.67	27755	-0.0582	0.529	0.983

All of the results presented here are correlated over the complete conditions listed in Table Input. Parity plots for the lean step one correlations have been created and may be found in Figures 3-5. The x -axis contains values for the chemical kinetic time generated by the full mechanism GLSENS at each condition. The y-axis contains values calculated using the chemical kinetic time correlations above at the same set of conditions. This demonstrates how close the calculated value is to the expected value and is a good measurement of the strength of the correlations. Figure 6 shows an increase in the step one chemical kinetic time with a higher water to fuel ratio. Data from the previous Jet-A chemical kinetic time correlation without water injection has also been included on this plot for comparison. In order to compare the correlations, we took various values of $\mathrm{f} / \mathrm{a}, p$, and T and obtained predictions for the previous correlation (Ref. 1 as "No Water Injection"). Then these prediction are plotted using the overall factor found here (x axis). Note that the previous work gave a much faster time (averaged over a total time as high as 10 milliseconds and accounted for the lower τ. This difference in results caused us to switch to an instantaneous correlation (Step Two) for longer times.

Step Two Equations for Jet-A

The following form of equation was used for the Jet-A step two fuel and NO_{x} correlations. This form of the equation produced the best fit:

$$
\begin{equation*}
\tau=A(P)^{a}(c f u e l)^{b}(c o 2)^{c}(c H 2 O)^{d} \exp \frac{E}{T} \tag{34}
\end{equation*}
$$

and for the Jet-A step two CO correlation:

$$
\begin{equation*}
\tau=A(P)^{a}(c f u e l)^{b}(c c o)^{c}(c o 2)^{d}(c H 2 O)^{e} \exp \frac{F}{T} \tag{35}
\end{equation*}
$$

where P is pressure in atm, cfuel is the instantaneous molar concentration of fuel, cco is the instantaneous molar concentration of CO. We added CO as a parameter in order to attempt to raise the R^{2} value for the CO correlation. We have preceded the symbol with a c to indicate molar concentration was used and a y for mole fraction. The CO 2 is the instantaneous molar concentration of $\mathrm{O} 2, \mathrm{cH} 2 \mathrm{o}$ is the instantaneous molar concentration of water, and T is the temperature in Kelvin. We have correlated to only the major species hoping that $\mathrm{H}_{2} \mathrm{O}$ will track the minor species $(\mathrm{OH}, \mathrm{H}, \mathrm{O}$, etc.) to allow good overall correlation and easy use of the equations.

The coefficients for each parameter are given in Table 4. Parity plots for the step two lean Jet-A correlations can be found in Figures 7-9. These figures show a minimal amount of scattering for the fuel and NO_{x}, which is consistent with the high R-squared values as seen in Table 4. However, the CO plot shows considerably more scattering with an R-squared value of 0.578 for the lean case and 0.389 for the rich case.

Table 4. Step Two Jet-A With Water Injection Chemical Kinetic Time Correlations

Compo- nent	Rich or Lean	\mathbf{A}	Pressure	$\mathbf{1 / T}$	cfuel	cCO	$\mathbf{c O 2}$	$\mathbf{c H 2 O}$	R- squared
Fuel	Lean	$7.31 \mathrm{E}-06$	-0.173	12412	0.0792	-	-0.164	-0.115	0.927
CO	Lean	$9.28 \mathrm{E}-07$	-0.164	8893	-0.15	0.268	-0.549	-0.0588	0.578
$\mathbf{N O}_{\mathbf{x}}$	Lean	$2.67 \mathrm{E}-03$	-0.628	28071	-0.186	-	-0.558	0.0458	0.93
Fuel	Rich	$1.35 \mathrm{E}-04$	-0.352	12962	0.0147	-	-0.0743	-0.0373	0.953
CO	Rich	0.373	-0.422	4387	-0.287	0.206	0.227	0.115	0.389
$\mathbf{N O}_{\mathbf{x}}$	Rich	28.9	-0.00805	19595	-0.117	-	-0.158	-0.16	0.438

METHANE EQUILIBRIUM CORRELATIONS WITH AND WITHOUT WATER INJECTION

The rich and lean Methane equilibrium correlations can be found in Tables 5 and 6, respectively. A parity plot for the rich Methane CO equilibrium correlation can be found in Figure 10.

Table 5. EQUILIBRIUM Lean Methane With Water Injection Correlations

Species	Lean $(\mathbf{f} / \mathbf{a} \leq \mathbf{0 . 0 5 8})$	R- Squared
$\mathbf{T 4}$	$T 4=1565(f / a)^{0.435}\left(1+\frac{h 2 o}{f}\right)^{-0.069}(T 3)^{0.258}(P)^{0.00284}$	$\mathbf{0 . 9 4 4}$
$\mathbf{C O}$	COeq $=3.37 \times 10^{6}(f / a)^{1.90}\left(1+\frac{h 2 o}{f}\right)^{0.00705}(P)^{-0.477} \exp \frac{-33388}{T}$	$\mathbf{0 . 9 9 8}$
$\mathbf{N O}_{\mathbf{x}}$	NOxeq $=2.44 \times 10^{-2}(f / a)^{-1.13}\left(1+\frac{h 2 o}{f}\right)^{-1.07}(P)^{-0.017} \exp \frac{-11415}{T}$	$\mathbf{0 . 9 5 3}$

Table 6. EQUILIBRIUM Rich Methane With Water Injection Correlations

Species	Rich $(\mathbf{f} / \mathbf{a}>\mathbf{0 . 0 5 8})$	R- Squared
$\mathbf{T 4}$	$T 4=177(f / a)^{-0.559}\left(1+\frac{h 2 o}{f}\right)^{-0.146}(T 3)^{0.176}(P)^{0.00167}$	$\mathbf{0 . 9 7 6}$
$\mathbf{C O}$	COeq $=72.2(f / a)^{2.55}\left(1+\frac{h 2 o}{f}\right)^{-0.358}(P)^{-0.00393} \exp \frac{-31365}{T}$	$\mathbf{0 . 9 1 1}$
$\mathbf{N O}_{\mathbf{x}}$	NOxeq $=0.218(f / a)^{-4.43}\left(1+\frac{h 2 o}{f}\right)^{0.427}(P)^{-0.493} \exp \frac{-41408}{T}$	$\mathbf{0 . 9 9 8}$

CHEMICAL KINETIC TIMES FOR METHANE WITH AND WITHOUT WATER INJECTION

Step One Equations for Methane

The step one Methane chemical kinetic time correlations are of the following form:

$$
\begin{equation*}
\tau=A(P)^{a}(f / a)^{b}\left(1+\frac{h 2 o}{\text { fuel }}\right)^{c} \exp \left[\frac{D}{T}\right] \tag{48}
\end{equation*}
$$

where P is pressure in atm, f / a is the initial or overall fuel air ratio, $\frac{h 2 o}{f u e l}$ is the initial water to fuel ratio and T is the temperature in Kelvin.

The initial or overall fuel air ratio can be determined as follows:

$$
\begin{equation*}
f / a=\left(\text { fuel }+\left(C O+\mathrm{CO}_{2}\right)\right) * 16 / \frac{0.79}{28 N_{2}} \tag{49}
\end{equation*}
$$

A summary of these correlations can be found in Table 7. Parity plots for the lean step one methane with water injection correlations can be found in Figures 11-13. These parity plots show minimal scatter, which is consistent with the high R -squared values of the lean correlations. Figure 14 shows an increase in step one chemical kinetic time with a higher water to fuel ratio.

Table 7. Step One Methane With Water Injection Chemical Kinetic Time Correlations

Component	Rich or Lean	\mathbf{A}	\mathbf{a}	\mathbf{D}	\mathbf{b}	\mathbf{c}	R-squared
Fuel	Lean	2.09×10^{-4}	-1.07	22625	0.222	0.0675	0.996
Co	Lean	9.99×10^{-4}	-1.00	2434	0.101	0.0959	0.999
$\mathbf{N O}_{\mathbf{x}}$	Lean	29395	-2.11	34859	0.0315	0.329	0.996
Fuel	Rich	0.0274	-0.328	14216	0.111	-0.829	0.75
Co	Rich	1.30×10^{-3}	-1.00	2433	0.215	0.195	0.999
$\mathbf{N O}_{\mathbf{x}}$	Rich	43928	-2.00	32649	0.284	0.641	0.999

Step Two Equations for Methane

The following form of equation was used for all lean Methane step two correlations:

$$
\begin{equation*}
\tau=A(P)^{a}(c \text { fuel })^{b}(\text { ch20 })^{c}\left(1+\frac{\text { ch2o }}{\text { cfuel }}\right)^{d} \exp \left[\frac{E}{T}\right] \tag{56}
\end{equation*}
$$

The following form of equation was used for the rich Methane step two correlations for fuel and NO_{x} :

$$
\begin{equation*}
\tau=A(P)^{a}(c f u e l)^{b}(c o 2)^{c}(c H 2 O)^{d} \exp \frac{E}{T} \tag{57}
\end{equation*}
$$

and for the rich Methane step two CO correlation:

$$
\begin{equation*}
\tau=A(P)^{a}(c f u e l)^{b}(c c o)^{c}(c o 2)^{d}(c H 2 O)^{e} \exp \frac{F}{T} \tag{58}
\end{equation*}
$$

Table 8 provides a summary of these correlations, and lean parity plots can be found in Figures 15-17.

Table 8. Step Two Methane With Water Injection Chemical Kinetic Time Correlations

Compo- nent	\mathbf{A}	Pressure	$\mathbf{1 / T}$	cfuel	$\mathbf{c C O}$	$\mathbf{c O 2}$	$\mathbf{c H 2 O}$	$1+\frac{\text { ch2o }}{\text { cfuel }}$	R- squared
Fuel (lean)	3.50×10^{-9}	-0.0713	14149	-0.307	-	-	-0.465	-0.221	0.416
CO (lean)	3.07×10^{-3}	-1.09	2291	0.0957	-	-	-9.82×10^{-4}	0.131	0.999
$\mathbf{N O}_{\mathbf{x}}$ (lean)	1.48×10^{5}	-2.28	37437	0.239	-	-	-0.0206	0.778	0.986
Fuel (rich)	9.99×10^{-11}	-0.761	19950	0.050	-	-0.549	-0.350	-	0.483
CO (rich)	$1.64 \mathrm{E}-10$	0.0722	7880	-0.261	0.0568	-0.636	-0.00341	-	0.816
NO (rich)	$1.67 \mathrm{E}+06$	-2.45	24117	0.05	-	0.119	-0.281	-	0.792

TWO STEP METHANE CHEMICAL KINETIC TIMES WITHOUT WATER INJECTION

The step two methane chemical kinetic times were also correlated without water injection. The previous correlations are a massive regression over all water injection values. If one were not using water injection, the relations would be useful, but the following relations resulted in a higher R^{2} factor. The equations are of the same form as the methane step two correlations with water injection. The results can be found in Table 9:

Table 9. Step Two Methane Without Water Injection Chemical Kinetic Time Correlations

Compo- nent	A	Pressure	$\mathbf{1 / T}$	cfuel	cCO	$\mathbf{c O 2}$	$\mathbf{c H 2 O}$	$1+\frac{\text { ch2o }}{\text { cfuel }}$	R- squared
Fuel (lean)	1.86×10^{-9}	0.479	13446	0.182	-	0.0528	-0.704	0.349	0.767
CO (lean)	1.43×10^{-3}	-1.04	2371	0.0461	-	-	-5.7×10^{-4}	-	0.999
$\mathbf{N O}_{\mathbf{x}}$ (lean)	10.0	-1.92	38229	0.0389	-	-	-0.200	-	0.992
Fuel (rich)	$2.02 \times 10^{-}$ 14	0.498	14860	0.252	-	-0.776	-0.756	0.254	0.995
CO (rich)	$6.73 \times 10^{-}$ 13	0.244	8229	-0.274	-0.237	-0.802	0.217	-	0.806
$\mathbf{N O}$ (rich)	0.0574	-1.22	26010	-0.103	-	-0.0583	-0.617	-	0.959

COMBINED LEAN AND RICH STEP TWO METHANE TIMES

In this case the program would not have to choose between the rich and lean fuel/air zones, but could use the correlation directly. The lean and rich step two methane chemical kinetic times were also combined into one large data set and correlated. The results of this correlation can be found in Table 10. The fuel correlation is in the following form:

$$
\begin{equation*}
\tau=A(P)^{a}(c f u e l)^{b}(c o 2)^{c}(c H 2 O)^{d} \exp \frac{E}{T} \tag{71}
\end{equation*}
$$

while the CO and NO_{x} correlations are modeled by the following form:

$$
\begin{equation*}
\tau=A(P)^{a}(c \text { cuel })^{b}(\text { ch20 })^{c}\left(1+\frac{\text { ch2o }}{\text { cfuel }}\right)^{d} \exp \left[\frac{E}{T}\right] \tag{72}
\end{equation*}
$$

Table 10. Combined Step Two Methane With Water Injection Chemical Kinetic Time Correlations

Compo- nent	A	Pressure	$\mathbf{1 / T}$	cfuel	$\mathbf{c O 2}$	$\mathbf{c H 2 O}$	$1+\frac{\text { ch2o }}{c f u e l}$	R- squared
Fuel	6.20×10^{-9}	-0.290	14259	-0.0532	-0.332	-0.429	-	0.433
CO	1.18×10^{26}	-5.37	-1877	4.68	-	-0.106	4.90	0.627
$\mathbf{N O}_{\mathbf{x}}$	2.42×10^{-14}	0.585	37951	-2.92	-	0.0539	-2.98	0.879

COMPARISON TO NO ${ }_{x}$ DATA WITH WATER INJECTION

An important result of water injection into Jet-A and methane fuels is the reduction of NO_{x} formation. The NO_{x} concentrations calculated using the chemical kinetic time correlations were compared to water injection data presented in reference 2 . This reduction is with constant T4. So the equations from Table 1 Lean T4 is solved for the increased f / a with an increase in h_{20} / f, then the NO_{x} value Table 3 Step One Lean is solved for the new NO_{x} value.
Figures 18 and 19 show the ratio of NO_{x} with water injection to NO_{x} without water injection versus weight fraction ratio of water to air for Jet-A and methane respectively from the correlations, at a fuel air ratio of 0.05 as shown in reference 2 . The Jet-A predicted data behaves very similarly to the given experimental data while there is more of a difference in the methane prediction. Although the temperature is constant and the kinetic mechanism remains the same there is a change in kinetics rate due to water dilution. The residence time of the combustor is decreased because of the increased throughput with water addition (t corrected results) and the molecular weight of the mixture is decreased with water addition (T constant).

TANKS IN SERIES MODEL FOR PREDICTING EMISSIONS

A tanks-in-series Fortran program was developed to simulate CO and NO_{x} production, so that it may be compared to the water injection data in reference 9 . This model accounts for the increase in fuel/air ratio in the initial fuel injection and mixing process. Figure 20-23 show the results of this comparison.

Pf is the ratio of the $\operatorname{tank} \mathrm{f} / \mathrm{a}$ to the exit f / a. The f / a for $\operatorname{tank} 2$ was limited to stoichiometric, to prevent it from going overstoichimetric as the exit f / a was increased.
Reference 9 uses 15 reactors with the complete GRI Mech 2.11 mechanism compared to only the three reactors used here. Obviously one can adjust the times and equivalence ratios of the tanks, or add tanks until the output of the emissions matched the experimental data. We chose to not manipulate the parameters and determine the outcome. The results were very good.

The Fortran computer code is given in Appendix F. In this calculation we only use Step One, because it is a well stirred reactor. We had to compute the dilution factors due to Air addition between stages. We had chosen the equivalence ratio for the first stage to be one. Pf is the ratio of the equivalence ratio of the stage to the exit value. The following equation is the balanced reaction used to model the combustion of the methane fuel:

$$
\begin{aligned}
\phi \mathrm{CH}_{4}+\left(1+\frac{x}{4}\right) \mathrm{O}_{2}+\left(1+\frac{x}{4}\right)\left(\frac{79}{21}\right) N_{2}+\left(\frac{16}{18}\right)\left(\frac{H 2 O}{F}\right) \phi & \rightarrow \\
& \left.\phi \mathrm{CO}_{2}+\left(\frac{x}{2}+\frac{16}{18} \frac{H 2 O}{F} \phi\right) H 2 O+\left[(1-\phi)\left(1+\frac{x}{4}\right)\right)\right] O_{2}+\left(1+\frac{x}{4}\right)\left(\frac{79}{21}\right) N_{2}
\end{aligned}
$$

where x is the ratio of hydrogen to carbon, and is equal to 4 for methane. The $\frac{H 2 O}{F}$ term is the initial water to fuel ratio and ϕ is the overall equivalence ratio.

This equation was used to obtain a wet to dry correction so that the generated NO_{x} and CO data could be compared to existing data. The concentrations were corrected to $15 \% \mathrm{O} 2$.

SUGGESTIONS FOR USING THE REDUCED EQUATIONS

In this section we show how our correlations might be used in a typical kinetics program the calculate the amount of reaction

The fuel equations that we use are:

$$
\begin{equation*}
\frac{d \text { Fuel }}{d t}=-\frac{\text { Fuel }}{\tau_{\text {Fuel }}} \tag{76}
\end{equation*}
$$

where for step one:

$$
\begin{equation*}
\tau_{\text {Fuel(lean) }}=7.47 \times 10^{-5}\left(\mathrm{f} / a_{o}^{0.238}(P)^{-0.60}\left(1+\frac{h 2 o}{f u e l}\right)^{0.0712} \exp \frac{14202}{T}\right. \tag{77}
\end{equation*}
$$

Equation (76) is the "net" rate, so one does not have to compute the reverse rate. Then

$$
\begin{equation*}
\frac{d F}{d t}=-\frac{F \exp ^{\frac{-14202}{T 4}}}{7.47 \times 10^{-5}(f / a)_{o}^{0.238}(P)^{-0.60}\left(1+\frac{h 2 o}{f u e l}\right)^{0.0712}} \Rightarrow-\frac{F}{C} e^{-\frac{E}{R T}} \tag{78}
\end{equation*}
$$

The denominator C is a constant since we take the initial conditions as being held constant throughout the reaction and one can treat the T4 constant as an activation energy $(14202 \times 1.987)=28219$.

One can relate $\left(\mathrm{f} / \mathrm{a}_{\mathrm{o}}\right.$ to F of a mixture by:

$$
\begin{gather*}
F_{o}=C_{12} H_{23}+\frac{1}{12}\left(\mathrm{CO}+\mathrm{CO}_{2}\right) \frac{\text { moles }}{c c} \tag{79}\\
\rho=\frac{P}{82.056 T} \times \frac{\mathrm{moles}}{c c} \text { mix } \tag{80}\\
x_{F o}=\frac{F_{o}}{\rho}=\frac{f g / 167}{\frac{f g m}{167}+\frac{A g m}{29}+\frac{H 2 O}{18 F} F}=\frac{(f / a)_{o}}{(f / a)_{o}+5.76+9.28 \frac{H 2 O}{F}(f / a)_{o}} \tag{81}
\end{gather*}
$$

Note, $g m$ is the grams of component. If some fuel had reacted one can use Equation (81) to find $\mathrm{f} / \mathrm{a}_{0}$;

$$
\begin{equation*}
(f / a)_{o}=\frac{5.76 F / \rho}{1-F / \rho\left(1+9.28 \frac{H 2 O}{F}\right)} \tag{82}
\end{equation*}
$$

Given Equation (78) above
$\frac{d F}{d t} \Rightarrow-\frac{F}{C} e^{-\frac{E}{R T}}$ which is directly usable by an Arrhenius .kinetics code
Then the mass balance equation is

$$
\begin{equation*}
\mathrm{C}_{12} \mathrm{H}_{23}+\left(6+\frac{23}{4}\right) \mathrm{O}_{2}=12 \mathrm{CO}+\frac{23}{2} \mathrm{H} 2 \mathrm{O} \tag{84}
\end{equation*}
$$

To avoid fractional coefficients, one could use any number of methods, such as:

$$
\begin{equation*}
\mathrm{C}_{12} \mathrm{H}_{23}+(6) \mathrm{O}_{2}=12 \mathrm{CO}+23 \mathrm{H} 2 \mathrm{O} \tag{85}
\end{equation*}
$$

For CO

$$
\begin{equation*}
\frac{d C O}{d t}=\frac{-C O}{\tau_{C O}} \tag{86}
\end{equation*}
$$

And for NO_{x}

$$
\begin{gather*}
\frac{d N O X}{d t}=\frac{1}{\tau_{N O X}}=\frac{1}{C^{\prime}} e^{\frac{-26139}{T}} \tag{87}\\
N_{2}+O_{2}=2 N O \tag{88}
\end{gather*}
$$

So

$$
\begin{equation*}
\frac{d N 2}{d t}=\frac{1}{2} \frac{d N O}{d t}=\frac{1}{2 C^{\prime}} e^{\frac{-26139}{T}} \tag{89}
\end{equation*}
$$

This completes the equations that one would need to simulation of the chemical kinetics. In our model we have only three rates and seven species, therefore the step size can be large and the rates are no longer coupled. This should be very fast.

SIMULATION OF GLSENS WITH THE TWO STEP MODEL WITHOUT WATER INJECTION

In this example we compare directly the new two time step method with the complete kinetic mechanism for an arbitrary constant temperature of 2000 K and at a constant pressure of two atmospheres. The initial fuel/air ratio was taken as 0.0526 with zero water injection. We used a simple Fortran code with a Newton integration method given in Appendix G. The results are shown in Figures 24 and 25. The results from methane was one reason for creating the two step method with step two trying to follow the instantaneous reaction times though correlation with $\mathrm{H}_{2} \mathrm{O}$ as the tracking species. Step 2 is very important for prediction of combustion stability and blowout for methane.

Figure 24 shows the rapid decreases in the chemical reaction time. This model is not as fast as the full kinetics version so the concentration decrease (Figure 25) lags the full kinetics version as well. The kinetics calculations in comparison the mixing times from (1.e-5 to 1.e-3 seconds) maybe much more relevant and accurate.

CONCLUSIONS

Much work still needs to be done to explore possible benefits and detriments of water injection in combustion. A simplified kinetic scheme for Jet-A and methane fuels with water injection resulted in a two time step correlation that calculates chemical kinetic times for fuel, CO , and NO_{x}. These chemical kinetic time equations can then be used in a numerical combustor code to compare the chemical kinetic time with the turbulent mixing time. Strong step one Jet-A correlations were developed ($\mathrm{R}^{2}>0.9$). The Jet-A step two correlations for CO and NO_{x} are slightly weaker, but still thought to be effective. The Methane step one correlations were all very strong, while the rich step two correlations had considerably smaller R-squared values. However, because we are trying to correlate so many values over a wide range of conditions, we will accept a small amount of scatter. These twenty four equations are believed to be extremely useful in the comparison of kinetic reaction and turbulent mixing times and in the computation of kinetic rate results.

APPENDIX A

MULTIPLE LINEAR REGRESSION WITH EXCEL

Performing Multiple Linear Regression on a Logarithmic Equation

This regression technique may be used to develop a correlation between a dependent variable and one or more independent variables. First the equation to be used must be linearized. An example of an exponential equation used here is shown below.

$$
\begin{gather*}
A=B C^{c} D^{d} \exp \left(\frac{e}{T}\right) \quad \text { (Non-linear form) } \tag{A1}\\
\ln (A)=\ln (B)+c \ln (C)+d \ln (D)+\frac{e}{T} \quad \text { (Linear form) } \tag{A2}
\end{gather*}
$$

Columns of data containing the independent variables (natural \log of C , natural \log of D , $1 / \mathrm{T}$,) and the independent variable (natural \log of A) were contained in an Excel spreadsheet. (It is easiest to have the independent variables adjacent to each other, followed by the dependent variable.)

The multiple variable regression analysis is located in the Data Analysis Toolpak. The Data Analysis Toolpak must be added into the spreadsheet if it is not already running in Excel. In order to add it, select the 'Add ins' button from the Tools menu. Click on the Analysis Toolpak option and click OK to accept this choice. Then choose 'Data Analysis' from the Tools menu and double click on 'regression'. Click on the 'Input Y Range' box and highlight the column that contains the logarithm of the dependent variable and press return. Click on the 'Input X Range' box and highlight the columns containing all of the independent variables. (In this case $\ln (\mathrm{C})$, $\ln (\mathrm{D})$ and $1 / \mathrm{T}$). Press OK to begin the regression. The regression data will be contained in a new worksheet. The variable labeled 'intercept' will be equal to the natural \log of coefficient B . The remaining coefficients (c,d, and e) will be given as X Variable 1,X Variable 2 and X Variable 3 respectively. This process is quick and accurate for Excel 2002 and was used for all equations given in this report. Excel has to capability to handle one dependent variable and multiple independent variables. As many as 12,000 points were used in the regressions.

APPENDIX B

COMPLETE GRI-MECH VERSION 2.1 (REF. 10) CH4 MECHANISM USED

H	C2H3	=	C 2 H 4	M	$6.080 \mathrm{E}+12$. 270	280.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO 2	2.00	C2H6	3.00	END			
H	C2H3	=	H2	C2H2	$3.000 \mathrm{E}+13$. 000	. 00
H	C2H4	=	C2H5	M	1.080E+12	. 454	1820.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
H	C2H4	=	C2H3	H2	$1.325 \mathrm{E}+06$	2.530	12240.00
H	C2H5	=	C2H6	M	$5.210 \mathrm{E}+17$	-. 990	1580.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO 2	2.00	C2H6	3.00	N2	0.7	END	
H	C2H5	=	H2	C 2 H 4	$2.000 \mathrm{E}+12$. 000	. 00
H	C2H6	=	C2H5	H2	$1.150 \mathrm{E}+08$	1.900	7530.00
H	CH2CO	-	HCCO	H2	$5.000 \mathrm{E}+13$. 000	8000.00
H	CH2CO	-	CH3	CO	$1.130 \mathrm{E}+13$. 000	3428.00
H	HCCOH	H	H	CH 2 CO	$1.000 \mathrm{E}+13$. 000	. 00
H2	CO	=	CH2O	M	$4.300 \mathrm{E}+07$	1.500	79600.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO 2	2.00	C2H6	3.00	END			
OH	H2	=	H	H2O	$2.160 \mathrm{E}+08$	1.510	3430.00
OH	OH	=	H2O2	M	$7.400 \mathrm{E}+13$	-. 370	. 00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
2.0 OH		=	0	H2O	$3.570 \mathrm{E}+04$	2.400	-2110.00
OH	HO2	=	02	H2O	$2.900 \mathrm{E}+13$. 000	-500.00
OH	H2O2	=	HO2	H2O	1.750E+12	. 000	320.00
OH	H2O2	=	HO2	H2O	$5.800 \mathrm{E}+14$. 000	9560.00
OH	C	=	H	CO	$5.000 \mathrm{E}+13$. 000	. 00
OH	CH	=	H	HCO	$3.000 \mathrm{E}+13$. 000	. 00
OH	CH2	=	H	CH2O	$2.000 \mathrm{E}+13$. 000	. 00
OH	CH2	=	CH	H2O	1.130E+07	2.000	3000.00
OH	CH3	=	CH 3 OH	M	$6.300 \mathrm{E}+13$. 000	. 00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO 2	2.00	C2H6	3.00	END			
OH	CH3	=	CH2	H2O	$5.600 \mathrm{E}+07$	1.600	5420.00
OH	CH4	=	CH3	H2O	$1.000 \mathrm{E}+08$	1.600	3120.00
OH	CO	=	H	CO2	$4.760 \mathrm{E}+07$	1.228	70.00
OH	HCO	=	H2O	CO	$5.000 \mathrm{E}+13$. 000	. 00
OH	CH2O	=	HCO	H2O	$3.430 \mathrm{E}+09$	1.180	-447.00
OH	CH3O	=	H2O	CH2O	$5.000 \mathrm{E}+12$. 000	. 00
OH	C2H	=	H	HCCO	$2.000 \mathrm{E}+13$. 000	. 00
OH	C2H2	=	H	CH2CO	2.180E-04	4.500	-1000.00
OH	C2H2	=	C 2 H	H2O	$3.370 \mathrm{E}+07$	2.000	14000.00
OH	C2H2	=	CH3	CO	$4.830 \mathrm{E}-04$	4.000	-2000.00
OH	C2H3	=	H2O	C2H2	$5.000 \mathrm{E}+12$. 000	. 00
OH	C2H4	=	C2H3	H2O	$3.600 \mathrm{E}+06$	2.000	2500.00
OH	C2H6	=	C2H5	H2O	$3.540 \mathrm{E}+06$	2.120	870.00
OH	CH2CO	-	HCCO	H2O	$7.500 \mathrm{E}+12$. 000	2000.00
2.0 HO 2		=	02	H2O2	1.300E+11	. 000	-1630.00
2.0 HO 2		=	02	H2O2	$4.200 \mathrm{E}+14$. 000	12000.00
HO2	CH2	=	OH	CH2O	$2.000 \mathrm{E}+13$. 000	. 00

HO2	CH3	=	O 2	CH4	$1.000 \mathrm{E}+12$. 000	. 00
HO2	CH3	=	OH	CH3O	$2.000 \mathrm{E}+13$. 000	. 00
HO2	CO	=	OH	CO 2	$1.500 \mathrm{E}+14$. 000	23600.00
HO2	CH2O	=	HCO	H2O2	$1.000 \mathrm{E}+12$. 000	8000.00
C	02	=	O	CO	$5.800 \mathrm{E}+13$. 000	576.00
C	CH2	=	H	C 2 H	$5.000 \mathrm{E}+13$. 000	. 00
C	CH3	=	H	C2H2	$5.000 \mathrm{E}+13$. 000	00
CH	O2	=	0	HCO	$3.300 \mathrm{E}+13$. 000	. 00
CH	H2	=	H	CH2	1.107E+08	1.790	1670.00
CH	H2O	=	H	CH2O	1.713E+13	. 000	-755.00
CH	CH2	=	H	C2H2	$4.000 \mathrm{E}+13$. 000	. 00
CH	CH3	=	H	C2H3	$3.000 \mathrm{E}+13$. 000	. 00
CH	CH4	=	H	C2H4	$6.000 \mathrm{E}+13$. 000	. 00
CH	CO	=	HCCO	M	$5.000 \mathrm{E}+13$. 000	. 00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO 2	2.00	C2H6	3.00	N2	0.7	END	
CH	CO 2	=	HCO	CO	$3.400 \mathrm{E}+12$. 000	690.00
CH	CH2O	=	H	CH2CO	$9.460 \mathrm{E}+13$. 000	-515.00
CH	HCCO	=	CO	C2H2	$5.000 \mathrm{E}+13$. 000	. 00
CH2	O2	=	OH	HCO	1.320E+13	. 000	1500.00
CH2	H2	=	H	CH3	$5.000 \mathrm{E}+05$	2.000	7230.00
2.0 CH 2		=	H2	C2H2	$3.200 \mathrm{E}+13$. 000	. 00
CH2	CH3	=	H	C2H4	$4.000 \mathrm{E}+13$. 000	. 00
CH2	CH4		. 0 CH 3		$2.460 \mathrm{E}+06$	2.000	8270.00
CH2	CO	=	CH2CO	M	8.100E+11	. 500	4510.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
CH2	HCCO	=	C2H3	CO	$3.000 \mathrm{E}+13$. 000	. 00
CH3	02	=	0	CH3O	$2.675 \mathrm{E}+13$. 000	28800.00
CH3	02	=	OH	CH2O	$3.600 \mathrm{E}+10$. 000	8940.00
CH3	H2O2	=	HO2	CH4	$2.450 \mathrm{E}+04$	2.470	5180.00
2.0 CH 3		=	C2H6	M	$2.120 \mathrm{E}+16$	-. 970	620.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO 2	2.00	C2H6	3.00	N2	0.7	END	
2.0 CH 3		=	H	C2H5	$4.990 \mathrm{E}+12$. 100	10600.00
CH3	HCO	=	CH4	CO	$2.648 \mathrm{E}+13$. 000	. 00
CH3	CH2O	=	HCO	CH4	$3.320 \mathrm{E}+03$	2.810	5860.00
CH3	CH 3 OH	=	CH 2 OH	CH4	$3.000 \mathrm{E}+07$	1.500	9940.00
CH3	CH 3 OH	=	CH3O	CH4	$1.000 \mathrm{E}+07$	1.500	9940.00
CH3	C2H4	=	C2H3	CH4	$2.270 \mathrm{E}+05$	2.000	9200.00
CH3	C2H6	=	C2H5	CH4	$6.140 \mathrm{E}+06$	1.740	10450.00
HCO	02	=	HO2	CO	$7.600 \mathrm{E}+12$. 000	400.00
CH 2 OH	O2	=	HO2	CH2O	$1.800 \mathrm{E}+13$. 000	900.00
CH3O	O2	=	HO2	CH2O	$4.280 \mathrm{E}-13$	7.600	-3530.00
C 2 H	02	=	HCO	CO	$5.000 \mathrm{E}+13$. 000	1500.00
C 2 H	H2	=	H	C2H2	$4.070 \mathrm{E}+05$	2.400	200.00
C2H3	O2	=	HCO	CH2O	$3.980 \mathrm{E}+12$. 000	-240.00
M	C2H4	=	H2	C2H2	$8.000 \mathrm{E}+12$. 440	88770.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
C2H5	O2	=	HO2	C2H4	$8.400 \mathrm{E}+11$. 000	3875.00
HCCO	O2	=	OH	2.0CO	$1.600 \mathrm{E}+12$. 000	854.00

2.0 HCCO		$=2.0 \mathrm{CO}$		C2H2	$1.000 \mathrm{E}+13$. 000	
. 00							
N	NO		N2	0	$3.500 \mathrm{E}+13$. 000	
330.00							
N	O2		NO	0	$2.650 \mathrm{E}+12$. 000	
6400.00							
N	OH	=	NO	H	$7.333 \mathrm{E}+13$. 000	1120.00
N2O	0	=	N2	O2	$1.400 \mathrm{E}+12$. 000	10810.00
N2O	0		ONO		$2.900 \mathrm{E}+13$. 000	23150.00
N2O	H	=	N2	OH	$4.400 \mathrm{E}+14$. 000	18880.00
N2O	OH	=	N2	HO2	$2.000 \mathrm{E}+12$. 000	21060.00
M	N2O	=	N2	0	1.300E+11	. 000	59620.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.625	END	
HO2	NO		NO2	OH	$2.110 \mathrm{E}+12$. 000	-
480.00							
NO	0	=	NO2	M	$1.060 \mathrm{E}+20$	-1.410	. 00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	END			
NO2	0	=	NO	02	$3.900 \mathrm{E}+12$. 000	-240.00
NO2	H	=	NO	OH	1.320E+14	. 000	360.00
NH	0	=	NO	H	$5.000 \mathrm{E}+13$. 000	. 00
NH	H	=	N	H2	$3.200 \mathrm{E}+13$. 000	330.00
NH	OH	=	HNO	H	$2.000 \mathrm{E}+13$. 000	. 00
NH	OH	=	N	H2O	$2.000 \mathrm{E}+09$	1.200	. 00
NH	O2	=	HNO	0	$4.610 \mathrm{E}+05$	2.000	6500.00
NH	O2	=	NO	OH	1.280E+06	1.500	100.00
NH	N	=	N2	H	$1.500 \mathrm{E}+13$. 000	. 00
NH	H2O	=	HNO	H2	$2.000 \mathrm{E}+13$. 000	13850.00
NH	NO	=	N2	OH	$2.160 \mathrm{E}+13$	-. 230	. 00
NH	NO	=	N2O	H	$4.160 \mathrm{E}+14$	-. 450	. 00
NH2	0	=	OH	NH	$7.000 \mathrm{E}+12$. 000	. 00
NH2	0	=	H	HNO	$4.600 \mathrm{E}+13$. 000	. 00
NH2	H	=	NH	H2	$4.000 \mathrm{E}+13$. 000	3650.00
NH2	OH	=	NH	H2O	$9.000 \mathrm{E}+07$	1.500	-460.00
M	NNH	=	N2	H	$3.300 \mathrm{E}+08$. 000	. 00
M	NNH	=	N2	H	1.300E+14	-. 110	4980.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
NNH	O2	=	HO2	N2	$5.000 \mathrm{E}+12$. 000	. 00
NNH	0	=	OH	N2	$2.500 \mathrm{E}+13$. 000	. 00
NNH	0	=	NH	NO	$7.000 \mathrm{E}+13$. 000	. 00
NNH	H	=	H2	N2	$5.000 \mathrm{E}+13$. 000	. 00
NNH	OH	=	H2O	N2	$2.000 \mathrm{E}+13$. 000	. 00
NNH	CH3	=	CH4	N2	$2.500 \mathrm{E}+13$. 000	. 00
H	NO	=	HNO	M	$8.950 \mathrm{E}+19$	-1.320	740.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO 2	2.00	C2H6	3.00	N2	0.7	END	
HNO	0	=	NO	OH	$2.500 \mathrm{E}+13$. 000	. 00
HNO	H	=	H2	NO	$4.500 \mathrm{E}+11$. 720	660.00
HNO	OH	=	NO	H2O	1.300E+07	1.900	-950.00
HNO	O2	=	HO2	NO	$1.000 \mathrm{E}+13$. 000	13000.00
CN	0	=	CO	N	$7.700 \mathrm{E}+13$. 000	. 00

CN	OH	=	NCO	H	$4.000 \mathrm{E}+13$. 000	. 00
CN	H2O	=	HCN	OH	$8.000 \mathrm{E}+12$. 000	7460.00
CN	O2	=	NCO	0	$6.140 \mathrm{E}+12$. 000	-440.00
CN	H2	=	HCN	H	$2.100 \mathrm{E}+13$. 000	4710.00
NCO	0	=	NO	CO	$2.350 \mathrm{E}+13$. 000	. 00
NCO	H	=	NH	CO	$5.400 \mathrm{E}+13$. 000	. 00
NCO	N	=	N2	CO	$2.000 \mathrm{E}+13$. 000	. 00
NCO	O2	=	NO	CO 2	$2.000 \mathrm{E}+12$. 000	20000.00
M	NCO	=	N	CO	$8.800 \mathrm{E}+16$	-. 500	48000.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO 2	2.00	C2H6	3.00	N2	0.7	END	
NCO	NO	=	N2O	CO	$2.850 \mathrm{E}+17$	-1.520	740.00
NCO	NO	=	N2	CO 2	$5.700 \mathrm{E}+18$	-2.000	800.00
M	HCN	=	H	CN	1.040E+29	-3.300	
126600.00							
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO 2	2.00	C2H6	3.00	N2	0.7	END	
HCN	0	=	NCO	H	1.107E+04	2.640	4980.00
HCN	0	=	NH	CO	$2.767 \mathrm{E}+03$	2.640	4980.00
HCN	0	=	CN	OH	$2.134 \mathrm{E}+09$	1.580	26600.00
HCN	OH	=	HOCN	H	$1.100 \mathrm{E}+06$	2.030	13370.00
HCN	OH	=	HNCO	H	$4.400 \mathrm{E}+03$	2.260	6400.00
HCN	OH	=	NH2	CO	1.600E+02	2.560	9000.00
H	HCN	=	H2 CN	M	$1.400 \mathrm{E}+26$	-3.400	1900.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO 2	2.00	C2H6	3.00	N2	0.7	END	
H2 CN	N	=	N2	CH2	$6.000 \mathrm{E}+13$. 000	400.00
C	N2	=	CN	N	$6.300 \mathrm{E}+13$. 000	46020.00
CH	N2	=	HCN	N	$2.857 \mathrm{E}+08$	1.100	20400.00
CH2	N2	=	HCN	NH	$1.000 \mathrm{E}+13$. 000	74000.00
C	NO	=	CN	0	1.900E+13	. 000	. 00
C	NO	=	CO	N	$2.900 \mathrm{E}+13$. 000	. 00
CH	NO	=	HCN	0	$5.000 \mathrm{E}+13$. 000	. 00
CH	NO	=	H	NCO	$2.000 \mathrm{E}+13$. 000	. 00
CH	NO	=	N	HCO	$3.000 \mathrm{E}+13$. 000	. 00
CH2	NO	=	H	HNCO	$3.100 \mathrm{E}+17$	-1.380	1270.00
CH2	NO	=	OH	HCN	$2.900 \mathrm{E}+14$	-. 690	760.00
CH2	NO	=	H	HCNO	$3.800 \mathrm{E}+13$	-. 360	580.00
CH3	NO	=	HCN	H2O	$9.600 \mathrm{E}+13$. 000	28800.00
CH3	NO	=	H 2 CN	OH	$1.000 \mathrm{E}+12$. 000	21750.00
HNCO	0	=	NH	CO 2	$9.800 \mathrm{E}+07$	1.410	8500.00
HNCO	0	=	HNO	CO	$1.500 \mathrm{E}+08$	1.570	44000.00
HNCO	0	=	NCO	OH	$2.200 \mathrm{E}+06$	2.110	11400.00
HNCO	H	=	NH2	CO	$2.250 \mathrm{E}+07$	1.700	3800.00
HNCO	H	=	H2	NCO	$1.050 \mathrm{E}+05$	2.500	13300.00
HNCO	OH	=	NCO	H2O	$4.650 \mathrm{E}+12$. 000	6850.00
HNCO	OH	=	NH2	CO2	1.550E+12	. 000	6850.00
M	HNCO	=	NH	CO	1.180E+16	. 000	84720.00
THIRDBODY							
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO 2	2.00	C2H6	3.00	N2	0.7	END	
HCNO	H	=	H	HNCO	$2.100 \mathrm{E}+15$	-. 690	2850.00
HCNO	H	=	OH	HCN	$2.700 \mathrm{E}+11$. 180	2120.00

APPENDIX C

MODIFICATIONS TO GLSENS FOR WATER INJECTION

```
C WATER INJECTION MODIFICATION FOR CH4 TO SUBROUTINE INIT
15 IF (FUEL.EQ.BLANK) GO TO 80
C SPECIAL COMPOSITION INPUT
        DO 20 J=1,NRS
        IF (FUEL.NE.DSPNM(J)) GO TO 20
        JFUEL=J
        GO TO 30
        CONTINUE
        WRITE (LWRITE, 25) FUEL
        FORMAT (//,7HO(INIT),5X,'***** WARNING: INPUT FUEL NAME "',A8,
        1 '" IS NOT IN REACTANT LIST *****',//)
        NEXT=.TRUE.
        RETURN
    30 IF (ERATIO.NE.O.) GO TO 35
        IF (FLAIR.EQ.O.) GO TO 80
C FUEL-OXIDANT MASS RATIO SPECIFIED
        TERM1 = AIRMW*FLAIR/MW (JFUEL)
        FRO2 = 1.0/(1.0 + NOXRAT + ARAT + CRAT)
        TERM2 = 1.0/(1.0 + TERM1)
        CONCO2 = DBLE (FRO2*TERM2)
        GO TO 40
C FUEL-OXIDANT EQUIVALENCE RATIO SPECIFIED
    3 5 ~ H 2 O M F = H 2 O F * 1 6 . / 1 8 . ~
        TERMI = 4.0*ERATIO*(1.+H2OMF)
        TINP = 4.0*SCC + SCH - 2.0*SCOX
        ERAT=ERATIO
        TERM2 = 1.0 + NOXRAT + ARAT + CRAT
        FRO2 = 1.0/TERM2
        TERM2 = 1.0/(TERM1 + TINP*TERM2)
        CONCO2 = DBLE(TINP*TERM2)
C
    40 IF (MOLEF) GO TO 42
C WARNING: MOLEF = .FALSE. FOR SIMPLIFIED COMPOSITON INPUT.
C SET MOLEF = .TRUE.
        MOLEF = .TRUE.
        WRITE (LWRITE,41)
    4 1 ~ F O R M A T ~ ( / / , 7 H O ( I N I T ) , 5 X , ' * * * * ~ W A R N I N G : ~ S I M P L I F I E D ~ C O M P O S I T I O N ~ ' , ~
        1 'INPUT USED BUT MOLEF SET EQUAL TO . FALSE. IN NAMELIST START',/,
        2 30X,'MOLEF HAS BEEN SET EQUAL TO .TRUE. ****',//)
C SIGMA = MOLES/GRAM MIXTURE
```



```
        DO 45 I = 1,LS
        IF (O2.NE.DSPNM(I)) GO TO 45
        SIGMA(I) = CONCO2
        GO TO 50
        CONTINUE
        SIGMA (27) =SIGMA(JFUEL) *DBLE(H2OMF)
        DO 55 I = 1,LS
        IF (N2.NE.DSPNM(I)) GO TO 55
        SIGMA(I) = DBLE (NOXRAT)*CONCO2
        GO TO 60
        CONTINUE
```

```
60 DO 65 I = 1,LS
        IF (AR.NE.DSPNM(I)) GO TO 65
        SIGMA(I) = DBLE(ARAT)*CONCO2
        GO TO 70
        CONTINUE
        DO 75 I = 1,LS
        IF (CO2.NE.DSPNM(I)) GO TO 75
        SIGMA(I) = DBLE(CRAT)*CONCO2
        GO TO 80
        CONTINUE
75
C
    80 READ (LDAT, 85) DSP,TINP
```

Additional equations specific to the program.

$$
\begin{gather*}
\text { Term } 2=\frac{1}{\text { Term1 }+ \text { TINP }+ \text { Term } 2} \tag{C1}\\
\text { conc } O_{2}=y_{O_{2}}=\frac{\text { TINP } * 1}{\text { Term } 2} \tag{C2}\\
y_{f}=\frac{4 \text { Eratio }}{4 n_{C}+n_{H}-2 n_{O}} * y_{O_{2}}=\frac{\text { Term1 }}{\text { TINP }} * \text { TINP } * \text { Term } 2 \tag{C3}\\
y H 2 O=y_{\text {fuel }} * H 2 O F * \frac{167}{18} \tag{C4}\\
y_{N_{2}}=\eta_{N_{2}} * y_{O_{2}} \tag{C5}
\end{gather*}
$$

let $y_{\mathrm{Ar}}=0.0$, and $\mathrm{y}_{\mathrm{CO} 2}=0.0$

APPENDIX D

MODIFICATIONS TO OUT2 OF GLSENS FOR OBTAINING OUTPUT FOR THE CH4 COMPUTATIONS

```
C ALREADY DONE IN DIFFUN
C ch4.f dec 14,2003
420 foa=eratio*0.059
    tn=timil
    trr=sngl(T)
418 if(time.gt.0.)goto 427
            write(10,1)
        1 format(' TITLE= P atm T K f/a conc fuel co nox
        3coequil time ')
C calculate the initial conditions for the averaging
        write(11,417) ch4e
    417 format(' ch4e ',e13.4)
        nc=1
        nco=1
        t0=0.
        stco=0.
        areaf=0.
        tauf=0.
        tauco=0.
        tauno=0 .
        areaco=0.
        areano=0.
        atauf=0.
        atauco=0.
        atauno=0.
    427 continue
        cco=sngl(dabs(prc(9)))
        cnox=sngl(dabs(prc(31)+2.d0*prc(33)+prc(34)))
        xnox=sngl(prc(31)/(prc(31)+2.d0*prc(33)+prc(34)))
        cfuel=sngl(dabs(prc(14)))
C write(10,423)nc,P,T,foa,cfuel,cco,cnox,ccoe,
C 1timil
    423 format(i4,f5.1,f8.1,1p,8e10.3)
C Begin Step One calculations
C calculate the initial conditions for the averaging
        if(nc.lt.2)goto 1500
        if(nc.eq.2)tstart=timil
        if(nc.eq.2)t0=timil
        O2=sngl(prc(2))
        if(nc.eq.2)taufo=-sngl(prc(14)/W(14))*1.e3
C if(nc.eq.2) edd=15.*taufo
        if(tn.eq.t0)goto 424
        if(W(14).ne.0.)tauf=-sngl(prc(14)/W(14))*1.e3
        if(tauf.le.0.)goto 424
C if(cfuel.lt.1.e-25)goto 424
        areaf=areaf+(1./taufo+1./tauf)/2.*(tn-t0)
        timet=timil-tstart
        atauf=timet/areaf
        if(nc/10*10.eq.nc)write(11,423)nc,P,T,foa,cfuel,02,tauf,atauf,
        1timil
        taufo=tauf
```

```
    424 if(nc.eq.2)tauni=sngl(1.D0/(W(31)+2.do*W(33)+W(34)))*1.e3
        tauno=sngl(1.D0/(W(31)+2.d0*W(33)+W(34)))*1.e3
        if(to.eq.tn)goto 339
        if(tauno.lt.0.)go to 339
        areano=areano+(1./tauno+1./tauni)/2.*(tn-t0)
        atauno=timet/areano
        tauni=tauno
        xrate=sngl(W (31)+2.do*W(33)+W(34))
        if((nc/10*10).eq.nc) write(13,501)nc,P,T,xrate, cnox, tauno,xnox,
        latauno,eratio,timil
    339 denm=sngl(w(15))
        cco2=sngl(prc(15))
C if(w(15).lt.0.)next=.true.
    if(nc.eq.2)tauci=(sngl(dabs(prc(9))))/denm*1.e3
    tauco=(sngl(dabs(prc(9))))/denm*1.e3
    if(to.eq.tn) goto 504
    if(tauco.le.0.)goto 503
C if(stco.eq.0.)stco=timil
    timco=timil
    rfuel=cfuel/tauf*1.e3
    areaco=areaco+(1./tauco+1./tauci)/2.*(tn-t0)
    atauco=timco/areaco
    tauci=tauco
    nco=nCO+1
    338 format(i7,1p8e11.3)
        rfuel2=sngl(w(14))
        dcodt=-((sngl(prc(9)))-ccoe)/tauco*1.e3
    503 if((nc/10*10).eq.nc) write(12,423) nc,P,T,foa,cco,ccoe,tauco,
    latauco,timil
        if(nco.lt.100) write(15,338)nc,timco,tauci,tauco, atauco, areaco
    504 t0=tn
    431 format (f12.2,3e13.5,f8.3,f8.3,e13.5)
    501 format(i4,f7.4,f7.1,4e12.5,f6.3,f9.3)
C Begin step Two calculations
    pl=log(P)
    tol=1./T
    h2ol=prc(27)
    h2osl=sngl(prc(27))
    h2ol=dlog(prc(27))
C if(cfuel.lt.1.e-20)cfuel=1.e-20
    fo=log(cfuel)
    fo2=sngl(prc(2))
    fo2l=log(fo2)
    tal=log(tauf)
    talc=log(tauci)
    taln=log(tauni)
    if(nc.eq.2)tolo=log(tfop)
    if( nc.gt.2)tolo=timil
    if(cfuel.le.1.e-24)goto 902
    425 format(i6,1p9e11.3)
C output fuel times
    write(26,900) foa,h2of,pl,tol,fo,fo2l,h2ol,tal,tolo
    900 format(2f7.3,1p,9e11.3)
    9 0 2 ~ t a l = l o g ( t a u c i )
    if(cco.lt.1.e-20)goto 903
    col=log(cco)
    tolo=log(tcop)
```

```
        if(nc.gt.2) tolo=timil
    C Output co times and concentrations
        write(27,900) foa,h2of,pl,tol,fo,col,fo2l,h2ol,tal,tolo
        903 continue
            tal=log(tauni)
            tolo=log(tnop)
            if(nc.gt.2) tolo=timil
C output nox times and concentrations
            write(28,900)foa,h2of,pl,tol,fo,fo2l,h2ol,tal,tolo
    1500 nc=nc+1
C if(nc.gt.4000)next=.true.
C if(nc.gt.50)next=.true.
    if (timil.gt.1.)go to 502
    DO 435 IJ=1,MAX
    IF (IJ.GT.LS.OR.IJ.GT.LR) GO TO 435
    TCON(IJ) =SNGL(PRC(IJ)/W(IJ))
    FMOL=SNGL(SIGMA(IJ) *MIXMW)
    WRITE (LWRITE,175) DSPNM(IJ),PRC(IJ),FMOL,W(IJ)
    GO TO 435
    430 WRITE (LWRITE,185) IJ,RATE(IJ),PRX(IJ),EQUIL(IJ)
    C430 continue
    435 CONTINUE
```


APPENDIX E

RUN INPUT FOR GLSENS

```
Run input for Jet-A for GLSENS TYPICAL FOR STEP ONE
TIME PRESSURE C12H23
    &prob TCON=.TRUE., CTO=1.0,
    IPRINT=1, end=1.e-2, &eend
    &start time=0., ERATIO=0.3,SCC=12.0,SCOX=0.,SCH=23.,
    NOXRAT=3.76, ARAT=0., CRAT=0 . ,T=1000 . ,H2OF=0. &end
END
    &solver mxstep=2000., emax=1.e-13, atolsp=1.e-13,maxstp=190000, &end
INIT
ALLSP END
SENSVAR
ALLSP END
REAC
FINIS
        RUN INPUT FOR JET-A FOR GLSENS TYPICAL FOR STEP TWO
REPEAT MECHANISM
TIME PRESSURE C12H23
    &prob TCON=.TRUE., CTO=1.0,
    PRINT=5.e-5,1.e-4,1.5e-4,2.e-4,2.5e-4,
    3.e-4,4.e-4,5.e-4,1.e-3,1.5e-3,2.e-3,2.5e-3,3.e-3,3.5e-3,4.e-3,
    4.5e-3,5.e-3,5.5e-3,6.0e-3,&end
    &start time=0.,ERATIO=0.3,SCC=12.0,SCOX=0.,SCH=23.,
    NOXRAT=3.76, ARAT=0., CRAT=0.,T=1000.,H2OF=0.0&end
END
    &solver mxstep=2000, emax=1.e-13, atolsp=1.e-13,maxstp=190000, &end
INIT
ALLSP END
SENSVAR
ALLSP END
REAC
FINIS
RUN INPUT FOR CH4 FOR GLSENS TYPICAL FOR STEP ONE
TIME PRESSURE CH4
    &prob TCON=.TRUE., CTO=1.0,
    IPRINT=1, end=5.e-4, , &end
    &start time=0., ERATIO=0.4,SCC=1.0,SCOX=0.,SCH=4.,
    NOXRAT=3.76, ARAT=0., CRAT=0. ,T=1000.,H2OF=0. &end
END
    &solver mxstep=2000.,emax=1.e-15, atolsp=1.e-15,maxstp=190000, , &end
INIT
ALLSP END
SENSVAR
ALLSP END
REAC
FINIS
        RUN INPUT FOR CH4 FOR GLSENS TYPICAL FOR STEP TWO
TIME PRESSURE CH4
    &prob TCON=.TRUE., CTO=1.0,
    PRINT=5.e-6,1.e-5,2.5e-5,5.e-5,1.e-4,1.5e-4,2.e-4,2.5e-4,
```

```
3.e-4,4.e-4,5.e-4,1.e-3,1.5e-3,2.e-3,2.5e-3,3.e-3,3.5e-3,4.e-3,
4.5e-3,5.e-3,5.5e-3,6.0e-3, &end
&start time=0.,ERATIO=0.3,SCC=1.0,SCOX=0.,SCH=4.0,
NOXRAT=3.76,ARAT=0., CRAT=0.,T=1000.,H2OF=0.0, &end
END
    &solver mxstep=20000,emax=1.e-14,atolsp=1.e-14,maxstp=300000, &end
ALLSP END
SENSVAR
ALLSP END
REAC
FINIS
```


APPENDIX F

FORTRAN CODE FOR TANKS IN SERIES CALCULATION

```
C IN FIGURE 8 OUTPUT THE PPM AS A FUNCTION OF TEMPERATURE AND COMPUTE
c EACH PHIN TO KEEP TEMPERATURE CONSTANT AS H INCREASES
C methane
C H=h/a t=time
C set up maximum reactors to be eight in series
C pf=f/a fraction in reactor, t=time milliseconds
    DIMENSION pf (8),t(8),TT(8), EFT (8),TAUF (8),TCO (8),TNOX (8),tim(8)
    DIMENSION fa(8),COE(8),rnox(10),hn(5),melissa(5)
    data pf/1.5,1.2,1.0,5*0./
    data t/1.,1.5,2.5,5*0.5/
    REAL NOX,melissa
        open(5, file='fort.5', form='formatted')
        open(10,file='fort.10',form='formatted')
        open(11,file='fort.11',form='formatted')
        open(12, file='fort.12',form='formatted')
        open(13, file='fort.13',form='formatted')
        open(14,file='fort.14',form='formatted')
        open(15,file='fort.15',form='formatted')
        write(12,111)
C 111 format(' h2o phi h2o/f eftt tt(4) ppmco ',
    111 format(' phi ',8X, 'h2o', 2X 'T4 ',9x,'O2 O2COR ',
        1' ppmno, cwcd')
        T3=700.
        P=200./14.696
C read(5,5)p3,T3,pf,t
    5 format(2e10.3,/,8f5.2,/8f5.3)
C p=p3/14.696
            WRITE(10,7)P,T3,((PF(I),T(I)),I=1,4)
            WRITE (13,7)P,T3,((PF (I) ,T(I)),I=1,4)
    7 FORMAT(' P=',F5.2,' T3= ',F5.0,/,' PF,T=',2(2F5.2' : ')/2(2F5.2' :
        1'),/,3x,'TEMP F H=0.0 H=0.05 H=0.1 H=0.15 ')
        WRITE (15,7) P,T3,((PF(I),T(I)),I=1,4)
        WRITE (10,8)
    8 FORMAT(6x,'IR h FA(IR) T4(IR) EFF nox
        1 Ttnox TAUNOX')
        PHI=0.2
        DO 11 IP=1,8
        PHI=PHI+0.1
            H=-0.05
            DO 1 IH=1,4
        H=H+0.05
        PHIN=PHI
        DO 36 IX=1,10
    36 PHIN=PHI*(1.+H/(PHIN* 0.059))**0.1586
C WRITE(10,37)IX,PHIN, PHI,H
    37 FORMAT(I5,3F11.4)
        pf(1)=1./phin
    if(phin.ge.1.) write(13,17) Phi, Phin,H
    17 format(' phi=',e12.4,'phin=',e12.4,' h ',e12.4)
        if(PHIN.GT.1.) go to 500
        CO=0.
    NOX=0.
```

C ITERATE TO SOLVE FOR T4 FOR EACH REACTOR, IR= CONDITIONS FOR EACH REACTOR. (NO)
$\operatorname{tim}(1)=0$. DO 30 IR=1, 3 tim(ir) $=$ tim(ir) + (ir)
FA (ir) $=$ PHIN*0.059*PF (IR)
If(fa(ir).gt.0.059)fa(ir) $=0.059$
$\mathrm{HF}=\mathrm{H} / \mathrm{FA}$ (ir)
IF (HF.GT. 2.5) HF=2.5
$E F F=100.00$
EFTT=100.
itI=0
C DO 40 IT4=1,10
itI=itI+1
C EFTT= TOTAL INEFFICIENCY
EFFO=EFF
C DO NOT USE RICH CORRELATIONS HERE AS RESULTS FLUCTUATE - NOT PHYSICAL IF (fa(ir).GT.0.0592) GO TO 66
C DO LEAN CORRELATIONS
$\mathrm{T} 4 \mathrm{E}=457 . *(\mathrm{~T} 3) * * 0.258 * \mathrm{FA}(\mathrm{ir}) * * 0.435 *(1 .+\mathrm{HF}) * *(-.069) *(\mathrm{P})$
$1 * * 0.00284 * 0.059 * *(-.435)$
eff=100.
$T 4=T 3+(T 4 E-T 3) * E F F / 100$.
TAUF (IR) $=2.09 \mathrm{e}-4 *$ FA (ir) **0.222* (1. +HF) **0.0675*P** (-1.07)*
1EXP (22625./T4)
TCO (IR $)=9.99 \mathrm{E}-4 * \mathrm{FA}(\mathrm{ir}) * *(0.101) *(1 .+\mathrm{HF}) * * .0959 * \mathrm{p} * *(-1.00) *$
1EXP (2434./T4)
TNOX (IR) $=2.94 \mathrm{E} 4 * \mathrm{fa}(\mathrm{ir}) * * .032 *(1 .+\mathrm{HF})$ **. 329*p**(-2.1)*
1EXP (34859./T4)
$\operatorname{COE}(\mathrm{IR})=15569 . *$ fa(ir)**1.90*(1.+HF)**.00705*P**(-.477)*
1EXP (-33388./T4)*0.059**1.90
goto 40
C
$66 \mathrm{~T} 4 \mathrm{E}=859 . * \mathrm{~T} 3 * * 0.176 * \mathrm{fa}(\mathrm{ir}) * *(-0.559) *(1 .+\mathrm{HF})$ ** (-0.146) *P** $1(.00167) * 0.059 * * .559$ $\mathrm{T} 4=\mathrm{T} 3+(\mathrm{T} 4 \mathrm{E}-\mathrm{T} 3) * \mathrm{EFF} / 100$. TAUF (IR) $=2.74 \mathrm{e}-2 * \mathrm{fa}(\mathrm{ir}) * * .111 *(1 .+\mathrm{HF}) * *(-.829) * \mathrm{P} * *(-0.328) *$ 1EXP (14216./T4)
$\operatorname{TCO}(I R)=1.3 \mathrm{E}-3 * f a(\mathrm{ir}) * *(.215) *(1 .+\mathrm{HF}) * *(.195) * \mathrm{p} * *(-1.0)$
1*EXP (2433./T4)
TNOX (IR) $=43928 . *$ fa(ir) ** (.284) *(1. + HF) **. $641 * P * *(-2.0)$
1*EXP (32649./T4)
$\operatorname{COE}(\mathrm{IR})=5.3 \mathrm{E}-2 * \mathrm{fa}(\mathrm{ir}) * * 2.55 *(1 .+\mathrm{HF}) * *(-.358) * \mathrm{P} * *(-.00393)$ * 1EXP (-31365./T4)*0.059** (-2.55)
C EFF EQUALS THE EFFICIENCY OF EACH REACTOR
C IF CHANGE IN EFFICIENCY IS LESS THAN 0.1 ITS CONVERGED
C $67 \mathrm{EFF}=(1 .-\operatorname{EXP}(-\mathrm{tim}(\mathrm{IR}) / \mathrm{TAUF}(\mathrm{IR}))) * 100$.
C $\quad I F(A B S(E F F-E F F O) . L T .0 .01)$ GO TO 41
C $\operatorname{WRITE}(10,96) I R, i T I, f a(i r), T 4, E F F$
40 CONTINUE
96 FORMAT(' IR= ',I10,' itI ',i4,' fa ',e10.3,' T4 ',F7.2,F7.2)
$41 \mathrm{TT}(\mathrm{IR})=\mathrm{T} 4$
$E F T(I R)=E F F$
FAE=fa(ir)*EFF/100.
XFO=FAE/(FAE*(1.+HF*16./29.) +16./29.)
$\mathrm{FO}=\mathrm{XFO}$ * $\mathrm{P} / 82.056 / \mathrm{T} 4$
eftt=eftt*(100.-eff)

```
C write(10,97) ir,phi,hf
    97 format(' ir ',i5,' phi ',f10.3,' hf ',f8.3)
    100 FORMAT(2X,4e12.4)
C CALCULATE CO FOR EACH REACTOR
    TTF=T (IR) /TAUF (IR)
    TTCO=T(IR)/TCO(IR)
        EXCO=EXP(-TTCO)
        TTAUF=T(IR)/TAUF (IR)
            FOT=FO*TTAUF/(TTCO-TTAUF)
            if(ir.eq.1) CO=COE(IR) -EXCO*COE(IR) +FOT*(EXP(-TTAUF) -EXCO)
            irb=ir
            IF(IR.GT.1) irb=ir-1
        CO=CO*FA(IR)/FA(IRB)*(1.+fa(irb)*29./16.)/(1.+fa(ir)*29./16.)
        IF(IR.GT. 1) CO=COE (IR) + (CO-COE (IR) ) *EXCO+FOT* (EXP (-TTAUF) -EXCO)
C CACULATE NOX FOR EACH REACTOR
        TTNOX=T(IR)/TNOX(IR)
            IF(IR.EQ.I) nox=nox+TTnox
            NOX=NOX*FA(IR)/FA(IRB)*(1.+fa(irb)*29./16.)/(1.+fa(ir)*29./16.)
            IF(IR.GT.1) nox=nox+TTnox
            phio=fa(ir)/0.059
            WRITE(10,99)IR,IP,H,phio,T4e, EFF,NOX,TTNOX,TNOX(IR)
        99 FORMAT(' *',2I4,2F8.4,2F9.2,1P6E10.2)
    110 rnox(ih)=nox*1.e6*82.056*t4/p
            write(11,98)ir, PHIO,t(ir),ttf,ttco,CO,COE(IR),T4
        98 format(i3,1p7e10.2)
C END OF INDIVIDUAL REACTOR SEGMENT
    30 continue
    113 format(2x,f9.3,1p5e11.3)
            CWCD=(PHIN+(2.+(16./18.)*(HF)*PHIN) +(1.-PHIN)*2+(2.*79./21.))/
            1(PHIN+(1.-PHIN)*2.+(2.*79./21.))
        RHO=P/82.056/TT (3)
        O2=(1.-PHIN)*2.*phin/(9.524-phin)
        if(02.lt.0.) O2=0.
        O2COR=5.9/(20.9-100.*O2)
        PPMCO=CO*1.E6/RHO*O2COR
        PPMCO=PPMCO*CWCD
        PPMNO=NOX*1.E6/RHO*O2COR
        PPMNO=PPMNO*CWCD
        hn(ih)=ppmno
            melissa (ih)=ppmco
            write(12,102) phi,hf,tt(3),o2,o2cor,ppmno, cwcd
    102 format(2f8.3,f7.1,f8.3,1p3e10.2)
c write(13,113)phi,(rnox(ir),ir=1,4)
    1 continue
            Tf=tt(3)*1.8-460.
            write(13,113)tf,(hn(in),in=1,4)
                write(14,113)tf,(rnox(in),in=1,4)
                write(15,113)tf,(melissa(in),in=1,4)
    11 continue
    500 stop
                End
```


APPENDIX G

FORTRAN CODE FOR MODEL SIMULATION OF GLSENS CONSTANT TEMPERATURE AND PRESSURE PLUG FLOW REACTOR

```
C Moder Ch4 reaction
    OPEN(6,FILE='MELISSA.OUT',FORM= 'FORMATTED')
    foa=0.05263
        TK=2000.
    P=2.
        rho=P/82.056/TK
        yfo=foa/(foa+16./29.)
        fo=yfo*rho
C Step one equation - lean
            tauf1=2.09e-4*P**(-1.07)*foa**(0.222)*exp(22625./TK)
            TMIN=-TAUF1*LOG(1.-1.E-20/2./FO)
            WRITE (6,1) TMIN,TAUF1, fo
    1 FORMAT(' TMIN MS ',E12.4,' TAUF1 MS ',E12.4,' fo ',e12.4)
        write(6,2)
    2 format(8X,' TIME SEC FUEL H2O TAUF MS ')
C CH4+2.O2=CO2+2. H2O
        NT=0
        F=FO
            H2O=0.
            TIME=0
            TAUF=TAUF1
            DTIME=1.E-5
            DO 6 IT=1,50000
            TIME=TIME+DTIME
            DF=F*DTIME/TAUF
            F=F-DF
            H2O=H2O+2*DF
C step two equation
            IF(H2O.GT.1.E-20)TAUF=3.5E-9*P** (-0.0713)*F** (-0.307)*
        2H2O** (-0.465)*(1.+H2O/F)**(-0.221)*EXP (14149/TK)
            TSEC=TIME*1.E-3
            NT=NT+1
                IF (IT/100*100.EQ.IT) WRITE (6,10)NT,TSEC,F,H2O,TAUF
    10 FORMAT(I8,1P4E12.4)
    6 ~ C O N T I N U E ~
    STOP
            END
```


REFERENCES

1. Molnar, Melissa; and Marek, Cecil J.: Reduced Equations for Calculating the Combustion Rates of Jet-A and Methane Fuel. NASA/TM-2003-212702, November 2003.
2. Hendricks, R.C.; Shouse, D.T.; and Roquemore, W.M.: Water Injected Turbomachinery, The $10^{\text {th }}$ International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, 2004.
3. Brink, Anders; Mueller, Christian; Kilpinen, Pia; and Hupa, Mikko: Possibilities and Limitations of the Eddy Break-Up Model, Combustion and Flame, 123, 275-279 (2000).
4. Penko, P.F.; Kundu, K.P.; Siow, Y.K.; and Yang, S.L.: A Kinetic Mechanism for Calculation of Pollutant Species in Jet-A Combustion, AIAA-2000-3035.
5. Kundu, K.P.; Penko, P.F.; and VanOverbeke, T.J.: A Practical Mechanism for Computing Combustion in Gas Turbine Engines, AIAA-99-2218.
6. Bittker, D.A.: GLSENS, A Generalized Extension of LSENS Including Global Reactions and Added Sensitivity Analysis for the Perfectly Stirred Reactor, NASA Reference Publication 1362, 1999.
7. Radhakrishnan, Krishnan; and Bittker, David A.: LSENS, A General Chemical Kinetics and Sensitivity Analysis Code for Homogeneous Gas-Phase Reactions, NASA Reference Publication 1329.
8. Sanford, Gordon; and McBride, Bonnie J.: Computer Program for Calculation of Complex Chemical Equilibrium Composition and Applications, NASA Reference Publication 1311, October 1994.
9. Bhargava, A.; Colket, M.; Sowa, W.; Casleton, K.; and Maloney, D.: (1999) An Experimental and Modeling Study of Humid Air Premixed Flames, ASME, International Gas Turbine and Aeroengine Congress and Exhibition, Indianapolis, IN 7-10 June, Paper 99-GT-8. (See also, J. Engr. Gas Turbines and Power 122:405 (2000).)
10. GRI-Mech Version 2.1 released 9/6/95 http:/www.gri.org/tech/res/

Figure 7
Kinetic Jet-A Fuel Tau Parity
Step Two
(Iean)

Tau fuel GLSENS (experimental)

Figure 9
Kinetic Jet-A NOx Tau Parity
Step Two
(lean)

$-\mathrm{H}=0.0$ (prediction)
$-\mathrm{H}=0.05$ (prediction)
$-\mathrm{H}=0.10$ (prediction)
$\square \mathrm{H}=0.15$ (prediction)
$\square \mathrm{H}=0.05$ (data)
$\square \mathrm{H}=0.10$ (data)
$\square-\mathrm{H}=0.15$

$\begin{array}{|rc|}\rightarrow- & \mathrm{H}=0.0 \\ \rightarrow- & \mathrm{H}=0.05 \\ - & \mathrm{H}=0.1 \\ \rightarrow & \mathrm{H}=0.15 \\ \triangle & \mathrm{H}=0.0 \text { (data) } \\ \bullet & \mathrm{H}=0.05 \text { (data) } \\ \triangle & \mathrm{H}=0.10 \text { (data) } \\ \bullet & \mathrm{H}=0.15 \text { (data) }\end{array}$

Temperature (F)

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.				
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE April 2004	3. REPORT TYPE AND DATES COVERED Technical Memorandum		
4. TITLE AND SUBTITLE New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection			5. FUNDING NUMBERS WBS-22-714-20-10	
6. AUTHOR(S) Melissa Molnar and C. John Marek				
7. PERFORMING ORGANIZATION NA National Aeronautics and Sp John H. Glenn Research Cen Cleveland, Ohio 44135-31	AME(S) AND ADDRESS(ES) pace Administration nter at Lewis Field 91		8. PERFORMING ORGANIZATION REPORT NUMBER$E-14483$	
9. SPONSORING/MONITORING AGEN National Aeronautics and Sp Washington, DC 20546-0001	NCY NAME(S) AND ADDRESS(ES) pace Administration 01		10.	NSORING/MONITORING ENCY REPORT NUMBER SA TM—2004-213046
11. SUPPLEMENTARY NOTES Melissa Molnar, Ohio University, Department of Chemical Engineering, Athens, Ohio 45701; and C. John Marek, NASA Glenn Research Center. Responsible person, C. John Marek, organization code 5830, 216-433-3584.				
12a. DISTRIBUTION/AVAILABILITY S Unclassified - Unlimited Subject Category: 07 Available electronically at http:// This publication is available from	TATEMENT Distrib gltrs.grc.nasa.gov the NASA Center for AeroSpace In	tion: Nonstandard rmation, 301-621-0390.	12b. D	TRIBUTION CODE
13. ABSTRACT (Maximum 200 words) A simplified kinetic scheme for Jet National Combustor Code (NCC) or averaged value (step one) or an inst presented here results in a correlation step time averaged method previou the initial times for smaller water c to fuel mass ratio, temperature, and time as a function of instantaneous to the turbulent mixing times to det and rate constants for each species kinetic times. Chemical kinetic tim injection to water mass loadings of Applications (CEA) code to determ water to fuel mass ratio, pressure and initial combustor temperature (T3),	-A, and methane fuels with water injec or even simple FORTRAN codes that a antaneous value (step two). The switch on that gives the chemical kinetic time sly developed to determine the chemic oncentrations. This gives the average ch pressure. The second instantaneous st fuel and water mole concentration, pre ermine the limiting properties of the re in a kinetic scheme for finite kinetic ra e equations for fuel, carbon monoxide $2 / 1$ water to fuel. A similar correlation ine the equilibrium concentrations of and temperature (T3). The temperature of , equivalence ratio, water to fuel mass	on was developed to be use being developed at Glenn. is based on the water conce two separate functions. T kinetic time with increased mical kinetic time as a fun , to be used with higher w sure and temperature (T4). tion. The NASA Glenn GL s. These reaction rates wer no NO_{x} were obtained for was also developed using d rbon monoxide and nitroge the gas entering the turbin io, and pressure.	in numeri he two tim tration in s two step accuracy. ion of init er concent he simple SENS kine then used -A fuel an from NA oxide as f (T4) was	cal combustion codes, such as the e step method is either an initial time moles/cc of 1×10^{-20}. The results method is used as opposed to a one The first time averaged step is used at ial overall fuel air ratio, initial water ations, gives the chemical kinetic correlations would then be compared tics code calculates the reaction rates to calculate the necessary chemical d methane with and without water SA's Chemical Equilibrium unctions of overall equivalence ratio, lso correlated as a function of the
14. SUBJECT TERMS Combustion; Chemical kin	times; Jet-A; Methane; N	n oxides; Carbon		15. NUMBER OF PAGES 71 $16 . ~ P R I C E ~ C O D E ~$
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICA OF ABSTRACT Unclassified	$\overline{\text { ATION }}$	20. LIMITATION OF ABSTRACT
NSN 7540-01-280-5500			Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102	

