

New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

Melissa Molnar Ohio University, Athens, Ohio

C. John Marek Glenn Research Center, Cleveland, Ohio Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peerreviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at *http://www.sti.nasa.gov*
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076

New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

Melissa Molnar Ohio University, Athens, Ohio

C. John Marek Glenn Research Center, Cleveland, Ohio

National Aeronautics and Space Administration

Glenn Research Center

Available from

NASA Center for Aerospace Information 7121 Standard Drive Hanover, MD 21076 National Technical Information Service 5285 Port Royal Road Springfield, VA 22100

Available electronically at <u>http://gltrs.grc.nasa.gov</u>

New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

Melissa Molnar Ohio University Athens, Ohio 45701

C. John Marek National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

ABSTRACT

A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1×10^{-20} . The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction.

The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NO_x were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel.

A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering the turbine (T4) was also correlated as a function of the initial combustor temperature (T3), equivalence ratio, water to fuel mass ratio, and pressure.

INTRODUCTION

A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two step kinetic scheme presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method (Reference 1) to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at initial with smaller water concentrations of less than 1×10^{-20} moles/cc. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole fractions, pressure and temperature (T4). The simple correlations would then be used with the turbulent mixing times to determine the limiting properties of the reaction.

Water injection into gas turbine engines can be useful in many ways. This includes reduced NO_x formation, a lower temperature entering into the turbine (T4) and improving the efficiency and performance of the engine. Water injection has been used in industrial applications, including turbo machinery and diesel engines. Aeronautical applications are still being developed and studied. (Reference 2). The chemical kinetic times for Jet-A fuel and methane with water injection is the focus of the research presented here.

Reaction rates are kinetically limited at low temperatures and mixing limited at very high temperatures. According to the Magnussen model (Reference 3), the fuel oxidation rate will be determined by the maximum of either the chemical kinetic time or the turbulent mixing times of the fuel and air. However, for large numerical solutions it is very tedious to use detailed classical calculations to compare both the kinetic and turbulent mixing times to determine the limits of the reaction. Detailed chemical kinetic schemes are extremely time consuming for two and three dimensional computer calculations for combustors.

Large mechanisms with many intermediate species and very fast radical reactions which cause the equations to be stiff (extremely fast compared to the overall rate, requiring a large number of small time steps), making them very difficult to integrate. Calculations for these extensive mechanisms are repetitive and complex. Using the simplified kinetic scheme developed here to calculate the three chemical kinetic times greatly reduces the amount of time required to obtain a converged solution. The advantage of extracting the chemical kinetic time for only the species of interest from a detailed computation is that we have only the differential equations of interest to solve, resulting in a much smaller set of equations.

This method is for use in Computational Fluid Dynamics (CFD) calculations where chemical kinetics is important. The current version of NCC requires the user to decide to use either chemical kinetics or the turbulent mixing rates for computing the overall conversion rate. Following detailed conventional methods would not allow for the calculation of both in a reasonable amount of time. The derived method allows for a quick and easy comparison over the complete spectrum of conditions. This scheme is intended for use in numerical combustion codes, but it can also be used as a quick and accurate method to calculate chemical reaction rates.

We have also curve fitted T4 and the equilibrium concentrations of CO_e , and NO_{x_e} using data generated by the NASA Chemical Equilibrium Application code (CEA). Jet-A fuel was represented as $C_{12}H_{23}$, using Krishna Kundu's twenty three step mechanism (References 4 and

5). The methane combustion was represented using the GRI-mech version 2.1 mechanism (Reference 10).

GLSENS (Reference 6) was used to integrate the system of equations at constant temperature and pressure, at over 2000 conditions to derive the rate expressions. We have massively correlated the output from GLSENS, the NASA detailed kinetics code, into simple exponential expressions for the chemical kinetic times. It may be reasoned that the presented equations are only as good as the overall mechanism that calculates the data. However, performing the calculations in the conventional manner is also only as good as the mechanism equations and constants that go into them. The first sections of the report, including Mixing and Kinetics, Model Equations, H_2O Mass Balance, Determination of the Chemical Kinetic Time, and the kinetic schemes pertain to both Jet-A and methane fuels. The Jet-A equilibrium and chemical kinetic time correlations will then be presented, followed by the methane correlations. Suggestions for using the correlations and a comparison of NO_x production data (Reference 2) and the NO_x produced by the chemical kinetic time correlations will then be given.

MIXING AND KINETICS

The Magnussen model (Reference 3) proposes that the maximum of either the turbulent mixing or the chemical kinetic times will be the limiting factor of a chemical reaction. This model could be explored by numerically calculating both times to compare them. However, using detailed mechanisms, this is a long and tedious process. The calculations would be extremely complicated for the detailed chemical kinetic time. By using the equations presented here to determine the chemical kinetic times and using conventional numerical methods to determine mixing times, the Magnussen model can be applied in a much more convenient way.

Net rate
$$\overline{\sigma}_r = \min(\frac{A\varepsilon}{k} y_{fuel}, \frac{A\varepsilon}{k} \frac{y_{oxygen}}{r_f}, \overline{\sigma}_{kinetic})$$
 (1)

Where $\frac{k}{A\varepsilon}$ equals the turbulent mixing time, τ_m , with k being the turbulent kinetic energy, ε is the dissipation rate, y is the mass fraction, and r_f , is the stoichiometric coefficient written on a mass fraction basis. The mixing constant, A, is usually given as 4.0. The factor $\frac{y_{fuel}}{\overline{\sigma}_{kinetic}}$ is the chemical kinetic time τ_c computed in this report from the correlations presented.

In order to obtain the chemical source term $\overline{\omega}_r$, a comparison is made of the mixing rate, $\frac{1}{\tau_m}$ and the chemical kinetic rate $\frac{1}{\tau_c}$, and the lowest rate or the longest time is used in the expression; see Figure 1. This may also be represented by the following relationship:

$$\tau = \max\left(\tau_m, \tau_c\right) \tag{2}$$

MODEL EQUATIONS

The following equations can be used to model the chemical system.

$$C_{x} H_{y} + (x/2 + y/4) O_{2} \xrightarrow{\tau_{Fuel}} x CO + y/2 H_{2}O$$
(S1)

$$CO + \frac{1}{2}O_2 \longrightarrow CO_2$$
 (S2)

$$N_2 + O_2 \longrightarrow 2NO$$
 (S3)

The following first order reaction was used to represent the rate of fuel burning. (In this report, *t* and τ are given in milliseconds, except τ_{NO_x} which is in $\frac{ms \cdot cc}{gmol}$, while concentrations are given in gmoles/cc):

$$\frac{dFuel}{dt} = -\frac{Fuel}{\tau_{Fuel}} \tag{3}$$

For a constant τ_{Fuel} , the fuel concentration is then represented by a simple exponential decay expression, where F_0 is the initial fuel concentration.

$$Fuel = F_o e^{\left(\frac{-t}{\tau_F}\right)} \tag{4}$$

The carbon monoxide reaction rate was represented by Equations (5) and (5a). The fuel concentration is multiplied by a factor of 12 because the Jet-A fuel takes the formula $C_{12}H_{23}$. Equation (6) is the solution to the differential equation showing the CO concentration as a function of initial fuel concentration, CO equilibrium concentration and the chemical kinetic times for fuel and CO.

$$\frac{dCO}{dt} = -\frac{(CO - COeq)}{\tau_{cO}} + \frac{12Fuel}{\tau_{Fuel}}$$
(5)

and

$$\frac{dCO_2}{dt} = \frac{CO}{\tau_{co}}$$
(5a)

$$CO - CO_{eq} = e^{\frac{-t}{\tau_{CO}}} \left[CO(t=0) - CO_{eq} - \frac{12F_o\tau_{CO}}{\tau_f - \tau_{CO}} \right] + \frac{12F_o\tau_{CO}}{\tau_f - \tau_{CO}} e^{\frac{-t}{\tau_f}}$$
(6)

Finally, the nitrogen oxide formation rate, a species important for combustor emissions, was modeled as a simple zero order expression.

$$\frac{dNOx}{dt} = \frac{1}{\tau_{NOx}}^{*} \quad (7) \qquad \text{or} \qquad NOx = \frac{t}{\tau_{NOx}} \tag{8}$$

 ${}^{*}\tau_{\scriptscriptstyle NOx}$ has units of $\frac{ms \cdot cc}{gmol}$

H₂O MASS BALANCE

The inlet mixture contains only fuel, H_2O , and air, so the initial mole fractions can be easily calculated using the method of LSENS (Reference 7). This procedure is described in detail below. The mixture is completely specified by fixing the equivalence ratio, Eratio, and the water to fuel ratio, H2OF (weight H_2O /weight fuel). We have chosen to keep the weight of the H_2O separate from the weight of the fuel so that the stoichiometric fuel/air ratio is always 0.068 for all Jet-A water to fuel ratios and 0.059 for all methane water to fuel ratios. This H_2O mass balance was used for both Jet-A and methane fuels. The term MWF can be used to represent the molecular weights of either fuel.

Let
$$y_i = \frac{moles \ i}{mole \ mixture}$$
 (9); let $x_i = \frac{moles \ i}{moles O_2 \ in \ air}$ (10)

For the general chemical equation:

$$C_{n_c}H_{n_h}O_{n_o} + \frac{4n_c + n_n - 2n_o}{4}O_2 = n_cCO_2 + \frac{n_h}{2}H_2O$$
(11)

let
$$\phi = \frac{f/o_2}{\left(f/o_2\right)_{stoich}}$$
 (12); $\frac{y_f}{y_{o_2}} = \frac{4\phi}{4n_c + n_h - 2n_0}$ (13)

The above equations are the same as with water injection and n_o is equal to zero for Jet-A and methane. The sum of the mole fractions of all species in the system is equal to one.

$$y_f + y_{H_2O} + y_{0_2} + y_{N_2} + y_{Ar} + y_{CO} = 1.0$$
(14)

let H2OF=
$$\frac{lbs H_2O}{lb fuel}$$
; $H2OM = \frac{moles H_2O}{mole fuel} = \frac{H2OF * MWF}{18}$ (15)

where MWF for Jet-A is 167 and MWF for methane is 16.

$$y_{H_{2}O} = y_f \left(\frac{H2OF * MWF}{18}\right)$$
(16)

$$y_{f} = \frac{4\phi}{4n_{c} + n_{h} + 2n_{o}} y_{o_{2}}$$
(17)

Or,

$$y_{o_2} = \frac{4n_C + n_H - 2n_O}{4\phi \left(1 + \frac{H2OF * MW}{18}\right) + \left(4n_C + n_H - 2n_O\right) \left(1 + x_{N_2} + x_{Ar} + x_{CO_2}\right)}$$
(18)

(See the computer code modifications in Appendix C)

DETERMINATION OF CHEMICAL KINETIC TIME

With the approach derived here, a simple direct comparison can be made between the mixing and chemical kinetic times and the minimum rate used for the computation as shown in Figure 1. The integration was performed for 2160 cases shown below for Jet-A and methane fuels with water injection.

Table Input						
Input Parameter	Range					
Pressure	1 to 40 atmospheres (increments of 10 atm)					
Temperature	1000 to 2500K (increments of 500K)					
Lean Equivalence ratios	0.3 to 1.0 (increments of 0.1)					
Rich Equivalence ratios	1.0 to 2.0 (increments of 0.1)					
Water to fuel mass ratio	0.0 to 2.0 (increments of 0.5)					
Step One Time	1×10^{-6} to 2 ms					
Step Two Time	0.05 to 6 ms					

Calculations were performed isothermally using GLSENS for each condition over a time of 0 to 6 milliseconds. By computing the progress isothermally, the chemical rate constants were fixed and the chemical kinetic time was determined as a unique value of temperature, pressure and instantaneous mole fractions of fuel and water. GLSENS computes the cumulative rate of reaction for each species from all equations in the mechanism, so it is a simple matter to then compute the chemical kinetic time for each species. For the fuel equation (3) the chemical kinetic time is given as

$$\tau_f = -\frac{Fuel}{\left(\frac{dFuel}{dt}\right)} \tag{19}$$

This simple calculation was done using additional steps in Subroutine Out2 in the GLSENS code (see Appendix D). Values for the chemical kinetic time were calculated for each concentration at each output time and each set of conditions. For time step 1, the trapezoidal rule (using $1/\tau$) was then used to average the chemical kinetic time to calculate the best value for each set of conditions and the final numbers regressed over the complete set of cases to obtain the final correlation.

A correlation could then be developed that determines the chemical kinetic time as a function of the initial overall cell fuel/air ratio, water to fuel mass ratio, pressure and temperature. The data was correlated using the same method as previously mentioned for the equilibrium equations. Two correlations for each step for each of the three species, one for the lean side and one for the rich side, were obtained. This results in a total of 12 Jet-A correlations and 12 Methane correlations. As OH is formed, the reaction rates get faster and the chemical kinetic time gets smaller. Chemical kinetic time was correlated using two different steps to increase the accuracy of the calculation. Step one is an average chemical kinetic time taken over 2.0 milliseconds. Step two is an instantaneous value that depends on the instantaneous amounts of fuel, water and oxygen. Since we were not tracking the radical concentrations, we were using H₂O to indicate the state of the radical species. In other words for the reactions

$$H2 + OH = H2O + H$$

$$CO + OH = CO2 + H$$

$$CH4 + OH = CH3 + H2O$$

$$N + OH = NO + H \text{ etc.}$$

The radicals could be correlated with H2O because of the first reaction.

The user should want to switch from step one to step two when the molar concentration of water is greater than 1×10^{-20} moles/cc. Step two can not be used with small concentrations of water because if the value of the water concentration was zero, the entire correlation time would go to zero.

JET-A KINETIC SCHEME FOR STEP 1(AVERAGE) AND STEP 2 (INSTANTANEOUS) METHODS

The following is GLSENS input for the 23 step, 16 species mechanism from Krishna Kundu that was used for the Jet-A calculations. The water and fuel were added as a liquid to the equilibrium program, but they were added as gases to the kinetic program to make up the reacting mixture. We did not alter the mechanism equations to compute the chemical kinetic times for water injection. The additional water took part in the reaction set as the rate equations dictated.

chanism use	d in GLSEN	S			
GLOBAL=.TR	UE., GRONL	Y=.FALSE.,	&END		
+ OH	= H2O	+ H	1.17E+11	1.1	3626
+ O	= H	+ OH	2.50E+15	0.	6000
+ 02	= O	+ OH	4.00E+14	Ο.	18000
+ 02	>2.00	+ N2	1.00E+18	Ο.	122239
+2.00	> 02	+ H2	5.00E+17	.5	0
+2.0H	=2.0H2		4.00E+20	-1.	0
+ 02	= HO2		1.00E+15	-1.1	0
+ HO2	= OH	+ 02	1.50E+13	Ο.	0
+ HO2	= H2	+ 02	1.50E+13	Ο.	0
+ OH	= CO2	+ H	4.17E+11	0.0	1000
+ HO2	> CO2	+ OH	5.80E+13	Ο.	22934
+ O	= CO	+ H	1.00E+10	.5	0
+ NO	= CO	+ NH	1.00E+11	0.	0
+ 02	= CO	+ OH	3.00E+10	Ο.	0
+ 02	=2.0CO	+ H	3.00E+12	Ο.	49000
+2.0N	= N2	+ N2	1.00E+15	Ο.	0
+ 02	= NO	+ O	6.30E+09	1.	6300
+ OH	= NO	+ H	3.00E+13	Ο.	0
+ O	= NO	+ H	1.50E+13	Ο.	0
+ NO	= N2	+ OH	2.00E+15	8	0
+ N2	+ HO2	>2 0NO	+ H	+ 0	
.5 1.	1.5	0E+07 1.	45900.		
2.0NO	+ H	> N2	+ HO2		
1.1 1.	2.5	0E+10 .16	8000.		
N2	+ 0	> NO	+ N		
.5 1.	4.7	5E+10 .29	75010.		
N	+ NO	> N2	+ 0		
1. 1.	3.0	0E+12 .2	0.		
+ N2	+2.0CH	>2.0CH	+2.0NH		
1. 1.	1.0	0E+16 0.	78000.		
2.0NH	+2.0CH	>2.0CH	+ N2	+ H2	2
2. 1.	1.9	5E+15 0.	0.		
N2	+ C12H	23 >6.0C2H2	2 +11.0H	+ N2	2
.8 .8	2.5	0E+09 .0	30000.		
N2	+ C12H	23 >12.0CH	+11.0H	+ N2	2
.8 .8	2.5	0E+10 .0	30000.		
	chanism use GLOBAL=.TR + OH + O + O2 + O2 + O2 + 2.00 +2.0H + O2 + HO2 + HO2 + HO2 + OH + O2 + O2 + O4 + O2 + NO + O2 + O1 1.1 N2 .5 1. N1 1. N2 .5 1. N2 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	chanism used in GLSEN GLOBAL=.TRUE., GRONL + OH = H2O + O = H + O2 = O + O2 >2.00 +2.00 > O2 +2.0H =2.0H2 + O2 = HO2 + O2 = HO2 + O2 = HO2 + HO2 = OH + HO2 = CO + OH = CO2 + OH = CO2 + OA = CO + O2 = NO + O2 = NO + O4 = NO + O4 = NO + O4 = NO + O4 = NO + NO = N2 + N0 = N2 + N2 + HO2 .5 1. 1.5 2.0NO + H 1.1 1. 2.5 N2 + O .5 1. 4.7 N + NO 1. 1. 3.0 + N2 +2.0CH 1. 1. 1.0 2.0NH +2.0CH 2. 1. 1.9 N2 + C12H .8 .8 2.5 N2 + C12H .8 .8 2.5	chanism used in GLSENS GLOBAL=.TRUE., GRONLY=.FALSE., + OH = H2O + H + O = H + OH + O2 = O + OH + O2 >2.00 + N2 +2.00 > O2 + H2 +2.0H =2.0H2 + O2 = HO2 + HO2 = OH + O2 + HO2 = H2 + O2 + OH = CO2 + H + HO2 > CO2 + OH + O = CO + H + NO = CO + NH + O2 = CO + OH + O2 = NO + O + OH = NO + H + O2 = NO + H + O = NO + H + NO = N2 + OH + N1 1 1. 2.50E+10 .16 N2 + O > NO .5 1. 4.75E+10 .29 N + NO > N2 1. 1. 3.00E+12 .2 + N2 +2.0CH >2.0CH 1. 1. 1.00E+16 0. 2.0NH +2.0CH >2.0CH 1. 1. 1.95E+15 0. N2 + C12H23 >6.0C2H2 .8 .8 2.50E+09 .0 N2 + C12H23 >12.0CH .8 .8 2.50E+10 .0	chanism used in GLSENS GLOBAL=.TRUE., GRONLY=.FALSE., &END + OH = H2O + H 1.17E+11 + O = H + OH 2.50E+15 + O2 = O + OH 4.00E+14 + O2 >2.0O + N2 1.00E+18 +2.0O > O2 + H2 5.00E+17 +2.0H =2.0H2 4.00E+20 + O2 = HO2 1.00E+15 + HO2 = OH + O2 1.50E+13 + OH = CO2 + H 4.17E+11 + HO2 > CO2 + OH 5.80E+13 + O = CO + H 1.00E+10 + NO = CO + NH 1.00E+10 + NO = CO + NH 1.00E+11 + O2 = CO + OH 3.00E+10 + O2 = 2.0CO + H 3.00E+12 + 2.0N = N2 + N2 1.00E+15 + O2 = NO + O 6.30E+09 + OH = NO + H 3.00E+13 + O = NO + H 1.50E+13 + O = NO + H 3.00E+12 +2.0N = N2 + N2 1.00E+15 + O2 = NO + O 6.30E+09 + OH = NO + H 3.00E+13 + NO = N2 + OH 2.00E+15 + N2 + HO2 >2.0NO + H .5 1. 1.50E+07 1. 45900. 2.0NO + H > N2 + HO2 1.1 1. 2.50E+10 .16 8000. N2 + O > NO + N .5 1. 4.75E+10 .29 75010. N + NO > N2 + O 1. 1. 3.00E+12 .2 0. + N2 +2.0CH >2.0CH +2.0NH 1. 1. 1.00E+16 0. 78000. 2.0NH +2.0CH >2.0CH + N2 2. 1. 1.95E+15 0. 0. N2 + C12H23 >6.0C2H2 +11.0H .8 .8 2.50E+09 .0 30000.	chanism used in GLSENS GLOBAL=.TRUE., GRONLY=.FALSE., &END + OH = H2O + H 1.17E+11 1.1 + O = H + OH 2.50E+15 0. + O2 = O + OH 4.00E+14 0. + O2 >2.0O + N2 1.00E+18 0. +2.0O > O2 + H2 5.00E+17 .5 +2.0H =2.0H2 4.00E+20 -1. + O2 = HO2 1.00E+15 -1.1 + HO2 = OH + O2 1.50E+13 0. + HO2 = H2 + O2 1.50E+13 0. + OH = CO2 + H 4.17E+11 0.0 + HO2 > CO2 + OH 5.80E+13 0. + OH = CO + NH 1.00E+10 .5 + NO = CO + NH 1.00E+10 0. + O2 = CO + OH 3.00E+10 0. + O2 = CO + OH 3.00E+12 0. + O2 = CO + H 3.00E+15 0. + O2 = NO + O 6.30E+09 1. + O4 = NO + H 3.00E+13 0. + O = NO + H 1.50E+13 0. + O4 = NO + H 3.00E+15 0. + O5 1. 1.50E+07 1. 45900. 2.0NO + H > N2 + HO2 1.1 1. 2.50E+10 .16 8000. N2 + O > NO + N + H2.00E+158 + N2 + O > NO + N + 1.50E+13 0. + N2 + O > NO + N + 1.50E+13 0. + N3 = N2 + O1 2.00E+158 + N4 + N5 + H2 + H02 1.1 1. 2.50E+10 .16 8000. N2 + O > N0 + N + 1.50E+13 0. + N2 + C12H23 >6.0C2H2 +11.0H + N2 .8 .8 2.50E+10 .0 30000. N2 + C12H23 >12.0CH +11.0H + N2 .8 .8 2.50E+10 .0 30000.

For example the last three body mechanism step the rate is given by $2.5 \times 10^{10} T^0 e^{-30000/RT} N_2^{0.8} C_{12} H_2 3^{0.8}$ in an irreversible step.

Note the fuel is $C_{12}H_{23}$. The last two steps are irreversible fuel breakup reactions to CH and C_2H_2 .

Note, some reactions are bimolecular and some are trimolecular expressions. The code follows the method of LSENS developed by Radhakrishnan (Reference 7).

PARTIAL METHANE KINETICS SCHEME

Whereas Jet-A is broken down in an irreversible molecule breaking step which has a given rate, methane, CH4 is broken down by radicals OH, H, O, etc so the fast reaction is delayed until the radical pool builds up. This forces the modeling scheme to use a two step method to predict the chemical time constants. We have just listed the CH4 reactions to illustrate this process. The complete GRI-mech mechanism is listed in Appendix B. The complicated nature of the methane mechanism makes it very difficult to obtain a correlation with so few variables over a wide range of conditions (so the resulting R^2 is low).

CH4 partial mechanism showing free radical attack

-			•			
OH	CH4	= CH3	H2O	1.000E+08	1.600	3120.00
OH	CO	= H	CO2	4.760E+07	1.228	70.00
Ν	OH	= NO	Н	7.333E+13	.000	1120.00
2.00		= O2	Μ	1.200E+17	-1.000	.00
Н	Н	= H2	М	1.000E+18	-1.000	.00
0	H2	= H	OH	5.000E+04	2.670	6290.00
Н	O2	= O	OH	8.300E+13	.000	14413.00
Н	HO2	= O2	H2	2.800E+13	.000	1068.0
OH	H2	= H	H2O	2.160E+08	1.510	3430.00
0	CH4	= OH	CH3	1.020E+09	1.500	8600.00
OH	CH2	= CH	H2O	1.130E+07	2.000	3000.00
OH	CH3	= CH3OH	Μ	6.300E+13	.000	.00
СН	CH4	= H	C2H4	6.000E+13	.000	.00
CH2	CH4	= 2.0CH3		2.460E+06	2.000	8270.00
CH3	CH2O	= HCO	CH4	3.320E+03	2.810	5860.00
CH3	СНЗОН	= CH2OH	CH4	3.000E+07	1.500	9940.00
CH3	СНЗОН	= CH3O	CH4	1.000E+07	1.500	9940.00
CH3	C2H4	= C2H3	CH4	2.270E+05	2.000	9200.00
CH3	C2H6	= C2H5	CH4	6.140E+06	1.740	10450.00
Ν	O2	= NO	0	2.650E+12	.000	6400.00
NO	0	= NO2	М	1.060E+20	-1.410	.00

JET-A EQUILIBRIUM CORRELATIONS WITH AND WITHOUT WATER INJECTION

Equilibrium correlations were generated by using Microsoft Excel to perform a multivariate linear regression on the large data set generated by the CEA program of Reference 8. (A detailed procedure describing the regression used for both equilibrium and finite rate chemical times can be found in Appendix A). CEA has a plot f option for direct tabulation of the output data, for 'f/a, P, T H2O, CO, NO'. Although the equilibrium correlations were not usually used in the calculation of the chemical kinetic times, we feel that these equations could still be very useful for other calculations. Table 1 shows the Jet-A equilibrium correlations for

T4, CO and NO_x for both the lean and rich cases. Figures 2 is a parity plot showing the strength of the lean Jet-A CO equilibrium correlation. This plot shows a minimal amount of scatter, mostly at an equivalence ratio of 1.0, indicating a strong correlation (R^2 values greater than 0.9). Note that the units of CO_{eq} and NO_{xeq} are moles/cc. This parity plot is typical of all the variables because of the high R^2 values obtained. This was a correlation for all of the range of independent variables in the Table Input.

148			
Species	Lean (f/a ≤ 0.068)	R-squared	
Т4	$T 4 = 1725 \ (T3)^{0.241} \left(\frac{f}{a}\right)^{0.442} (1 + \frac{h2o}{f})^{(-0.151)} P^{0.00301}$	0.949	(20)
CO	$CO_{eq} = 22.6 (\frac{f}{a})^{2.22} (1 + \frac{h2o}{f})^{0.0658} P^{0.524} \exp\left[\frac{-31647}{T}\right]$	0.995	(21)
NO _x	$NOx_{eq} = 2.65e^{-8} (\frac{f}{a})^{(-1.52)} (1 + \frac{h2o}{f})^{(-0.133)} P^{0.980} \exp\left[\frac{-9953}{T}\right]$	0.958	(22)

Table	1.	EQ	UIL	JBRI	UM	Lean	Jet-A	with	Water	Inje	ction	Correl	lations	j

Table 2.	EQUILIBRIUM Rich Jet-A with Water Injection C	Correlations	
Species	Rich	R-squared	
	(f/a > 0.068)		
Τ4	$T4 = 163(T3)^{0.186} \left(\frac{f}{a}\right)^{(-0.613)} \left(1 + \frac{h2o}{f}\right)^{(-0.296)} P^{0.00231}$	0.959	(23)
СО	$CO_{eq} = 3.85e^{-4} \left(\frac{f}{a}\right)^{2.86} \left(1 + \frac{h2o}{f}\right)^{(-0.369)} P^{0.995} \exp\left[\frac{185}{T}\right]$	0.990	(24)
NO _x	$NOx_{eq} = 1.80e^{-8} (\frac{f}{a})^{(-6.08)} (1 + \frac{h2o}{f})^{0.418} P^{0.530} \exp\left[\frac{-38952}{T}\right]$	0.993	(25)

CHEMICAL KINETIC TIMES FOR JET-A WITH AND WITHOUT WATER INJECTION

Step OneEquations for Jet-A

The following form of equation was used for the Jet-A step one correlations:

$$\tau = A(P)^{a} (f/a)^{b} (1 + \frac{h2o}{fuel})^{c} \exp \frac{D}{T}$$
(26)

where τ is the chemical kinetic time in milliseconds, *P* is pressure in atm, f/a is the initial or overall mass fuel air ratio as in reference 1, $\frac{h2o}{fuel}$ is the initial mass water to fuel ratio and *T* is the temperature in Kelvin. The correlation is switched to Step Two when the water molar concentration is greater than 1×10^{-20} .

The initial or overall fuel air ratio can be determined as follows:

$$f/a = (fuel + \frac{(CO + CO_2)}{12}) * 167 / \frac{0.79}{28N_2}$$
(27)

The coefficients for each of the parameters in the correlations may be found in Table 3. R-square values have been included to demonstrate the strength of the correlation. R-squared is a measure of the error that the model accounts for; an R-squared value of one is ideal.

Component	Rich or lean	Α	а	D	b	С	R- squared
Fuel	Lean	7.47×10 ⁻⁵	-0.60	14202	0.238	0.0712	1.00
СО	Lean	7.13×10 ⁻²	-0.758	9295	-0.314	0.159	0.933
NO _x	Lean	1.00×10 ⁶	-1.30	26139	0.110	1.30	0.994
Fuel	Rich	8.19×10 ⁻⁵	-0.60	14206	0.296	0.153	1.00
CO	Rich	1.39×10 ⁻³	-0.882	6803	-0.222	-0.328	0.988
NO _x	Rich	93.2	-1.67	27755	-0.0582	0.529	0.983

 Table 3. Step One Jet-A With Water Injection Chemical Kinetic Time Correlations

All of the results presented here are correlated over the complete conditions listed in Table Input. Parity plots for the lean step one correlations have been created and may be found in Figures 3-5. The x-axis contains values for the chemical kinetic time generated by the full mechanism GLSENS at each condition. The y-axis contains values calculated using the chemical kinetic time correlations above at the same set of conditions. This demonstrates how close the calculated value is to the expected value and is a good measurement of the strength of the correlations. Figure 6 shows an increase in the step one chemical kinetic time with a higher water to fuel ratio. Data from the previous Jet-A chemical kinetic time correlation without water injection has also been included on this plot for comparison. In order to compare the correlations, we took various values of f/a, p, and T and obtained predictions for the previous correlation (Ref. 1 as "No Water Injection"). Then these prediction are plotted using the overall factor found here (x axis). Note that the previous work gave a much faster time (averaged over a total time as high as 10 milliseconds and accounted for the lower τ . This difference in results caused us to switch to an instantaneous correlation (Step Two) for longer times.

Step Two Equations for Jet-A

The following form of equation was used for the Jet-A step two fuel and NO_x correlations. This form of the equation produced the best fit:

$$\tau = A(P)^{a} (cfuel)^{b} (co2)^{c} (cH2O)^{d} \exp \frac{E}{T}$$
(34)

and for the Jet-A step two CO correlation:

$$\tau = A(P)^{a} (cfuel)^{b} (cco)^{c} (co2)^{d} (cH2O)^{e} \exp \frac{F}{T}$$
(35)

where *P* is pressure in atm, cfuel is the instantaneous molar concentration of fuel, cco is the instantaneous molar concentration of CO. We added CO as a parameter in order to attempt to raise the R^2 value for the CO correlation. We have preceded the symbol with a c to indicate molar concentration was used and a y for mole fraction. The CO2 is the instantaneous molar concentration of O2, cH20 is the instantaneous molar concentration of water, and *T* is the temperature in Kelvin. We have correlated to only the major species hoping that H₂O will track the minor species (OH, H, O, etc.) to allow good overall correlation and easy use of the equations.

The coefficients for each parameter are given in Table 4. Parity plots for the step two lean Jet-A correlations can be found in Figures 7-9. These figures show a minimal amount of scattering for the fuel and NO_x , which is consistent with the high R-squared values as seen in Table 4. However, the CO plot shows considerably more scattering with an R-squared value of 0.578 for the lean case and 0.389 for the rich case.

I abic -	Table 4. Step 1 wo set-A with water injection Chemical Kinetic Time Correlations										
Compo-	Rich	Α	Pressure	1/T	cfuel	cCO	cO2	cH2O	R-]	
nent	or								squared		
	Lean										
Fuel	Lean	7.31E-06	-0.173	12412	0.0792	-	-0.164	-0.115	0.927	(36)	
со	Lean	9.28E-07	-0.164	8893	-0.15	0.268	-0.549	-0.0588	0.578	(37)	
NO _x	Lean	2.67E-03	-0.628	28071	-0.186	-	-0.558	0.0458	0.93	(38)	
Fuel	Rich	1.35E-04	-0.352	12962	0.0147	-	-0.0743	-0.0373	0.953	(39)	
СО	Rich	0.373	-0.422	4387	-0.287	0.206	0.227	0.115	0.389	(40)	
NOx	Rich	28.9	-0.00805	19595	-0.117	-	-0.158	-0.16	0.438	(41)	

Table 4. Step Two Jet-A With Water Injection Chemical Kinetic Time Correlations

METHANE EQUILIBRIUM CORRELATIONS WITH AND WITHOUT WATER INJECTION

The rich and lean Methane equilibrium correlations can be found in Tables 5 and 6, respectively. A parity plot for the rich Methane CO equilibrium correlation can be found in Figure 10.

Species	Lean (f/a ≤ 0.058)	R- Squared	
T4	$T4 = 1565(f/a)^{0.435}(1 + \frac{h2o}{f})^{-0.069}(T3)^{0.258}(P)^{0.00284}$	0.944	(42)
CO	$COeq = 3.37 \times 10^{6} (f/a)^{1.90} (1 + \frac{h2o}{f})^{0.00705} (P)^{-0.477} \exp \frac{-33388}{T}$	0.998	(43)
NO _x	$NOxeq = 2.44x10^{-2} (f/a)^{-1.13} (1 + \frac{h2o}{f})^{-1.07} (P)^{-0.017} \exp \frac{-11415}{T}$	0.953	(44)

Table 5. EQUILIBRIUM Lean Methane With Water Injection Correlations

Table 6. EQUILIBRIUM Rich Methane With Water Injection Correlations

Species	Rich (f/a > 0.058)	R- Squared	
T4	$T4 = 177(f/a)^{-0.559} (1 + \frac{h2o}{f})^{-0.146} (T3)^{0.176} (P)^{0.00167}$	0.976	(45)
СО	$COeq = 72.2(f/a)^{2.55} (1 + \frac{h2o}{f})^{-0.358} (P)^{-0.00393} \exp \frac{-31365}{T}$	0.911	(46)
NO _x	$NOxeq = 0.218(f/a)^{-4.43}(1 + \frac{h2o}{f})^{0.427}(P)^{-0.493}\exp\frac{-41408}{T}$	0.998	(47)

CHEMICAL KINETIC TIMES FOR METHANE WITH AND WITHOUT WATER INJECTION

Step One Equations for Methane

The step one Methane chemical kinetic time correlations are of the following form:

$$\tau = A(P)^{a} \left(f/a\right)^{b} \left(1 + \frac{h2o}{fuel}\right)^{c} \exp\left[\frac{D}{T}\right]$$
(48)

where P is pressure in atm, f/a is the initial or overall fuel air ratio, $\frac{h2o}{fuel}$ is the initial water to

fuel ratio and *T* is the temperature in Kelvin.

The initial or overall fuel air ratio can be determined as follows:

$$f/a = (fuel + (CO + CO_2))*16/\frac{0.79}{28N_2}$$
(49)

A summary of these correlations can be found in Table 7. Parity plots for the lean step one methane with water injection correlations can be found in Figures 11-13. These parity plots show minimal scatter, which is consistent with the high R-squared values of the lean correlations. Figure 14 shows an increase in step one chemical kinetic time with a higher water to fuel ratio.

Component	Rich or Lean	A	а	D	b	С	R-squared	
Fuel	Lean	2.09x10 ⁻⁴	-1.07	22625	0.222	0.0675	0.996	(5
Co	Lean	9.99x10 ⁻⁴	-1.00	2434	0.101	0.0959	0.999	(5
NO _x	Lean	29395	-2.11	34859	0.0315	0.329	0.996	(5
Fuel	Rich	0.0274	-0.328	14216	0.111	-0.829	0.75	(5
Co	Rich	1.30x10 ⁻³	-1.00	2433	0.215	0.195	0.999	(5
NO _x	Rich	43928	-2.00	32649	0.284	0.641	0.999	(5

Table 7. Step One Methane With Water Injection Chemical Kinetic Time Correlations

Step Two Equations for Methane

The following form of equation was used for all lean Methane step two correlations:

$$\tau = A(P)^{a} (cfuel)^{b} (ch20)^{c} \left(1 + \frac{ch2o}{cfuel}\right)^{d} \exp\left[\frac{E}{T}\right]$$
(56)

The following form of equation was used for the rich Methane step two correlations for fuel and NO_x:

$$\tau = A(P)^{a} (cfuel)^{b} (co2)^{c} (cH2O)^{d} \exp \frac{E}{T}$$
(57)

and for the rich Methane step two CO correlation:

$$\tau = A(P)^{a} (cfuel)^{b} (cco)^{c} (co2)^{d} (cH2O)^{e} \exp \frac{F}{T}$$
(58)

Table 8 provides a summary of these correlations, and lean parity plots can be found in Figures 15-17.

Compo-	A	Pressure	1/T	cfuel	сČО	cO2	cH2O	, ch2o	R-	1
nent								$1 + \frac{1}{cfuel}$	squared	
Fuel (lean)	3.50x10 ⁻⁹	-0.0713	14149	-0.307	-	-	-0.465	-0.221	0.416	(59)
CO (lean)	3.07x10 ⁻³	-1.09	2291	0.0957	-	-	-9.82x10 ⁻⁴	0.131	0.999	(60)
NO _x (lean)	1.48x10⁵	-2.28	37437	0.239	-	-	- 0.0206	0.778	0.986	(61)
Fuel (rich)	9.99x10 ⁻¹¹	-0.761	19950	0.050	-	-0.549	-0.350	-	0.483	(62)
CO (rich)	1.64E-10	0.0722	7880	-0.261	0.0568	-0.636	-0.00341	-	0.816	(63)
NO _x (rich)	1.67E+06	-2.45	24117	0.05	-	0.119	-0.281	-	0.792	(64)

Table 8. Step Two Methane With Water Injection Chemical Kinetic Time Correlations

TWO STEP METHANE CHEMICAL KINETIC TIMES WITHOUT WATER INJECTION

The step two methane chemical kinetic times were also correlated without water injection. The previous correlations are a massive regression over all water injection values. If one were not using water injection, the relations would be useful, but the following relations resulted in a higher R^2 factor. The equations are of the same form as the methane step two correlations with water injection. The results can be found in Table 9:

Compo- nent	A	Pressure	1/T	cfuel	cCŐ	cO2	cH2O	$1 + \frac{ch2o}{cfuel}$	R- squared	
Fuel (lean)	1.86x10 ⁻⁹	0.479	13446	0.182	-	0.0528	-0.704	0.349	0.767	(65
CO (lean)	1.43x10 ⁻³	-1.04	2371	0.0461	-	-	-5.7x10 ⁻⁴	-	0.999	(66
NO _x (lean)	10.0	-1.92	38229	0.0389	-	-	-0.200	-	0.992	(67
Fuel (rich)	2.02x10 ⁻	0.498	14860	0.252	-	-0.776	-0.756	0.254	0.995	(68
CO (rich)	6.73x10 ⁻	0.244	8229	-0.274	-0.237	-0.802	0.217	-	0.806	(69
NO _x (rich)	0.0574	-1.22	26010	-0.103	-	-0.0583	-0.617	-	0.959	(70

 Table 9. Step Two Methane Without Water Injection Chemical Kinetic Time Correlations

COMBINED LEAN AND RICH STEP TWO METHANE TIMES

In this case the program would not have to choose between the rich and lean fuel/air zones, but could use the correlation directly. The lean and rich step two methane chemical kinetic times were also combined into one large data set and correlated. The results of this correlation can be found in Table 10. The fuel correlation is in the following form:

$$\tau = A(P)^{a} (cfuel)^{b} (co2)^{c} (cH2O)^{d} \exp \frac{E}{T}$$
(71)

while the CO and NO_x correlations are modeled by the following form:

$$\tau = A(P)^{a} (cfuel)^{b} (ch20)^{c} \left(1 + \frac{ch2o}{cfuel}\right)^{d} \exp\left[\frac{E}{T}\right]$$
(72)

Kinetic Time Correlations									
Compo- nent	A	Pressure	1/T	cfuel	cO2	cH2O	$1 + \frac{ch2o}{cfuel}$	R- squared	
Fuel	6.20x10 ⁻⁹	-0.290	14259	-0.0532	-0.332	-0.429	-	0.433	
СО	1.18x10 ²⁶	-5.37	-1877	4.68	-	-0.106	4.90	0.627	
NOx	2.42x10 ⁻¹⁴	0.585	37951	-2.92	-	0.0539	-2.98	0.879	

Table 10. Combined Step Two Methane With Water Injection Chemical Kinetic Time Correlations

COMPARISON TO NO_X DATA WITH WATER INJECTION

An important result of water injection into Jet-A and methane fuels is the reduction of NO_x formation. The NO_x concentrations calculated using the chemical kinetic time correlations were compared to water injection data presented in reference 2. This reduction is with constant T4. So the equations from Table 1 Lean T4 is solved for the increased f/a with an increase in h_{20}/f , then the NO_x value Table 3 Step One Lean is solved for the new NO_x value. Figures 18 and 19 show the ratio of NO_x with water injection to NO_x without water injection versus weight fraction ratio of water to air for Jet-A and methane respectively from the correlations, at a fuel air ratio of 0.05 as shown in reference 2. The Jet-A predicted data behaves very similarly to the given experimental data while there is more of a difference in the methane prediction. Although the temperature is constant and the kinetic mechanism remains the same there is a change in kinetics rate due to water dilution. The residence time of the combustor is decreased because of the increased throughput with water addition (T constant).

TANKS IN SERIES MODEL FOR PREDICTING EMISSIONS

A tanks-in-series Fortran program was developed to simulate CO and NO_x production, so that it may be compared to the water injection data in reference 9. This model accounts for the increase in fuel/air ratio in the initial fuel injection and mixing process. Figure 20-23 show the results of this comparison.

Pf is the ratio of the tank f/a to the exit f/a. The f/a for tank 2 was limited to stoichiometric, to prevent it from going overstoichimetric as the exit f/a was increased. Reference 9 uses 15 reactors with the complete GRI Mech 2.11 mechanism compared to only the three reactors used here. Obviously one can adjust the times and equivalence ratios of the tanks, or add tanks until the output of the emissions matched the experimental data. We chose to not manipulate the parameters and determine the outcome. The results were very good.

The Fortran computer code is given in Appendix F. In this calculation we only use Step One, because it is a well stirred reactor. We had to compute the dilution factors due to Air addition between stages. We had chosen the equivalence ratio for the first stage to be one. Pf is the ratio of the equivalence ratio of the stage to the exit value. The following equation is the balanced reaction used to model the combustion of the methane fuel:

$$\begin{split} \phi CH_4 + (1 + \frac{x}{4})O_2 + (1 + \frac{x}{4})(\frac{79}{21})N_2 + (\frac{16}{18})(\frac{H2O}{F})\phi \rightarrow \\ \phi CO_2 + (\frac{x}{2} + \frac{16}{18}\frac{H2O}{F}\phi)H2O + [(1 - \phi)(1 + \frac{x}{4}))]O_2 + (1 + \frac{x}{4})(\frac{79}{21})N_2 - (1 + \frac{x}{4})(\frac{79}{2$$

where x is the ratio of hydrogen to carbon, and is equal to 4 for methane. The $\frac{H2O}{F}$ term is the initial water to fuel ratio and ϕ is the overall equivalence ratio.

This equation was used to obtain a wet to dry correction so that the generated NO_x and CO data could be compared to existing data. The concentrations were corrected to 15% O2.

SUGGESTIONS FOR USING THE REDUCED EQUATIONS

In this section we show how our correlations might be used in a typical kinetics program the calculate the amount of reaction

The fuel equations that we use are:

$$\frac{dFuel}{dt} = -\frac{Fuel}{\tau_{Fuel}}$$
(76)

where for step one:

$$\tau_{Fuel(lean)} = 7.47 \times 10^{-5} \left(\frac{f}{a}\right)_{o}^{0.238} (P)^{-0.60} \left(1 + \frac{h2o}{fuel}\right)^{0.0712} \exp\frac{14202}{T}$$
(77)

Equation (76) is the "net" rate, so one does not have to compute the reverse rate. Then

$$\frac{dF}{dt} = -\frac{F \exp^{\frac{-14202}{T4}}}{7.47 \times 10^{-5} (f/a)_o^{0.238} (P)^{-0.60} (1 + \frac{h2o}{fuel})^{0.0712}} \Rightarrow -\frac{F}{C} e^{-\frac{E}{RT}}$$
(78)

The denominator C is a constant since we take the initial conditions as being held constant throughout the reaction and one can treat the T4 constant as an activation energy $(14202 \times 1.987) = 28219$.

One can relate $(f/a)_o$ to *F* of a mixture by:

$$F_o = C_{12}H_{23} + \frac{1}{12}(CO + CO_2)\frac{moles}{cc}$$
(79)

$$\rho = \frac{P}{82.056T} x \frac{moles}{cc} mix \tag{80}$$

$$x_{Fo} = \frac{F_o}{\rho} = \frac{\frac{f \frac{gm}{167}}{fgm}}{\frac{fgm}{167} + \frac{Agm}{29} + \frac{H2O}{18F}F} = \frac{\frac{(f_a)_o}{(f_a)_o}}{(f_a)_o + 5.76 + 9.28\frac{H2O}{F}(f_a)_o}$$
(81)

Note, gm is the grams of component. If some fuel had reacted one can use Equation (81) to find f/a_0 ;

$$\binom{f}{a}_{o} = \frac{5.76 \frac{F}{\rho}}{1 - \frac{F}{\rho}(1 + 9.28 \frac{H2O}{F})}$$
(82)

Given Equation (78) above

$$\frac{dF}{dt} \Rightarrow -\frac{F}{C} e^{-\frac{E}{RT}}$$
 which is directly usable by an Arrhenius .kinetics code (83)

Then the mass balance equation is

$$C_{12}H_{23} + (6 + \frac{23}{4})O_2 = 12CO + \frac{23}{2}H2O$$
 (84)

To avoid fractional coefficients, one could use any number of methods, such as:

$$C_{12}H_{23} + (6)O_2 = 12CO + 23H2O \tag{85}$$

For CO

$$\frac{dCO}{dt} = \frac{-CO}{\tau_{cO}} \tag{86}$$

And for NO_x

$$\frac{dNOx}{dt} = \frac{1}{\tau_{_{NOx}}} = \frac{1}{C} e^{\frac{-26139}{T}}$$
(87)

$$N_2 + O_2 = 2NO \tag{88}$$

So

$$\frac{dN2}{dt} = \frac{1}{2}\frac{dNO}{dt} = \frac{1}{2C'}e^{\frac{-26139}{T}}$$
(89)

This completes the equations that one would need to simulation of the chemical kinetics. In our model we have only three rates and seven species, therefore the step size can be large and the rates are no longer coupled. This should be very fast.

SIMULATION OF GLSENS WITH THE TWO STEP MODEL WITHOUT WATER INJECTION

In this example we compare directly the new two time step method with the complete kinetic mechanism for an arbitrary constant temperature of 2000K and at a constant pressure of two atmospheres. The initial fuel/air ratio was taken as 0.0526 with zero water injection. We used a simple Fortran code with a Newton integration method given in Appendix G. The results are shown in Figures 24 and 25. The results from methane was one reason for creating the two step method with step two trying to follow the instantaneous reaction times though correlation with H_2O as the tracking species. Step 2 is very important for prediction of combustion stability and blowout for methane.

Figure 24 shows the rapid decreases in the chemical reaction time. This model is not as fast as the full kinetics version so the concentration decrease (Figure 25) lags the full kinetics version as well. The kinetics calculations in comparison the mixing times from (1.e-5 to 1.e-3 seconds) maybe much more relevant and accurate.

CONCLUSIONS

Much work still needs to be done to explore possible benefits and detriments of water injection in combustion. A simplified kinetic scheme for Jet-A and methane fuels with water injection resulted in a two time step correlation that calculates chemical kinetic times for fuel, CO, and NO_x. These chemical kinetic time equations can then be used in a numerical combustor code to compare the chemical kinetic time with the turbulent mixing time. Strong step one Jet-A correlations were developed ($R^2 > 0.9$). The Jet-A step two correlations for CO and NO_x are slightly weaker, but still thought to be effective. The Methane step one correlations were all very strong, while the rich step two correlations had considerably smaller R-squared values. However, because we are trying to correlate so many values over a wide range of conditions, we will accept a small amount of scatter. These twenty four equations are believed to be extremely useful in the comparison of kinetic reaction and turbulent mixing times and in the computation of kinetic rate results.

APPENDIX A

MULTIPLE LINEAR REGRESSION WITH EXCEL

Performing Multiple Linear Regression on a Logarithmic Equation

This regression technique may be used to develop a correlation between a dependent variable and one or more independent variables. First the equation to be used must be linearized. An example of an exponential equation used here is shown below.

$$A = BC^{c}D^{d} \exp\left(\frac{e}{T}\right) \qquad \text{(Non-linear form)} \tag{A1}$$

$$\ln(A) = \ln(B) + c \ln(C) + d \ln(D) + \frac{e}{T} \qquad \text{(Linear form)} \tag{A2}$$

Columns of data containing the independent variables (natural log of C, natural log of D, 1/T,) and the independent variable (natural log of A) were contained in an Excel spreadsheet. (It is easiest to have the independent variables adjacent to each other, followed by the dependent variable.)

The multiple variable regression analysis is located in the Data Analysis Toolpak. The Data Analysis Toolpak must be added into the spreadsheet if it is not already running in Excel. In order to add it, select the 'Add ins' button from the Tools menu. Click on the Analysis Toolpak option and click OK to accept this choice. Then choose 'Data Analysis' from the Tools menu and double click on 'regression'. Click on the 'Input Y Range' box and highlight the column that contains the logarithm of the dependent variable and press return. Click on the 'Input X Range' box and highlight the columns containing all of the independent variables. (In this case ln(C), ln(D) and 1/T). Press OK to begin the regression. The regression data will be contained in a new worksheet. The variable labeled 'intercept' will be equal to the natural log of coefficient B. The remaining coefficients (c,d, and e) will be given as X Variable 1,X Variable 2 and X Variable 3 respectively. This process is quick and accurate for Excel 2002 and was used for all equations given in this report. Excel has to capability to handle one dependent variable and multiple independent variables. As many as 12,000 points were used in the regressions.

APPENDIX B

COMPLETE GRI-MECH VERSION 2.1 (REF. 10) CH4 MECHANISM USED

&RTYPE	GLOBA	AL=.TH	RUE.,	GRONI	LY=.FALS	SE., &END)		
2.00			=	02		М	1.200E+17	-1.000	.00
THIR	DBODY								
H2	2.40		H2O		15.40	CH4	2.00	CO	1.75
CO2	3.60		C2H6		3.00	N2	0.83	END	
0		Н	=	OH		М	5.000E+17	-1.000	.00
THIR	DBODY								
н2	2 00		н2∩		6 00	СН4	2 00	CO	1 50
CO2	2.00		COUG		3 00	N2	0 5	END	1.50
0	2.00	uэ	C2110	ш	5.00			2 670	6200 00
0			-			00	3.000E+04	2.070	0290.00
0		HUZ	=	OH		02	2.000E+13	.000	.00
0		HZUZ	=	OH 		HOZ	9.630E+06	2.000	4000.00
0		CH	=	H		CO	5.700E+13	.000	.00
0		CH2	=	Η		HCO	8.000E+13	.000	.00
0		CH3	=	Η		CH2O	8.430E+13	.000	.00
0		CH4	=	OH		CH3	1.020E+09	1.500	8600.00
0		CO	=	C02		М	6.020E+14	.000	3000.00
THIR	DBODY								
H2	2.00		02		6.00	H2O	6.00	CH4	2.00
CO	1.50		CO2		3.50	C2H6	3.00	END	
0		HCO	=	OH		CO	3.000E+13	.000	.00
0		HCO	=	н		CO2	3.000E+13	.000	.00
0		CH20	_	OH		HCO	3 900E+13	000	3540 00
0		CH2OF		OH		CH20	1 000E+13	.000	00
0		CH2OI	· -			CH2O	1 0000113	.000	.00
0		CHOO	- -			CHZO	2.00000+13	.000	.00
0		CH3OF		OH		CHZOH	3.880E+05	2.500	3100.00
0		CH30F	-1 =	OH		CH30	1.300E+05	2.500	5000.00
0		С2Н	=	СН		CO	5.000E+13	.000	.00
0		C2H2	=	Η		HCCO	1.020E+07	2.000	1900.00
0		C2H2	=	OH		C2H	4.600E+19	-1.410	28950.00
0		C2H2	=	CO		CH2	1.020E+07	2.000	1900.00
0		C2H3	=	Η		CH2CO	3.000E+13	.000	.00
0		C2H4	=	CH3		HCO	1.920E+07	1.830	220.00
0		C2H5	=	CH3		CH2O	1.320E+14	.000	.00
0		C2H6	=	OH		C2H5	8.980E+07	1.920	5690.00
0		HCCO	=	Н	2.	0C0	1.000E+14	.000	.00
0		CH2CC) =	OH		HCCO	1.000E+13	.000	8000.00
0		CH2CC) =	CH2		CO2	1.750E+12	.000	1350.00
02		CO	=	0		CO2	2.500E+12	.000	47800.00
02		CH20	_	н∩2		HCO	1 000E+14	000	40000 00
U2 U		02	_	1102 ЦО2		M	2 800F+18	- 860	-0000000000000000000000000000000000000
ות דוות	עתסתם	02	_	1102		14	2.0000410	000	.00
			1100		0.0	CO		doo	1 50
02	.00		H2O		.00	CO	. /5	02	1.50
C2H6	1.50		N2		0.0	END		1	
Н	2.0	002	=	HO2		02	3.000E+20	-1.720	.00
H		02	=	0		OH	8.300E+13	.000	14413.00
Н		Н	=	H2		М	1.000E+18	-1.000	.00
THIR	DBODY								
H2	.00		H2O		.00	CH4	2.00	CO2	.00
C2H6	3.00	0	N2		0.63	END			
2.0H		H2	=2	.0H2			9.000E+16	5600	.00
2.0H		H2O	=	H2		H2O	6.000E+19	9 -1.250	.00

2.0	ЭН	CO2	=	H2	C02	5.500E+20	-2.000	.00
	Н	OH	=	H2O	М	2.200E+22	-2.000	.00
	THIRDBOI	ΟY						
H2		.73	H2O	3.65	CH4	2.00	C2H6	3.00
N2		0.38	END					
	н	HO2	=	0	H20	3.970E+12	.000	671.00
	н	HO2	_	02	H2	2 800E+13	000	1068 00
	н	HO2	-2	00H	112	1 340F+14	000	635 00
	п	HOZ	-2	.000	ИЭ	1 2100-07	2 000	E200 00
	II II	H2O2	-	NUZ OU	120	1.0000.10	2.000	3200.00
	H	HZOZ	=	OH	HZO	1.000E+13	.000	3600.00
	H	СН	=	C	H2	1.100E+14	.000	.00
	Н	CH2	=	CH3	М	2.500E+16	800	.00
	THIRDBOI	ΣΥ						
H2		2.00	H2O	6.00	CH4	2.00	CO	1.50
CO	2	2.00	C2H6	3.00	N2	0.7	END	
	Н	CH3	=	CH4	М	1.270E+16	630	383.00
	THIRDBOI	ΡΥ						
H2		2.00	H2O	6.00	CH4	2.00	CO	1.50
CO	2	2.00	C2H6	3.00	N2	0.7	END	
	н	CH4	=	CH3	H2	6.600E+08	1.620	10840.00
	н	нсо	=	CH20	M	1 090E+12	480	-260 00
	THIRDBOI)Y		01120		1.0901112	. 100	200.00
н2	IIIIRDDOL	2 00	H2O	6 00	СН4	2 00	CO	1 50
CO'	2	2.00	COUG	3 00	FND	2.00	60	1.50
0.	<u>г</u>	2.00 HCO	C2110	U0	CO	7 2400,12	000	0.0
	п	DOH GUDO	=		CO M	7.340E+13	.000	.00
	H	CHZU	=	CHZOH	IvI	5.4008+11	.454	3600.00
	THIRDBOL)Y		c o o	677 4	0.00	~~	1 50
H2	_	2.00	H20	6.00	CH4	2.00	0.0	1.50
CO	2	2.00	C2H6	3.00	END			
	H	CH2O	=	CH3O	М	5.400E+11	.454	2600.00
	THIRDBOI	ΡΥ						
H2		2.00	H2O	6.00	CH4	2.00	CO	1.50
CO	2	2.00	C2H6	3.00	END			
	Н	CH2O	=	HCO	H2	2.300E+10	1.050	3275.00
	Н	CH2OI	H =	СНЗОН	М	1.800E+13	.000	.00
	THIRDBOI	ΟY						
H2		2.00	H2O	6.00	CH4	2.00	CO	1.50
CO	2	2.00	C2H6	3.00	END			
	н	CH2OI	H =	Н2	CH2O	2.000E+13	.000	. 00
	н	CH201	н –	0H	СНЗ	1 200E+13	000	00
	ч	CH30	_	СНЗОН	M	5 000F+13		
	THIRDROI	NV	_	CHISON	11	5.0001115	.000	.00
บว	IIIIRDDOI	2 00	U 20	6 00	CUA	2 00	CO	1 50
	h	2.00	COLLC	0.00	CH4 END	2.00	CO	1.50
CU.	2 TT	2.00	С2пб	5.00		2 4000.00	1 600	0.0
	H	CH30	=	H	CHZOH	3.400E+06	1.600	.00
	H	CH30	=	HZ	CH20	2.000E+13	.000	.00
	Н	CH30	=	ОН	CH3	3.200E+13	.000	.00
	H	CH3OI	H =	CH2OH	H2	1.700E+07	2.100	4870.00
	Н	CH30I	H =	CH3O	H2	4.200E+06	2.100	4870.00
	Н	C2H	=	C2H2	М	1.000E+17	-1.000	.00
	THIRDBOI	YC						
H2		2.00	H2O	6.00	CH4	2.00	CO	1.50
CO	2	2.00	C2H6	3.00	N2	0.7	END	
	Н	C2H2	=	C2H3	М	5.600E+12	.000	2400.00
	THIRDBOI	Y						
H2		2.00	H2O	6.00	CH4	2.00	CO	1.50
CO	2	2.00	C2H6	3.00	N2	0.7	END	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H	C2H3	=	C2H4	М	6.080E+12	.270	280.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	THIRDBO			C 0.0	GTT 4	0.00	a 0	1 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CO2	2.00	C2H6	3.00	END			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H	C2H3	=	H2	C2H2	3.000E+13	.000	.00
THIRDEDFY H2 2.00 H20 6.00 CH4 2.00 CO 1.50 CO2 2.00 C2H6 3.00 N2 0.7 END H C2H3 H2 1.325E+06 2.530 12240.00 H C2H5 M 5.210E+17 990 1580.00 THRDBODY C 6.00 CH4 2.00 CO 1.50 H C2H5 H2 C.00 R0 7530.00 0.00 H C2H6 3.00 N2 0.7 END 7500.00 H C2H2O ECH5 H2 1.150E+08 1.900 7530.00 H CH2O CH2O M 4.300E+07 1.500 3428.00 H HCCO ECH3 CO 1.130E+13 .000 3428.00 H2 2.00 C2H6 3.00 END 2.160E+08 1.510 3430.00 C0 H2O 6.00 CH4 <td>H</td> <td>C2H4</td> <td>=</td> <td>C2H5</td> <td>М</td> <td>1.080E+12</td> <td>.454</td> <td>1820.00</td>	H	C2H4	=	C2H5	М	1.080E+12	.454	1820.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	THIRDBO	DY						
CO2 2.00 C2H4 = C2H3 H2 1.3255+06 2.530 12240.00 H C2H4 = C2H3 H2 1.3255+06 2.530 12240.00 THIRDBOTY - C2H6 NO CA 2.00 C0 1.50 CO2 2.00 C2H6 3.00 N2 0.7 END H C2H5 H2 C2H4 2.000E+13 0.00 3000 0.00 H CH2C0 = CC1 H2 5.000E+13 .000 3000 0.00 H CH2C0 = CC1 H2 5.000E+13 .000 300 0.00 H CH2C0 = CH3 CO 1.130E+13 .000 300 0.00 H1 CH2C0 = CH3 CO 1.50 3430.00 THIRDBODY H2 2.00 C2H6 3.00 N2 0.7 END C1 2.000 C2H6<	H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CO2	2.00	C2H6	3.00	N2	0.7	END	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	C2H4	=	C2H3	H2	1.325E+06	2.530	12240.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н	C2H5	=	C2H6	М	5 210E+17	- 990	1580 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		DV V		02110	••	5.210111/		1900.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ир 11110200	2 00	<u>ч</u> 2О	6 00	CHA	2 00	CO	1 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CO2	2.00	COUG	3 00	NO	0.7	END	1.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.00	CZHO	5.00		0.7	END	0.0
H C2H6 E C2H5 HZ 1.1508+06 1.900 930.00 H CH2C0 = HCC0 HZ 5.0008+13 .000 3428.00 H CH2C0 = CH2O M CO 1.1308+13 .000 3428.00 H HCC0H = H CH2C0 1.000E+13 .000 3428.00 H2 CO = CH2O M 4.300E+07 1.500 79600.00 THIRDBODY H2 H H2O 2.160E+08 1.510 3430.00 OH H2 = H H2O 2.160E+08 1.510 3430.00 OH H2 = H H2O 2.160E+08 1.510 3430.00 OH H2 = H H2O 2.160E+08 1.510 3430.00 OH H2O = M H2O 2.160E+04 2.400 -2110.00 OH H2O = O H2O 1.750E+12 000	н т	C2H5	=	HZ COULE		2.000E+12	.000	.00
H CH2CO = HCCO H2 5.0008+13 .000 8000.00 H HCCOH = H CH2CO 1.0008+13 .000 3428.00 H HCCOH = H CH2CO 1.0008+13 .000 3428.00 H HCCOH = H CH2CO 1.0008+13 .000 3428.00 THIRDBODY H Z 2.00 H2O 6.00 CH4 2.00 CO 1.50 79600.00 OH H2 = H H2O 2.1608+13 .000 3430.00 OH DH = H2O2 M 7.4008+13 .370 .00 THRDBOT E O H2O 2.9008+13 .000 -500.00 OH HO2 = O2 H2O 2.9008+13 .000 .00 OH H2O2 HO2 H2O 1.508+12 .000 .00 OH H2O2 H2O	H	C2H6	=	C2H5	HZ	1.1508+08	1.900	/530.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H	CH2C	0 =	HCCO	H2	5.000E+13	.000	8000.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H	CH2C	0 =	CH3	CO	1.130E+13	.000	3428.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H	HCCO	H =	H	CH2CO	1.000E+13	.000	.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H2	CO	=	CH2O	М	4.300E+07	1.500	79600.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	THIRDBO	DY						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CO2	2.00	C2H6	3.00	END			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	H2	=	Н	H2O	2.160E+08	1.510	3430.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	= 이버	_	H2O2	M	7 400E+13	- 370	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		DV.		11202		/.1001113	. 570	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1111KDB0	2 00	U 20	6 00	CUA	2 00	CO	1 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	п <u>2</u> СОЭ	2.00	п20 арис	0.00	CH4 NO	2.00		1.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.001	2.00	CZHO	3.00	NZ 1100		END	0110 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.00H		=	0	H20	3.5/08+04	2.400	-2110.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	HO2	=	02	H20	2.900E+13	.000	-500.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	H2O2	=	HO2	H2O	1.750E+12	.000	320.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	H2O2	=	HO2	H2O	5.800E+14	.000	9560.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	С	=	H	CO	5.000E+13	.000	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	CH	=	Н	HCO	3.000E+13	.000	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	CH2	=	H	CH2O	2.000E+13	.000	.00
OH CH3 = CH3OH M 6.300E+13 .000 .00 THIRDBODY 2.00 H2O 6.00 CH4 2.00 CO 1.50 C02 2.00 C2H6 3.00 END	OH	CH2	=	CH	H2O	1.130E+07	2.000	3000.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OH	CH3	=	СНЗОН	М	6.300E+13	.000	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	THIRDBO	DY						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
OH CH3 = CH2 H2O 5.600E+07 1.600 5420.00 OH CH4 = CH3 H2O 1.000E+08 1.600 3120.00 OH CO = H CO2 4.760E+07 1.228 70.00 OH HCO = H2O CO 5.000E+13 .000 .00 OH CH2O = HCO H2O 3.430E+09 1.180 -447.00 OH CH3O = H2O CH2O 5.000E+12 .000 .00 OH CH3O = H2O CH2O 2.180E-04 4.500 -1000.00 OH C2H2 = C CH H2O 3.370E+07 2.000 14000.00 OH C2H2 = CH3 CO 4.830E-04 4.000 -2000.00 OH C2H2 = CH3 CO 4.830E-04 4.000 -2000.00 OH C2H3 H2O	CO2	2.00	C2H6	3.00	END			
OH CH4 = CH3 H20 1.000E+08 1.600 3120.00 OH CO = H CO2 4.760E+07 1.228 70.00 OH HCO = H20 CO 5.000E+13 .000 .00 OH HCO = H20 CO 5.000E+13 .000 .00 OH CH2O = HCO H2O 3.430E+09 1.180 -447.00 OH CH3O = H2O CH2O 5.000E+13 .000 .00 OH CH2 = H HCCO 2.000E+13 .000 .00 OH C2H2 = H H2CO 2.180E-04 4.500 -1000.00 OH C2H2 = C2H H2O 3.370E+07 2.000 14000.00 OH C2H2 = CH3 CO 4.830E-04 4.000 -2000.00 OH C2H2 = CH3 CO 4.830E-04 4.000 -2000.00 OH C2H3 =	OH	СНЗ	=	СН2	Н20	5 600E+07	1 600	5420 00
OHCO=HCO2 $4.760E+07$ 1.228 70.00 OHHCO=H2OCO $5.000E+13$ $.000$ $.00$ OHCH2O=HCOH2O $3.430E+09$ 1.180 -447.00 OHCH3O=H2OCH2O $5.000E+13$ $.000$ $.00$ OHCH3O=H2OCH2O $5.000E+12$ $.000$ $.00$ OHC2H=HHCCO $2.000E+13$ $.000$ $.00$ OHC2H2=C2HH2O $3.370E+07$ 2.000 14000.00 OHC2H2=C2HH2O $3.370E+07$ 2.000 14000.00 OHC2H2=CH3CO $4.830E-04$ 4.000 -2000.00 OHC2H3=H2OC2H2 $5.000E+12$ $.000$ $.00$ OHC2H3=H2O $2.5000E+12$ $.000$ $.00$ OHC2H4=C2H3H2O $3.600E+06$ 2.000 2500.00 OHC2H4=C2H5H2O $3.540E+06$ 2.120 870.00 OHCH2CO=HCCOH2O $7.500E+12$ $.000$ 2000.00 OHCH2CO=O2H2O2 $1.300E+11$ $.000$ -1630.00 OHCH2CO=O2H2O2 $4.200E+14$ $.000$ 12000.00 OHCH2C=OHCH2O $2.000E+13$ $.000$	OH	CH4	_	СНЗ	H2O	1 000E+08	1 600	3120.00
OHCO=HCO2 $4.760E+07$ 1.228 70.00 OHHCO=H2OCO $5.000E+13$.000.00OHCH2O=HCOH2O $3.430E+09$ 1.180 -447.00 OHCH3O=H2OCH2O $5.000E+12$.000.00OHC2H=HHCCO $2.000E+13$.000.00OHC2H2=C2HH2O $3.370E+07$ 2.000 14000.00 OHC2H2=C2HH2O $3.370E+07$ 2.000 14000.00 OHC2H2=CH3CO $4.830E-04$ 4.000 -2000.00 OHC2H3=H2OC2H2 $5.000E+12$.000.00OHC2H4=C2H3H2O $3.600E+06$ 2.000 2500.00 OHC2H4=C2H5H2O $3.540E+06$ 2.120 870.00 OHCH2CO=HCCOH2O $7.500E+12$.000 2000.00 OHCH2CO=O2H2O2 $1.300E+11$.000 -1630.00 2.0HO2=O2H2O2 $4.200E+14$.000 12000.00 HO2CH2=OHCH2O $2.000E+13$.000	011	CO	_	сп5 ц	CO2	1 760E+07	1 220	70.00
OHHCO=H2OH2OCO $3.000E+13$ $.000$ $.000$ OHCH2O=HCOH2O $3.430E+09$ 1.180 -447.00 OHCH3O=H2OCH2O $5.000E+12$ $.000$ $.00$ OHC2H=HHCCO $2.000E+13$ $.000$ $.00$ OHC2H2=HCH2CO $2.180E-04$ 4.500 -1000.00 OHC2H2=C2HH2O $3.370E+07$ 2.000 14000.00 OHC2H2=CH3CO $4.830E-04$ 4.000 -2000.00 OHC2H3=H2OC2H2 $5.000E+12$ $.000$ $.00$ OHC2H4=C2H3H2O $3.600E+06$ 2.000 2500.00 OHC2H6=C2H5H2O $3.540E+06$ 2.120 870.00 OHCH2CO=HCCOH2O $7.500E+12$ $.000$ 2000.00 $2.0HO2$ =O2H2O2 $1.300E+11$ $.000$ -1630.00 $HO2$ CH2=OHCH2O $2.000E+13$ $.000$ $.00$	OH		-		C02	4.700E+07	1.220	70.00
OHCH2O=HCOH2O $3.430E+09$ 1.180 -447.00 OHCH3O=H2OCH2O $5.000E+12$ $.000$ $.00$ OHC2H=HHCCO $2.000E+13$ $.000$ $.00$ OHC2H2=HCH2CO $2.180E-04$ 4.500 -1000.00 OHC2H2=C2HH2O $3.370E+07$ 2.000 14000.00 OHC2H2=CH3CO $4.830E-04$ 4.000 -2000.00 OHC2H3=H2OC2H2 $5.000E+12$ $.000$ $.00$ OHC2H4=C2H3H2O $3.600E+06$ 2.000 2500.00 OHC2H6=C2H5H2O $3.540E+06$ 2.120 870.00 OHCH2C0=HCCOH2O $7.500E+12$ $.000$ 2000.00 $2.0HO2$ =O2H2O2 $1.300E+11$ $.000$ -1630.00 HO2CH2=OHCH2O $2.000E+13$ $.000$ $.00$	OH	HCU	=	HZO		5.000E+13	.000	.00
OHCH3O=H2OCH2O $5.000E+12$ $.000$ $.00$ OHC2H=HHCCO $2.000E+13$ $.000$ $.00$ OHC2H2=HCH2CO $2.180E-04$ 4.500 -1000.00 OHC2H2=C2HH2O $3.370E+07$ 2.000 14000.00 OHC2H2=CH3CO $4.830E-04$ 4.000 -2000.00 OHC2H3=H2OC2H2 $5.000E+12$ $.000$ $.00$ OHC2H4=C2H3H2O $3.600E+06$ 2.000 2500.00 OHC2H6=C2H5H2O $3.540E+06$ 2.120 870.00 OHCH2CO=HCCOH2O $7.500E+12$ $.000$ 2000.00 $2.0HO2$ =O2H2O2 $1.300E+11$ $.000$ -1630.00 HO2CH2=OHCH2O $2.000E+13$ $.000$ $.00$	OH	CH20	=	HCO	H2O	3.4308+09	1.180	-44/.00
OH $C2H$ =HHCCO $2.000E+13$ $.000$ $.00$ OH $C2H2$ =H $CH2CO$ $2.180E-04$ 4.500 -1000.00 OH $C2H2$ = $C2H$ H2O $3.370E+07$ 2.000 14000.00 OH $C2H2$ =CH3CO $4.830E-04$ 4.000 -2000.00 OH $C2H3$ =H2OC2H2 $5.000E+12$ $.000$ $.00$ OHC2H4=C2H3H2O $3.600E+06$ 2.000 2500.00 OHC2H6=C2H5H2O $3.540E+06$ 2.120 870.00 OHCH2CO=HCCOH2O $7.500E+12$ $.000$ 2000.00 $2.0HO2$ =O2H2O2 $1.300E+11$ $.000$ -1630.00 HO2CH2=OHCH2O $2.000E+13$ $.000$ $.00$	OH	CH30	=	H20	CH20	5.000E+12	.000	.00
OH $C2H2$ =H $CH2CO$ $2.180E-04$ 4.500 -1000.00 OH $C2H2$ = $C2H$ $H2O$ $3.370E+07$ 2.000 14000.00 OH $C2H2$ = $CH3$ CO $4.830E-04$ 4.000 -2000.00 OH $C2H3$ = $H2O$ $C2H2$ $5.000E+12$ $.000$ $.00$ OH $C2H4$ = $C2H3$ $H2O$ $3.600E+06$ 2.000 2500.00 OH $C2H6$ = $C2H5$ $H2O$ $3.540E+06$ 2.120 870.00 OH $CH2CO$ = $HCCO$ $H2O$ $7.500E+12$ $.000$ 2000.00 2.0HO2= $O2$ $H2O2$ $1.300E+11$ $.000$ -1630.00 HO2 $CH2$ = OH $CH2O$ $2.000E+13$ $.000$ $.00$	ОН	C2H	=	Н	нссо	2.000E+13	.000	.00
OH $C2H2$ = $C2H$ $H2O$ $3.370E+07$ 2.000 14000.00 OH $C2H2$ =CH3CO $4.830E-04$ 4.000 -2000.00 OH $C2H3$ = $H2O$ $C2H2$ $5.000E+12$ $.000$ $.00$ OH $C2H4$ = $C2H3$ $H2O$ $3.600E+06$ 2.000 2500.00 OH $C2H6$ = $C2H5$ $H2O$ $3.540E+06$ 2.120 870.00 OH $CH2C0$ = $HCCO$ $H2O$ $7.500E+12$ $.000$ 2000.00 $2.0HO2$ = $O2$ $H2O2$ $1.300E+11$ $.000$ -1630.00 $HO2$ $CH2$ =OH $CH2O$ $2.000E+13$ $.000$ $.00$	OH	C2H2	=	H	CH2CO	2.180E-04	4.500	-1000.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	C2H2	=	C2H	H2O	3.370E+07	2.000	14000.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	C2H2	=	CH3	CO	4.830E-04	4.000	-2000.00
OH C2H4 = C2H3 H2O 3.600E+06 2.000 2500.00 OH C2H6 = C2H5 H2O 3.540E+06 2.120 870.00 OH CH2CO = HCCO H2O 7.500E+12 .000 2000.00 2.0HO2 = O2 H2O2 1.300E+11 .000 -1630.00 2.0HO2 = O2 H2O2 4.200E+14 .000 12000.00 HO2 CH2 = OH CH2O 2.000E+13 .000 .00	OH	C2H3	=	H2O	C2H2	5.000E+12	.000	.00
OH C2H6 = C2H5 H2O 3.540E+06 2.120 870.00 OH CH2CO = HCCO H2O 7.500E+12 .000 2000.00 2.0HO2 = O2 H2O2 1.300E+11 .000 -1630.00 2.0HO2 = O2 H2O2 4.200E+14 .000 12000.00 HO2 CH2 = OH CH2O 2.000E+13 .000 .00	OH	C2H4	=	C2H3	H2O	3.600E+06	2.000	2500.00
OH CH2CO = HCCO H2O 7.500E+12 .000 2000.00 2.0HO2 = O2 H2O2 1.300E+11 .000 -1630.00 2.0HO2 = O2 H2O2 4.200E+14 .000 12000.00 HO2 CH2 = OH CH2O 2.000E+13 .000 .00	OH	C2H6	=	C2H5	H2O	3.540E+06	2.120	870.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OH	CH2C	O =	HCCO	H2O	7.500E+12	.000	2000.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0HO2		=	02	H2O2	1.300E+11	.000	-1630.00
HO2 $CH2 = OH$ $CH2O = 2.000E+13 .000 .00$	2.0HO2		=	02	H2O2	4.200E+14	.000	12000.00
	HO2	CH2	=	OH	CH2O	2.000E+13	.000	.00

HO2 HO2	CH3 CH3	=	02 OH	CH4 CH30	1.000E+12 2.000E+13	.000	.00
HO2	CU	=	UH	02	1.500E+14	.000	23600.00
HO2	CHZO	=	HCO	H202	1.000E+12	.000	8000.00
C		=	0	00	5.800E+13	.000	576.00
C	CH2	=	H	C2H C2H	5.000E+13	.000	.00
C	CH3	=	Н	C2H2	5.000E+13	.000	.00
CH	02	=	0	HCO	3.300E+13	.000	.00
CH	HZ	=	H	CH2	1.10/E+08	1.790	16/0.00
СН	H20	=	H 	CH2O	1.713E+13	.000	-755.00
СН	CH2	=	H 	C2H2	4.000E+13	.000	.00
СН	CH3	=	H 	C2H3	3.000E+13	.000	.00
СН	CH4	=	H	C2H4	6.000E+13	.000	.00
CH	CO	=	HCCO	M	5.000E+13	.000	.00
THIRDBO	DY			6777 A	0.00	~~	4 = 0
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
C02	2.00	C2H6	3.00	N2	0.7	END	
СН	CO2	=	нсо	CO	3.400E+12	.000	690.00
СН	CH2O	=	Н	CH2CO	9.460E+13	.000	-515.00
CH	HCCO	=	CO	C2H2	5.000E+13	.000	.00
CH2	02	=	OH	HCO	1.320E+13	.000	1500.00
CH2	H2	=	H	CH3	5.000E+05	2.000	7230.00
2.0CH2		=	H2	C2H2	3.200E+13	.000	.00
CH2	CH3	=	H	C2H4	4.000E+13	.000	.00
CH2	CH4	=2	.0CH3		2.460E+06	2.000	8270.00
CH2	CO	=	CH2CO	М	8.100E+11	.500	4510.00
THIRDBO	DY						
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
CH2	HCCO	=	C2H3	CO	3.000E+13	.000	.00
CH3	02	=	0	CH30	2.675E+13	.000	28800.00
CH3	02	=	OH	CH2O	3.600E+10	.000	8940.00
CH3	H2O2	=	HO2	CH4	2.450E+04	2.470	5180.00
2.0CH3		=	C2H6	М	2.120E+16	970	620.00
THIRDBO	DY						
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
2.0CH3		=	Н	C2H5	4.990E+12	.100	10600.00
CH3	HCO	=	CH4	CO	2.648E+13	.000	.00
CH3	CH2O	=	HCO	CH4	3.320E+03	2.810	5860.00
CH3	CH3O	H =	CH2OH	CH4	3.000E+07	1.500	9940.00
CH3	CH3O	H =	CH3O	CH4	1.000E+07	1.500	9940.00
CH3	C2H4	=	C2H3	CH4	2.270E+05	2.000	9200.00
CH3	C2H6	=	C2H5	CH4	6.140E+06	1.740	10450.00
HCO	02	=	HO2	CO	7.600E+12	.000	400.00
CH2OH	02	=	HO2	CH2O	1.800E+13	.000	900.00
CH30	02	=	HO2	CH2O	4.280E-13	7.600	-3530.00
C2H	02	=	HCO	CO	5.000E+13	.000	1500.00
C2H	H2	=	Н	C2H2	4.070E+05	2.400	200.00
C2H3	02	=	HCO	CH2O	3.980E+12	.000	-240.00
М	C2H4	=	H2	C2H2	8.000E+12	.440	88770.00
THIRDBO	DY						
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
C2H5	02	=	HO2	C2H4	8.400E+11	.000	3875.00
HCCO	02	=	OH	2.0CO	1.600E+12	.000	854.00

2.0HCCO		=2	.0CO	C2H2	1.000E+13	.000	
. U U	NO	_	MЭ	0	2 5000113	000	
330 00	NO	_	INZ	0	3.3006+13	.000	
N	02	_	NO	0	2 6508+13	> 000	
6400 00	02	_	NO	0	2.0306+12	.000	
N N	ОЧ	_	NO	ц	7 333₽⊥13	000	1120 00
N2O	011	_	NO NO	02	1 /00F+12	.000	10810 00
N2O	0	2	NZ ONO	02	1.400E+12 2 900E+12	.000	22150 00
N2O	11	-2.	NO	011	2.900E+13	.000	23130.00
N2O	H	=	NZ NO	UH	4.400E+14	.000	18880.00
N2O M	UH	=	NZ	HUZ	2.000E+12	.000	21060.00
	NZU DV	=	IN Z	0	1.3008+11	.000	59620.00
UD INIKUBU	2 00	U 2O	6 00	CUA	2 00	CO	1 50
HZ COO	2.00	HZU COUC	6.00	CH4	2.00		1.50
	2.00	C2H6	3.00	NZ OU	0.625	END	
HUZ	NO	=	NO2	OH	2.1106+12	2 .000	-
480.00	0		NOO	Ъđ	1 0000.00	1 410	0.0
NU	U	=	NO2	IvI	1.0608+20	-1.410	.00
THIRDBO		1100	C 00	CTI 4	0.00	do	1 5 0
H2	2.00	H2O GOUC	6.00	CH4	2.00	CO	1.50
02	2.00	C2H6	3.00	END	2 0000.10	000	040.00
NO2	0	=	NO	02	3.900E+12	.000	-240.00
NO2	H	=	NO	OH	1.3208+14	.000	360.00
NH	0	=	NO	H	5.000E+13	.000	.00
NH	H	=	N	H2	3.200E+13	.000	330.00
NH	OH	=	HNO	H	2.000E+13	.000	.00
NH	ОН	=	N	H2O	2.000E+09	1.200	.00
NH	02	=	HNO	0	4.610E+05	2.000	6500.00
NH	02	=	NO	OH	1.280E+06	1.500	100.00
NH	N	=	N2	H	1.500E+13	.000	.00
NH	H2O	=	HNO	H2	2.000E+13	.000	13850.00
NH	NO	=	N2	OH	2.160E+13	230	.00
NH	NO	=	N20	H	4.160E+14	450	.00
NH2	0	=	OH	NH	7.000E+12	.000	.00
NH2	0	=	Η	HNO	4.600E+13	.000	.00
NH2	Н	=	NH	H2	4.000E+13	.000	3650.00
NH2	OH	=	NH	H2O	9.000E+07	1.500	-460.00
М	NNH	=	N2	H	3.300E+08	.000	.00
М	NNH	=	N2	H	1.300E+14	110	4980.00
THIRDBO	DY						
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
NNH	02	=	HO2	N2	5.000E+12	.000	.00
NNH	0	=	OH	N2	2.500E+13	.000	.00
NNH	0	=	NH	NO	7.000E+13	.000	.00
NNH	Н	=	H2	N2	5.000E+13	.000	.00
NNH	OH	=	H2O	N2	2.000E+13	.000	.00
NNH	CH3	=	CH4	N2	2.500E+13	.000	.00
H	NO	=	HNO	М	8.950E+19	-1.320	740.00
THIRDBO	DY						
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
HNO	0	=	NO	OH	2.500E+13	.000	.00
HNO	Н	=	H2	NO	4.500E+11	.720	660.00
HNO	OH	=	NO	H2O	1.300E+07	1.900	-950.00
HNO	02	=	HO2	NO	1.000E+13	.000	13000.00
CN	0	=	CO	Ν	7.700E+13	.000	.00

CN CN CN NCO NCO NCO M THIRDBOI	OH H2O O2 H2 O H N O2 NCO DY		NCO HCN NCO HCN NO NH N2 NO N	H OH CO CO CO CO2 CO	4.000E+13 8.000E+12 6.140E+12 2.100E+13 2.350E+13 5.400E+13 2.000E+13 2.000E+12 8.800E+16	.000 .000 .000 .000 .000 .000 .000 .00	.00 7460.00 -440.00 4710.00 .00 .00 20000.00 48000.00
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
NCO	NO	=	N20	CO	2.850E+17	-1.520	740.00
NCO	NO	=	N2	CO2	5.700E+18	-2.000	800.00
М	HCN	=	Н	CN	1.040E+29	-3.300	
126600.00							
THIRDBO	DY						
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
HCN	0	=	NCO	H	1.107E+04	2.640	4980.00
HCN	0	=	NH	CO	2.767E+03	2.640	4980.00
HCN	0	=	CN	OH	2.134E+09	1.580	26600.00
HCN	OH	=	HOCN	H	1.100E+06	2.030	13370.00
HCN	OH	=	HNCO	H	4.400E+03	2.260	6400.00
HCN	OH	=	NH2	CO	1.600E+02	2.560	9000.00
H	HCN	=	H2CN	М	1.400E+26	-3.400	1900.00
THIRDBOI	DY						
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
CO2	2.00	C2H6	3.00	N2	0.7	END	
H2CN	N	=	N2	CH2	6.000E+13	.000	400.00
C	N2	=	CN	N	6.300E+13	.000	46020.00
СН	N2	=	HCN	N	2.857E+08	1.100	20400.00
CH2	N2	=	HCN	NH	1.000E+13	.000	74000.00
C	NO	=	CN	0	1.900E+13	.000	.00
C	NO	=	CO	N	2.900E+13	.000	.00
CH	NO	=	HCN	U	5.000E+13	.000	.00
СН	NO	=	Н	NCO	2.000E+13	.000	.00
CH	NO	=	N	HCO	3.000E+13	.000	.00
CH2	NO	=	H	HNCO	3.100E+1/	-1.380	1270.00
CH2	NO	=	UH	HCN	2.900E+14	690	760.00
CHZ	NO	=	H	HCNO	3.800E+13	360	280.00
CH3 CH3	NO	=	HCN	H2O OU	9.600E+13	.000	28800.00
UNCO	NO	=		CO2	1.000E+12	.000	21750.00
HNCO	0	_		C02	9.800E+07	1 570	44000.00
HNCO	0	_	NCO	04 04	2 200E+06	2.110	11/00.00
HNCO	U U	_	NH2	CO	2.200 ± 100 $2.250E\pm07$	1 700	3800.00
HNCO	и П	_	H12 H2	NCO	1 050E+05	2 500	13300.00
HNCO	ОН ОН	=	NCO	H20	4 650E+12	000	6850 00
HNCO	OH	=	NH2	CO2	1.550E+12	.000	6850 00
M	HNCO	=	NH	CO	1.180E+16	.000	84720 00
THIRDBOI	DY				1.1001.10		01,20,00
H2	2.00	H2O	6.00	CH4	2.00	CO	1.50
C02	2.00	C2H6	3.00	N2	0.7	END	
HCNO	Н	=	H	HNCO	2.100E+15	690	2850.00
HCNO	н	=	ОН	HCN	2.700E+11	180	2120 00

	HCNO		Н	=	NH2	CO		1.700E+14	750	2890.00
	HOCN		Н	=	Н	HN	CO	2.000E+07	2.000	2000.00
	HCCO		NO	=	HCNO	CO		2.350E+13	.000	.00
	CH3		Ν	=	H2CN	Н		6.100E+14	310	290.00
	CH3		Ν	=	HCN	H2		3.700E+12	.150	-90.00
	NH3		Н	=	NH2	H2		5.400E+05	2.400	9915.00
	NH3		OH	=	NH2	H2	0	5.000E+07	1.600	955.00
	NH3		0	=	NH2	OH		9.400E+06	1.940	6460.00
	NH	+	NO	=	N2 +	OH		2.00E+15	8	0.
	Н		02		H2O	=	HO2	H2O		
1.		1.		1.	9.380	E+18	760	.00		
	Н		02		N2	=	HO2	N2		
1.		1.		1.	3.750	E+20	-1.720	.00		
	OH		CH2		OH	=	H2O	CH2	0	
1.		1.		1.	5.000	E+12	.000	.00		
	OH		CH3		OH	=	CH2	OH		H2O
1.		1.		1.	1.440	E+06	2.000	-840.00		
	OH		CH3		OH	=	CH3O	H2O		
1.		1.		1.	6.300	E+06	2.000	1500.00		
			HCO		H2O	=	Н	CO		H2O
		1.		1.	2.244	E+18	-1.000	17000.00		
			NCO		OH	=	NO	Н		CO
		1.		1.	2.500	E+12	.000	.00		
			NCO		OH	=	NO	Н		CO
		1.		1.	2.500	E+12	.000	.00		

APPENDIX C

MODIFICATIONS TO GLSENS FOR WATER INJECTION

```
C WATER INJECTION MODIFICATION FOR CH4 TO SUBROUTINE INIT
15
     IF (FUEL.EQ.BLANK) GO TO 80
С
   SPECIAL COMPOSITION INPUT
      DO 20 J=1, NRS
      IF (FUEL.NE.DSPNM(J)) GO TO 20
      JFUEL=J
      GO TO 30
20
      CONTINUE
      WRITE (LWRITE, 25) FUEL
     FORMAT(//,7H0(INIT),5X,'***** WARNING: INPUT FUEL NAME "',A8,
25
     1 '" IS NOT IN REACTANT LIST *****',//)
      NEXT=.TRUE.
      RETURN
   30 IF (ERATIO.NE.0.) GO TO 35
      IF (FLAIR.EQ.0.) GO TO 80
C FUEL-OXIDANT MASS RATIO SPECIFIED
      TERM1 = AIRMW*FLAIR/MW(JFUEL)
      FRO2 = 1.0/(1.0 + NOXRAT + ARAT + CRAT)
      TERM2 = 1.0/(1.0 + TERM1)
      CONCO2 = DBLE (FRO2 * TERM2)
      GO TO 40
C FUEL-OXIDANT EQUIVALENCE RATIO SPECIFIED
   35 H2OMF=H2OF*16./18.
      TERM1 = 4.0 \times \text{ERATIO} (1. + \text{H2OMF})
      TINP = 4.0 \times SCC + SCH - 2.0 \times SCOX
      ERAT=ERATIO
      TERM2 = 1.0 + NOXRAT + ARAT + CRAT
      FRO2 = 1.0/TERM2
      TERM2 = 1.0/(TERM1 + TINP*TERM2)
      CONCO2 = DBLE(TINP*TERM2)
С
   40 IF (MOLEF) GO TO 42
C WARNING: MOLEF = .FALSE. FOR SIMPLIFIED COMPOSITON INPUT.
С
           SET MOLEF = .TRUE.
      MOLEF = .TRUE.
      WRITE (LWRITE, 41)
   41 FORMAT(//,7H0(INIT),5X,'**** WARNING: SIMPLIFIED COMPOSITION ',
     1 'INPUT USED BUT MOLEF SET EOUAL TO .FALSE. IN NAMELIST START'./.
     2 30X, 'MOLEF HAS BEEN SET EQUAL TO .TRUE. ****',//)
С
    SIGMA = MOLES/GRAM MIXTURE
   42 SIGMA(JFUEL) = DBLE((TERM1*TERM2)/(dble(1.+H2OMF)))
      DO 45 I = 1, LS
      IF (O2.NE.DSPNM(I)) GO TO 45
      SIGMA(I) = CONCO2
      GO TO 50
45
      CONTINUE
50
      SIGMA(27) =SIGMA(JFUEL) *DBLE(H2OMF)
      DO 55 I = 1, LS
      IF (N2.NE.DSPNM(I)) GO TO 55
      SIGMA(I) = DBLE(NOXRAT) *CONCO2
     GO TO 60
55
     CONTINUE
```

60		DO 65 I = $1, LS$
		IF (AR.NE.DSPNM(I)) GO TO 65
		SIGMA(I) = DBLE(ARAT) *CONCO2
		GO TO 70
65		CONTINUE
70		DO 75 I = $1, LS$
		IF (CO2.NE.DSPNM(I)) GO TO 75
		SIGMA(I) = DBLE(CRAT) *CONCO2
		GO TO 80
75		CONTINUE
С		
	80	READ (LDAT,85) DSP,TINP

Additional equations specific to the program.

$$Term2 = \frac{1}{Term1 + TINP + Term2}$$
(C1)

$$conc O_2 = y_{O_2} = \frac{TINP*1}{Term2}$$
(C2)

$$y_f = \frac{4Eratio}{4n_c + n_H - 2n_o} * y_{o_2} = \frac{Term1}{TINP} * TINP * Term2$$
(C3)

$$yH2O = y_{fuel} * H2OF * \frac{167}{18}$$
 (C4)

$$y_{N_2} = \eta_{N_2} * y_{O_2} \tag{C5}$$

let
$$y_{Ar}=0.0$$
, and $y_{CO2}=0.0$
APPENDIX D

MODIFICATIONS TO OUT2 OF GLSENS FOR OBTAINING OUTPUT FOR THE CH4 COMPUTATIONS

```
ALREADY DONE IN DIFFUN
C
C ch4.f dec 14,2003
420
    foa=eratio*0.059
      tn=timil
      trr=sngl(T)
418 if(time.gt.0.)goto 427
      write(10,1)
    1 format(' TITLE= P atm T K f/a conc fuel
                                                     CO
                                                              nox
     3coequil time ')
С
      calculate the initial conditions for the averaging
      write(11,417)ch4e
  417 format(' ch4e ',e13.4)
     nc=1
     nco=1
      t0=0.
      stco=0.
      areaf=0.
     tauf=0.
      tauco=0.
      tauno=0.
      areaco=0.
      areano=0.
      atauf=0.
      atauco=0.
      atauno=0.
  427 continue
      cco=sngl(dabs(prc(9)))
      cnox=sngl(dabs(prc(31)+2.d0*prc(33)+prc(34)))
      xnox=sngl(prc(31)/(prc(31)+2.d0*prc(33)+prc(34)))
      cfuel=sngl(dabs(prc(14)))
С
      write(10,423)nc,P,T,foa,cfuel,cco,cnox,ccoe,
С
     1timil
  423 format(i4,f5.1,f8.1,1p,8e10.3)
C Begin Step One calculations
С
      calculate the initial conditions for the averaging
      if(nc.lt.2)goto 1500
      if(nc.eq.2)tstart=timil
      if(nc.eq.2)t0=timil
      02=sngl(prc(2))
      if (nc.eq.2) taufo=-sngl (prc(14)/W(14))*1.e3
С
      if(nc.eq.2)edd=15.*taufo
      if(tn.eq.t0)goto 424
      if(W(14).ne.0.)tauf=-sngl(prc(14)/W(14))*1.e3
      if(tauf.le.0.)goto 424
С
      if(cfuel.lt.1.e-25)goto 424
      areaf=areaf+(1./taufo+1./tauf)/2.*(tn-t0)
      timet=timil-tstart
      atauf=timet/areaf
      if (nc/10*10.eq.nc)write(11,423)nc,P,T,foa,cfuel,O2,tauf,atauf,
     1timil
      taufo=tauf
```

```
424 if (nc.eq.2)tauni=sngl(1.D0/(W(31)+2.d0*W(33)+W(34)))*1.e3
      tauno=sngl(1.D0/(W(31)+2.d0*W(33)+W(34)))*1.e3
      if(t0.eq.tn)qoto 339
      if(tauno.lt.0.)go to 339
      areano=areano+(1./tauno+1./tauni)/2.*(tn-t0)
      atauno=timet/areano
      tauni=tauno
      xrate=sngl(W(31)+2.d0*W(33)+W(34))
      if((nc/10*10).eq.nc)write(13,501)nc,P,T,xrate,cnox,tauno,xnox,
     1atauno, eratio, timil
  339 denm=sngl(w(15))
      cco2=sngl(prc(15))
С
      if (w(15).lt.0.) next=.true.
      if (nc.eq.2) tauci=(sngl(dabs(prc(9))))/denm*1.e3
      tauco=(sngl(dabs(prc(9))))/denm*1.e3
      if(t0.eq.tn) goto 504
      if(tauco.le.0.)goto 503
С
      if(stco.eq.0.)stco=timil
      timco=timil
      rfuel=cfuel/tauf*1.e3
      areaco=areaco+(1./tauco+1./tauci)/2.*(tn-t0)
      atauco=timco/areaco
      tauci=tauco
      nco=nco+1
  338 format(i7,1p8e11.3)
      rfuel2=sngl(w(14))
      dcodt = -((snql(prc(9))) - ccoe)/tauco*1.e3
  503 if((nc/10*10).eq.nc)write(12,423) nc,P,T,foa,cco,ccoe,tauco,
     latauco, timil
      if (nco.lt.100) write (15,338) nc, timco, tauci, tauco, atauco, areaco
  504 t0=tn
  431 format (f12.2,3e13.5,f8.3,f8.3,e13.5)
  501 format(i4,f7.4,f7.1,4e12.5,f6.3,f9.3)
C Begin step Two calculations
      pl=log(P)
      tol=1./T
      h2ol=prc(27)
      h2osl=sngl(prc(27))
      h2ol=dlog(prc(27))
С
      if(cfuel.lt.1.e-20)cfuel=1.e-20
      fo=log(cfuel)
      fo2=sngl(prc(2))
      fo2l=log(fo2)
      tal=log(tauf)
      talc=log(tauci)
      taln=log(tauni)
      if(nc.eq.2)tolo=log(tfop)
      if( nc.gt.2)tolo=timil
      if(cfuel.le.1.e-24)goto 902
  425 format(i6,1p9e11.3)
C output fuel times
      write (26,900) foa, h2of, pl, tol, fo, fo2l, h2ol, tal, tolo
  900 format(2f7.3,1p,9e11.3)
  902 tal=log(tauci)
      if(cco.lt.1.e-20)qoto 903
      col=log(cco)
      tolo=log(tcop)
```

```
if(nc.gt.2) tolo=timil
C Output co times and concentrations
      write (27,900) foa, h2of, pl, tol, fo, col, fo2l, h2ol, tal, tolo
  903 continue
      tal=log(tauni)
      tolo=log(tnop)
      if(nc.gt.2) tolo=timil
C output nox times and concentrations
     write (28,900) foa, h2of, pl, tol, fo, fo2l, h2ol, tal, tolo
1500 nc=nc+1
С
     if(nc.gt.4000)next=.true.
С
      if(nc.gt.50)next=.true.
      if (timil.gt.1.)go to 502
      DO 435 IJ=1,MAX
      IF (IJ.GT.LS.OR.IJ.GT.LR) GO TO 435
      TCON(IJ) = SNGL(PRC(IJ)/W(IJ))
      FMOL=SNGL(SIGMA(IJ)*MIXMW)
      WRITE (LWRITE, 175) DSPNM(IJ), PRC(IJ), FMOL, W(IJ)
      GO TO 435
430
    WRITE (LWRITE, 185) IJ, RATE(IJ), PRX(IJ), EQUIL(IJ)
C430 continue
    CONTINUE
435
```

APPENDIX E

RUN INPUT FOR GLSENS

Run input for Jet-A for GLSENS TYPICAL FOR STEP ONE TIME PRESSURE C12H23 &prob TCON=.TRUE., CT0=1.0, IPRINT=1,end=1.e-2,,&end &start time=0., ERATIO=0.3, SCC=12.0, SCOX=0., SCH=23., NOXRAT=3.76, ARAT=0., CRAT=0., T=1000., H2OF=0.&end END &solver mxstep=2000.,emax=1.e-13,atolsp=1.e-13,maxstp=190000,&end INIT ALLSP END SENSVAR ALLSP END REAC FINIS RUN INPUT FOR JET-A FOR GLSENS TYPICAL FOR STEP TWO REPEAT MECHANISM TIME PRESSURE C12H23 &prob TCON=.TRUE.,CT0=1.0, PRINT=5.e-5,1.e-4,1.5e-4,2.e-4,2.5e-4, 3.e-4,4.e-4,5.e-4,1.e-3,1.5e-3,2.e-3,2.5e-3,3.e-3,3.5e-3,4.e-3, 4.5e-3,5.e-3,5.5e-3,6.0e-3,&end &start time=0., ERATIO=0.3, SCC=12.0, SCOX=0., SCH=23., NOXRAT=3.76, ARAT=0., CRAT=0., T=1000., H2OF=0.0&end END &solver mxstep=2000,emax=1.e-13,atolsp=1.e-13,maxstp=190000,&end INIT ALLSP END SENSVAR ALLSP END REAC FINIS RUN INPUT FOR CH4 FOR GLSENS TYPICAL FOR STEP ONE TIME PRESSURE CH4 &prob TCON=.TRUE., CT0=1.0, IPRINT=1, end=5.e-4,, &end &start time=0., ERATIO=0.4, SCC=1.0, SCOX=0., SCH=4., NOXRAT=3.76, ARAT=0., CRAT=0., T=1000., H2OF=0.&end END &solver mxstep=2000.,emax=1.e-15,atolsp=1.e-15,maxstp=190000,,&end INIT ALLSP END SENSVAR ALLSP END REAC FINIS RUN INPUT FOR CH4 FOR GLSENS TYPICAL FOR STEP TWO TTME PRESSURE CH4 &prob TCON=.TRUE., CT0=1.0, PRINT=5.e-6,1.e-5,2.5e-5,5.e-5,1.e-4,1.5e-4,2.e-4,2.5e-4,

3.e-4,4.e-4,5.e-4,1.e-3,1.5e-3,2.e-3,2.5e-3,3.e-3,3.5e-3,4.e-3, 4.5e-3,5.e-3,5.5e-3,6.0e-3,&end &start time=0.,ERATIO=0.3,SCC=1.0,SCOX=0.,SCH=4.0, NOXRAT=3.76,ARAT=0.,CRAT=0.,T=1000.,H2OF=0.0,&end END &solver mxstep=20000,emax=1.e-14,atolsp=1.e-14,maxstp=300000, &end ALLSP END SENSVAR ALLSP END REAC FINIS

APPENDIX F

FORTRAN CODE FOR TANKS IN SERIES CALCULATION

```
C IN FIGURE 8 OUTPUT THE PPM AS A FUNCTION OF TEMPERATURE AND COMPUTE
c EACH PHIN TO KEEP TEMPERATURE CONSTANT AS H INCREASES
C methane
C H=h/a t=time
C set up maximum reactors to be eight in series
C pf=f/a fraction in reactor, t=time milliseconds
   DIMENSION pf(8),t(8),TT(8),EFT(8),TAUF(8),TCO(8),TNOX(8),tim(8)
   DIMENSION fa(8), COE(8), rnox(10), hn(5), melissa(5)
   data pf/1.5,1.2,1.0,5*0./
   data t/1.,1.5,2.5,5*0.5/
   REAL NOX, melissa
      open(5,file='fort.5',form='formatted')
      open(10,file='fort.10',form='formatted')
      open(11,file='fort.11',form='formatted')
      open(12,file='fort.12',form='formatted')
      open(13,file='fort.13',form='formatted')
      open(14,file='fort.14',form='formatted')
   open(15,file='fort.15',form='formatted')
      write(12,111)
C 111 format(' h2o phi h2o/f eftt tt(4) ppmco ',
 111 format(' phi ',8X, 'h2o', 2X 'T4 ',9x,'O2
                                                O2COR ',
   1' ppmno, cwcd')
  T3 = 700.
  P=200./14.696
  read(5,5)p3,T3,pf,t
С
  5 format(2e10.3,/,8f5.2,/8f5.3)
С
     p=p3/14.696
     WRITE (10, 7) P, T3, ((PF(I), T(I)), I=1, 4)
      WRITE(13,7)P,T3,((PF(I),T(I)),I=1,4)
  7 FORMAT(' P=',F5.2,' T3= ',F5.0,/,' PF,T=',2(2F5.2' : ')/2(2F5.2' :
   1'),/,3x,'TEMP F H=0.0 H=0.05 H=0.1 H=0.15 ')
  WRITE(15,7)P,T3,((PF(I),T(I)),I=1,4)
  WRITE(10,8)
  8 FORMAT(6x,'IR h
                       FA(IR) T4(IR) EFF
                                                 nox
  1 Ttnox TAUNOX')
  PHI=0.2
  DO 11 IP=1,8
   PHI=PHI+0.1
     H = -0.05
     DO 1 IH=1,4
  H=H+0.05
  PHIN=PHI
  DO 36 IX=1,10
  36 PHIN=PHI*(1.+H/(PHIN*0.059))**0.1586
C
     WRITE(10,37) IX, PHIN, PHI, H
  37 FORMAT(I5,3F11.4)
     pf(1)=1./phin
   if(phin.ge.1.)write(13,17) Phi, Phin,H
  17 format(' phi=',e12.4, 'phin=',e12.4, ' h ',e12.4)
      if(PHIN.GT.1.) go to 500
      CO=0.
  NOX=0.
```

```
C ITERATE TO SOLVE FOR T4 FOR EACH REACTOR, IR= CONDITIONS FOR EACH REACTOR.
(NO)
   tim(1) = 0.
     DO 30 IR=1,3
      tim(ir)=tim(ir)+t(ir)
  FA(ir) = PHIN*0.059*PF(IR)
  If(fa(ir).qt.0.059)fa(ir)=0.059
  HF=H/FA(ir)
      IF(HF.GT.2.5)HF=2.5
  EFF=100.00
  EFTT=100.
     itI=0
  DO 40 IT4=1,10
С
      itI=itI+1
C EFTT= TOTAL INEFFICIENCY
   EFFO=EFF
C DO NOT USE RICH CORRELATIONS HERE AS RESULTS FLUCTUATE - NOT PHYSICAL
   IF(fa(ir).GT.0.0592) GO TO 66
  DO LEAN CORRELATIONS
C
      T4E=457.*(T3)**0.258*FA(ir)**0.435*(1.+HF)**(-.069)*(P)
   1**0.00284*0.059**(-.435)
       eff=100.
   T4=T3+(T4E-T3)*EFF/100.
  TAUF(IR)=2.09e-4*FA(ir)**0.222*(1.+HF)**0.0675*P**(-1.07)*
   1EXP(22625./T4)
  TCO(IR) = 9.99E-4*FA(ir) ** (0.101)*(1.+HF)**.0959*p**(-1.00)*
  1EXP(2434./T4)
  TNOX(IR)=2.94E4*fa(ir)**.032*(1.+HF)**.329*p**(-2.1)*
  1EXP(34859./T4)
   COE(IR) =15569.*fa(ir) **1.90*(1.+HF) **.00705*P**(-.477) *
  1EXP(-33388./T4)*0.059**1.90
  goto 40
С
   DO RICH CORRELATIONS
  66 T4E=859.*T3**0.176*fa(ir)**(-0.559)*(1.+HF)**(-0.146)*P**
  1(.00167)*0.059**.559
  T4=T3+(T4E-T3)*EFF/100.
  TAUF(IR)=2.74e-2*fa(ir)**.111*(1.+HF)**(-.829)*P**(-0.328)*
  1EXP(14216./T4)
  TCO(IR)=1.3E-3*fa(ir)**(.215)*(1.+HF)**(.195)*p**(-1.0)
   1*EXP(2433./T4)
  TNOX(IR) = 43928.*fa(ir) **(.284) *(1.+HF) **.641*P**(-2.0)
   1*EXP(32649./T4)
   COE(IR)=5.3E-2*fa(ir)**2.55*(1.+HF)**(-.358)*P**(-.00393)*
   1EXP(-31365./T4)*0.059**(-2.55)
С
   EFF EQUALS THE EFFICIENCY OF EACH REACTOR
   IF CHANGE IN EFFICIENCY IS LESS THAN 0.1 ITS CONVERGED
С
C 67 EFF=(1.-EXP(-tim(IR)/TAUF(IR)))*100.
С
   IF (ABS (EFF-EFFO).LT.0.01)GO TO 41
C
      WRITE(10,96)IR, iTI, fa(ir), T4, EFF
  40 CONTINUE
  96 FORMAT(' IR= ',I10,' itI ',i4,' fa ',e10.3,' T4 ',F7.2,F7.2)
  41 \text{ TT}(IR) = T4
     EFT(IR) = EFF
   FAE=fa(ir)*EFF/100.
     XFO=FAE/(FAE*(1.+HF*16./29.)+16./29.)
  FO=XFO*P/82.056/T4
   eftt=eftt*(100.-eff)
```

```
С
     write(10,97) ir,phi,hf
  97 format(' ir ', i5, ' phi ', f10.3, ' hf ', f8.3)
 100 FORMAT(2X, 4e12.4)
C CALCULATE CO FOR EACH REACTOR
   TTF=T(IR)/TAUF(IR)
  TTCO=T(IR)/TCO(IR)
  EXCO=EXP(-TTCO)
   TTAUF=T(IR)/TAUF(IR)
      FOT=FO*TTAUF/(TTCO-TTAUF)
      if (ir.eq.1)CO=COE(IR)-EXCO*COE(IR)+FOT*(EXP(-TTAUF)-EXCO)
      irb=ir
      IF(IR.GT.1)irb=ir-1
   CO=CO*FA(IR)/FA(IRB)*(1.+fa(irb)*29./16.)/(1.+fa(ir)*29./16.)
   IF (IR.GT.1) CO=COE (IR) + (CO-COE (IR)) *EXCO+FOT* (EXP(-TTAUF) -EXCO)
C CACULATE NOX FOR EACH REACTOR
   TTNOX=T(IR)/TNOX(IR)
      IF(IR.EQ.1)nox=nox+TTnox
      NOX=NOX*FA(IR)/FA(IRB)*(1.+fa(irb)*29./16.)/(1.+fa(ir)*29./16.)
      IF(IR.GT.1)nox=nox+TTnox
      phio=fa(ir)/0.059
      WRITE(10,99) IR, IP, H, phio, T4e, EFF, NOX, TTNOX, TNOX(IR)
  99 FORMAT(' *',2I4,2F8.4,2F9.2,1P6E10.2)
 110 rnox(ih)=nox*1.e6*82.056*t4/p
      write(11,98)ir,PHIO,t(ir),ttf,ttco,CO,COE(IR),T4
  98 format(i3,1p7e10.2)
C END OF INDIVIDUAL REACTOR SEGMENT
  30 continue
 113 format(2x, f9.3, 1p5e11.3)
   CWCD=(PHIN+(2.+(16./18.)*(HF)*PHIN)+(1.-PHIN)*2+(2.*79./21.))/
      1(PHIN+(1.-PHIN)*2.+(2.*79./21.))
   RHO=P/82.056/TT(3)
   O2=(1.-PHIN)*2.*phin/(9.524-phin)
   if(02.lt.0.)02=0.
   O2COR=5.9/(20.9-100.*O2)
   PPMCO=CO*1.E6/RHO*O2COR
   PPMCO=PPMCO*CWCD
   PPMNO=NOX*1.E6/RHO*O2COR
   PPMNO=PPMNO*CWCD
  hn(ih)=ppmno
      melissa(ih) = ppmco
   write (12,102) phi, hf, tt (3), o2, o2cor, ppmno, cwcd
 102 format(2f8.3, f7.1, f8.3, 1p3e10.2)
С
      write(13,113)phi,(rnox(ir),ir=1,4)
  1 continue
   Tf=tt(3)*1.8-460.
   write(13,113)tf,(hn(in),in=1,4)
      write(14,113)tf,(rnox(in),in=1,4)
      write(15,113)tf,(melissa(in),in=1,4)
  11 continue
 500 stop
      End
```

APPENDIX G

FORTRAN CODE FOR MODEL SIMULATION OF GLSENS CONSTANT TEMPERATURE AND PRESSURE PLUG FLOW REACTOR

```
C Moder Ch4 reaction
   OPEN(6,FILE='MELISSA.OUT',FORM='FORMATTED')
   foa=0.05263
      TK=2000.
   P=2.
      rho=P/82.056/TK
      yfo=foa/(foa+16./29.)
      fo=yfo*rho
C Step one equation - lean
      tauf1=2.09e-4*P**(-1.07)*foa**(0.222)*exp(22625./TK)
      TMIN = -TAUF1 * LOG(1. - 1. E - 20/2./FO)
      WRITE(6,1)TMIN, TAUF1, fo
  1 FORMAT(' TMIN MS ', E12.4, ' TAUF1 MS ', E12.4, ' fo ', e12.4)
  write(6,2)
  2 format(8X, ' TIME SEC FUEL H2O
                                          TAUF MS ')
C CH4+2.02=CO2+2.H2O
  NT = 0
  F = FO
      H2O=0.
      TIME=0.
      TAUF=TAUF1
      DTIME=1.E-5
      DO 6 IT=1,50000
      TIME=TIME+DTIME
      DF=F*DTIME/TAUF
      F = F - DF
     H2O=H2O+2*DF
C step two equation
      IF (H2O.GT.1.E-20) TAUF=3.5E-9*P** (-0.0713) *F** (-0.307) *
   2H2O**(-0.465)*(1.+H2O/F)**(-0.221)*EXP(14149/TK)
       TSEC=TIME*1.E-3
      NT = NT + 1
       IF (IT/100*100.EQ.IT) WRITE (6,10) NT, TSEC, F, H2O, TAUF
  10 FORMAT(18,1P4E12.4)
  6 CONTINUE
   STOP
      END
```

REFERENCES

- 1. Molnar, Melissa; and Marek, Cecil J.: Reduced Equations for Calculating the Combustion Rates of Jet-A and Methane Fuel. NASA/TM—2003-212702, November 2003.
- 2. Hendricks, R.C.; Shouse, D.T.; and Roquemore, W.M.: Water Injected Turbomachinery, The 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, 2004.
- 3. Brink, Anders; Mueller, Christian; Kilpinen, Pia; and Hupa, Mikko: Possibilities and Limitations of the Eddy Break-Up Model, Combustion and Flame, 123, 275–279 (2000).
- 4. Penko, P.F.; Kundu, K.P.; Siow, Y.K.; and Yang, S.L.: A Kinetic Mechanism for Calculation of Pollutant Species in Jet-A Combustion, AIAA–2000–3035.
- 5. Kundu, K.P.; Penko, P.F.; and VanOverbeke, T.J.: A Practical Mechanism for Computing Combustion in Gas Turbine Engines, AIAA–99–2218.
- 6. Bittker, D.A.: GLSENS, A Generalized Extension of LSENS Including Global Reactions and Added Sensitivity Analysis for the Perfectly Stirred Reactor, NASA Reference Publication 1362, 1999.
- 7. Radhakrishnan, Krishnan; and Bittker, David A.: LSENS, A General Chemical Kinetics and Sensitivity Analysis Code for Homogeneous Gas-Phase Reactions, NASA Reference Publication 1329.
- 8. Sanford, Gordon; and McBride, Bonnie J.: Computer Program for Calculation of Complex Chemical Equilibrium Composition and Applications, NASA Reference Publication 1311, October 1994.
- Bhargava, A.; Colket, M.; Sowa, W.; Casleton, K.; and Maloney, D.: (1999) An Experimental and Modeling Study of Humid Air Premixed Flames, ASME, International Gas Turbine and Aeroengine Congress and Exhibition, Indianapolis, IN 7–10 June, Paper 99– GT–8. (See also, J. Engr. Gas Turbines and Power 122:405 (2000).)
- 10. GRI-Mech Version 2.1 released 9/6/95 http://www.gri.org/tech/res/

Figure 4 Kinetic Jet-A Water Injection CO Tau Parity Step One (lean)

Figure 6 Jet-A Fuel Step One Lean Model

Figure 8 Kinetic Jet-A CO Tau Parity Step Two (lean)

NASA/TM-2004-213046

Figure 15 Kinetic Methane Tau Fuel Parity Step Two (lean)

Figure 17 Kinetic Methane NOx Tau Parity Step Two (lean)

Tau NOx GLSENS (experimental)

NASA/TM-2004-213046

Figure 20 Methane Tanks in Series, fa < 0.059

Figure 22 Methane Nox versus Temperature

Figure 24 tauf millisec for lean ch4

Figure 25 CH4 T=2000 P=2 atm Phi=0.8915 Gri-mech viet

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of info gathering and maintaining the data needed, and collection of information, including suggestions f Davis Highway, Suite 1204, Arlington, VA 2220	rmation is estimated to average 1 hour per n 1 completing and reviewing the collection of ir for reducing this burden, to Washington Head 02-4302, and to the Office of Management an	esponse, including the time for re- nformation. Send comments regar lquarters Services, Directorate for Id Budget, Paperwork Reduction P	viewing instructions, searching existing data sources, rding this burden estimate or any other aspect of this Information Operations and Reports, 1215 Jefferson Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
	April 2004 Tec		echnical Memorandum
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
New Reduced Two-Time Ste Rates of Jet-A and Methane	ep Method for Calculating Com Fuel With and Without Water In	bustion and Emission njection	WDS 22 714 20 10
6. AUTHOR(S)			WBS-22-714-20-10
Melissa Molnar and C. John	Marek		
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION
National Aeronautics and Sr	ace Administration		REPORT NUMBER
John H. Glenn Research Cer	nter at Lewis Field		
Cleveland Obio 44125 2101			E-14483
Cleveland, Onio 44155–51	91		
. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING
National Appropriation and Sr	ago Administration		Adenor her ohr Nombert
Washington, DC 20546–0001			NASA TM—2004-213046
Melissa Molnar, Ohio Unive NASA Glenn Research Cent	ersity, Department of Chemical ter. Responsible person, C. John	Engineering, Athens, O n Marek, organization co	hio 45701; and C. John Marek, ode 5830, 216–433–3584.
2a. DISTRIBUTION/AVAILABILITY S	TATEMENT		12b. DISTRIBUTION CODE
Unclassified - Unlimited			
Subject Category: 07	Distrib	ution: Nonstandard	
Available electronically at http://	altre are nasa aov		
This publication is available from	the NASA Center for AeroSpace Int	formation 301 621 0300	
3. ABSTRACT (Maximum 200 words	s)	Iormation, 501–021–0590.	
A simplified kinetic scheme for Jet- National Combustor Code (NCC) of averaged value (step one) or an inst presented here results in a correlation step time averaged method previous the initial times for smaller water con- to fuel mass ratio, temperature, and time as a function of instantaneous to the turbulent mixing times to det and rate constants for each species kinetic times. Chemical kinetic time injection to water mass loadings of Applications (CEA) code to determ water to fuel mass ratio, pressure an initial combustor temperature (T3)	-A, and methane fuels with water inject r even simple FORTRAN codes that are antaneous value (step two). The switch on that gives the chemical kinetic time a sly developed to determine the chemical oncentrations. This gives the average ch pressure. The second instantaneous ste fuel and water mole concentration, pres ermine the limiting properties of the rea in a kinetic scheme for finite kinetic rat e equations for fuel, carbon monoxide a 2/1 water to fuel. A similar correlation hine the equilibrium concentrations of c nd temperature (T3). The temperature o equivalence ratio, water to fuel mass ra	tion was developed to be used e being developed at Glenn. T in is based on the water concent as two separate functions. This il kinetic time with increased a nemical kinetic time as a funct up, to be used with higher water ssure and temperature (T4). The action. The NASA Glenn GLS rest. These reaction rates were and NO _x were obtained for Jet was also developed using data arbon monoxide and nitrogen of the gas entering the turbine tation and pressure	in numerical combustion codes, such as the The two time step method is either an initial time tration in moles/cc of 1×10^{-20} . The results s two step method is used as opposed to a one accuracy. The first time averaged step is used at tion of initial overall fuel air ratio, initial water er concentrations, gives the chemical kinetic he simple correlations would then be compared SENS kinetics code calculates the reaction rates then used to calculate the necessary chemical t-A fuel and methane with and without water a from NASA's Chemical Equilibrium oxide as functions of overall equivalence ratio, (T4) was also correlated as a function of the
14. SUBJECT TERMS	equivalence ratio, water to fuer fildss fa	ano, and pressure.	15. NUMBER OF PAGES
Combustion; Chemical kine	tic times; Jet-A; Methane; Nitro	ogen oxides; Carbon mo	noxide 71 16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICA OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT
Unclassified			
Chelabolitea	Unclassified	Unclassified	