NEW WATER TOLERANT, HIGHLY ACTIVE CATALYST FOR THE SELECTIVE REDUCTION OF NITRIC OXIDE BY ALCOHOLS

Istvan Halasz, Ravindra Datta

ihalasz@blue.weeg.uiowa.edu; Phone: 319-335-0306; Fax: 319-335-1415
radatta@icaen.uiowa.edu; Phone: 319-335-1395; Fax: 319-335-1415
Department of Chemical and Biochemical Engineering
The University of Iowa, Iowa City, IA 52242

The selective catalytic reduction, SCR, of NO by hydrocarbons or oxygenated hydrocarbons is a promising technique for minimizing NO_x emissions from oxygen rich exhausts of combustion sources at high space velocities [1, 2]. Some ZSM5 type zeolites are so far the most active SCR catalysts. However, the catalytic activity of most zeolites substantially decreases in presence of H₂O, which is always present in exhaust streams. Moreover, the low hydrothermal stability of zeolites is a concern.

Here we report the first observation of very high catalytic activity and good water tolerance of a new, indium based supported molten metal catalyst (In-SMMC) in the SCR of NO by alcohols at reaction conditions resembling those in the commercial catalytic converters for NO_x abatement in coal combustion exhausts. In contrast to common supported metal catalysts composed of solid metal crystallines dispersed on porous supports, SMMCs contain micro droplets or thin films of non-transition low melting metals on refractory supports. These recently explored new heterogeneous catalysts have been found to be active for various dehydrogenation and selective oxidation processes [3].

Catalytic experiments were carried out with mixtures of $(0.1\% \text{ NO} + 8\% \text{ O}_2 + x\% \text{ C}_1\text{-C}_3 \text{ alcohol} + y\% \text{ H}_2\text{O})$ in He carrier gas at temperatures from 300 to 600 °C and space velocities SV = 60,000 h⁻¹. To get comparative information about the catalytic performance of In-SMMC for the reduction of NO by various reductants, experiments were also done by using H₂, CO, and hydrocarbons instead of alcohols. The reaction steps were probed by using bi- and trimolecular feeds of (NO + O₂), (NO + alcohol) (O₂ + alcohol)and (O₂ + H₂O + alcohol).

Results indicate that In-SMMC is more active for the SCR of NO by Et-OH in presence of excess O_2 and H_2O than any other catalysts reported for this reaction including In^{3+} or In_2O_3 promoted zeolite and non zeolite samples [4-8]. Catalyst

performance remained largely intact when catalytic tests were carried out at various reaction conditions for an extended period. Periodic oscillations were observed in the NO and NO₂ concentrations of the products. Unlike in SCR reactions with hydrocarbons [13], this is the first time that oscillations have been observed for oxygenated hydrocarbon reductants. Water affects both the amplitude and the frequency of these oscillations.

Oxidation of Et-OH is a likely initial reaction in the SCR process over the In-SMMC. As opposed to most other SCR catalysts [1, 9, 10], formation of NO₂ has presumably a secondary role over this catalyst. This non-conventional behavior might be due to the SiO₂ (controlled pore glass) support. While acidic supports, such as Al₂O₃ or TiO₂-ZrO₂, are typically good supports for non-zeolite SCR catalysts, SiO₂ has been found to be an unsuitable support for the best water tolerant catalysts, such as In₂O₃, CoO_x, or Ag [7, 8, 14]. Similar to the SCR of NO by C_3H_6 over Mn₂O₃/Sn-ZSM5 [12], H₂O improves both the activity and the selectivity of In-SMMC. Homogeneous and heterogeneous radical reactions may be involved in the SCR process over this catalyst.

References

- [1] M. Shelef, *Chem. Rev.* **95**, 209 (1995).
- [2] J. N. Armor, Appl. Catal. B: Environmental 1, 221 (1992).
- [3] I. Halasz, A. Singh, M. Serban, R. Datta, *Science*, in preparation.
- [4] I. Halasz, R. Datta, Appl. Catal., in preparation
- [5] M. Haneda, Y. Kintaichi, M. Inaba, H. Hamada, Bull. Chem. Soc. Jpn. 70, 2171 (1997).
- [6] H. Hamada, Y. Kintaichi, T. Yoshinari, M. Tabata, M. Sasaki, T. Ito, *Catal. Today* 17, 111 (1993).
- [7] T. Miyadera, Appl. Catal. B: Environmental 2, 199 (1993).
- [8] H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, Appl. Catal. A: General 88, L1 (1992).
- [9] C. N. Montreuil, M. Shelef, Appl. Catal. B: Environmental 1, L1 (1992).
- [10] Y. Kintaichi, M. Haneda, M. Inaba, H. Hamada, Catal. Lett. 48, 121 (1997).
- [11] I. Halasz, A. Brenner, Catal. Lett., in press.
- [12] Y. Hiraho, C. Yokoyama, M. Misono, Chem. Commun. 597 (1996).
- [13] I. Halasz, A. Brenner, M. Shelef, K. Y. S. Ng., J. Phys. Chem. 99, 17186 (1995).
- [14] T. Maunula, Y. Kintaichi, M. Inaba, M. Haneda, K. Sato, H. Hamada, Appl. Catal. B: Envirtonmental 15, 291 (1998).