# Comparison Of Mortality Rates Between PIT Tagged And Non-PIT Tagged Groups Of Spring Chinook Salmon And Summer Steelhead At Dworshak And Kooskia National Fish Hatcheries in Idaho 

## Prepared by

Ray N. Jones and
Douglas Burum
Idaho Fishery Resource Office
Dworshak Fisheries Complex
U.S. Fish and Wildlife Service

Ahsahka, Idaho
83520

April 1998

## INTRODUCTION

Monitoring the post-release performance of spring chinook salmon (Oncorhynchus tshawytscha) and summer steelhead (O. mykiss) smolts after their release from Dworshak and Kooskia National Fish Hatcheries (NFH) is an integral part of the production evaluation program at the Dworshak Fisheries Complex. Representative samples of fish from experimental treatment groups and regular production lots are marked with Passive Integrated Transponder (PIT) tags to monitor their downstream migration time and survival to several lower Snake River smolt collection facilities after they are released. Data collected from PIT-tagged smolts are used to make inferences about the post-release performance of the population released. Results from evaluations are then used to recommend changes in rearing and release strategies to improve smolt quality and adult returns. One of the important assumptions that has to be made when using PIT tags is that tagged fish have similar mortality rates as non-tagged fish.

Previous research demonstrated little or no effect of PIT tags on the growth or survival of chinook salmon, sockeye salmon (O. nerka), or steelhead (Prentice et al., 1984, 1985, 1986, 1987, 1990a, and 1990b). However, Prentice et al. (1993) concluded that the results needed to be viewed with caution because their experimental design did not allow them to distinguish between container and treatment effects. Peterson et al. (1994) compared the over-winter growth and survival of wild juvenile coho salmon ( $O$. kitsutch) marked with sequential coded-wire tags with those marked with PIT-tags over a two year period and found no significant differences between the two tag groups for either year. However, comparisons were not made with nontagged fish. The purpose of this paper is to compare mortality rates between PIT tagged and non-PIT tagged groups of steelhead and spring chinook salmon at Dworshak and Kooskia NFHs prior to their release.

## METHODS

Ninety-nine individual raceways or Burrows ponds containing representatve groups of PITtagged spring chinook salmon or summer steelhead at Dworshak and Kooskia NFHs from 1993 to 1996 were selected for analysis. These rearing units represented twenty-five different experimental or regular production groups. Mortalities from all rearing units were collected daily from the day the fish were PIT tagged until the fish were released. All the mortalities were examined for the presence of PIT tags by scanning them with either a Destron portable PIT-tag scanner or a Biomark Mark X PIT-tag scanner (prototype).

The pair-wise T-Test (Wilkinson 1990) was used to detect significant differences in mean mortality rates between tagged and non-tagged fish for each experimental and production group. First, mortalities for PIT tagged and non-PIT tagged fish in each rearing unit were expressed as percentages. The percentages were then normalized using the square-root arcsine transformation (Snedecor and Cochran 1978). The pair-wise T-Test was then performed on the transformed data.

## RESULTS

Differences in mean percent mortality between PIT tagged and non-PIT tagged fish for the majority of the groups examined were not significant. However, significant differences ( $P \leq$ 0.05 ) were observed in 10 of the 25 groups (Table 1). In all of these cases, the PIT tagged fish had lower mortality than the non-PIT tagged fish. PIT tagged fish had higher mortality than nonPIT tagged fish in only seven of the 25 groups examined although none of these differences were significant. In five of those cases, the difference in mean percent mortality between PIT tagged and non-PIT tagged fish was 0.05 or less.

## DISCUSSION

The fact that it was the PIT tagged fish that had significantly lower mortality than the non-PIT tagged fish was unexpected. Logic would ordinarily suggest that PIT-tagging would result in higher rates of mortality because of the additional stress and injury associated with tagging process. After examining the results in 1993, where four of the five groups tested resulted significant results, we concluded that the taggers were selecting the healthiest, most fit individuals for tagging; weaker, smaller, less healthy fish were being consciously rejected. Because PIT tags are relatively expensive, taggers were hesitant to "waste" tags on fish that were at high risk of mortality. This introduced an obvious bias into the tagging program since tagged fish were not selected randomly from the population. We have since made it official policy to discuss tagging protocol with taggers to insure that fish are marked randomly.

In any kind of tagging program, some injury and mortality is to be expected and PIT tagging is no exception. Every care needs to be taken to insure that the tagging process does not introduce a bias into the experiment where excessive handling or high rates of tagging injury lead to differences in survival between the tagged group and the rest of the population they represent. However, as our results indicate, steps need to be taken to insure that excessive care and consideration of tagged fish does not bias the experiment in the opposite way.

Table 1. Mortality data for the PIT tagged and non-PIT tagged spring chinook salmon and steelhead in various production groups at Dworshak and Kooskia NFHs for 1993 to 1996.


$$
\text { Mean }=\begin{array}{r}
0.04 \\
P=0.20
\end{array}
$$

Table 1. Continued.


$$
P=0.10
$$

Table 1. Continued.


Table 1. Continued.


## REFERENCES

Peterson, N.P., E.F. Prentice, and T.P. Quinn. 1994. Comparison of sequential coded-wire and passive integrated transponder tags for assessing overwinter growth and survival of juvenile coho salmon. North American Journal of Fisheries Management 14:870-873.

Prentice, E.F., T.A. Flag, and C.S. McCutcheon. 1987. A study to determine the biological feasibility of a new fish tagging system. Report (Contract DE-A179-83BP11982, Project 83-19) to Bonneville Power Administration, Portland, Oregon.

Prentice, E.F., T.A. Flagg, and C.S. McCutcheon. 1990. Feasibility of using implantable passive integrated transponder (PIT) tags in salmonids. American Fisheries Society Symposium 7:317-322.

Prentice, E.F., T.A. Flagg, C.S. McCutcheon, and D.F. Brastow. 1990. PIT-tag monitoring systems for hydroelectric dams and fish hatcheries. American Fisheries Society Symposium 7:323-334.

Prentice, E.F., T.A. Flagg, C.S. McCutcheon, D.F. Brastow, and D.C. Cross. 1990. Equipment, methods, and an automated data-entry station for PIT-tagging. American Fisheries Society Symposium 7:335-340.

Prentice, E.F., D.J. Maynard, P. Sparks-McConkey, C.S. McCutcheon, D. Neff, W. Steffens, F.W. Waknitz, A.L. Jensen, L.C. Stuehrenberg, S.L. Downing, B. Sandford, and T.W. Newcomb. 1993. A study to determine the biological feasibility of a new fish tagging system. Report (Contract DE-A179-84BP11982, Project 83-319) to Bonneville Power Administration, Portland, Oregon.

Prentice, E.F. and D.L. Park. 1984. A study to determine the biological feasibility of a new fish tagging system. Annual Report (Agreement DE-A179-83BP11982, Project 83-19) to Bonneville Power Administration, Portland, Oregon.

Prentice, E.F., D.L. Park, T.A. Flagg, and C.S. McCutcheon. 1986. Astudy to determine the biological feasibility of a new fish tagging system. Report (Contract DE-A17983BP11982, Project 83-19) to Bonneville Power Administration, Portland, Oregon.

Prentice, E.F., D.L. Park, and C.W. Sims. 1984. A study to determine the biological feasibility of a new fish tagging system. Report (Contract DE-A179-83BP11982, Report 83-13) to Bonneville Power Administration, Portland, Oregon.

Prentice, E.F., C.W. Sims, and D.L. Park. 1985. A study to determinethe biological feasibility of a new fish tagging system. Report (Contract DE-A179-83BP11982, Project 83-19) to Bonneville Power Administration, Portland, Oregon.

Wallace, E.J. and T.I.J. Smith. 1990. Use of PIT-tags to individually identify stripped bass and red drum brood stocks. American Fisheries Society Symposium 7:341-345.

