

WAND - US/JAPAN WIDE-ANGLE NEUTRON DIFFRACTOMETER

The US/Japan WAND at the HFIR HB-2C beam tube was designed to provide two specialized data-collection capabilities: (1) fast measurements of medium-resolution powder-diffraction patterns and (2) measurements of diffuse scattering in single crystals using flat-cone geometry. For these purposes, this instrument is equipped with a curved, one-dimensional ³He position-sensitive detector covering 125° of the scattering angle with the focal distance of 71 cm. The sample and detector can be tilted in the flat-cone geometry mode. These features enable measurement of single-crystal diffraction patterns in a short time over a wide range of the reciprocal space, as well as performance of time-

resolved experiments for structural transformations having short time constants. The WAND detector (ORDELA 1410N) is a multianode type (624 anodes and a 0.2° pitch) ³He gas counter specially designed for this instrument. This detector has an intrinsic angular resolution of 0.25° and a maximum counting rate per anode of 10^5 counts/s.

SPECIFICATIONS

Beam spectrum	Thermal
Monochro- mator	Vertically fo- cused Ge(113). Ge(115) is also available to pro- vide λ =0.95 Å
Monochro- mator angle	$2\Theta_{\rm M} = 52.0^{\circ}$
Wavelength	$\lambda = 1.5 \text{ Å}$
Scattering angles	10° < 2Θ < 135°
Sample angles	$0^{\circ} < \Omega < 135^{\circ}$
Detector	Multiwire (624 anodes, 0.2° pitch) He ³ curved PSD

Status: Operational

APPLICATIONS

BF

WAND is ideal for the study of time-resolved phenomena and for the study of diffuse scattering in single crystals. Research performed at WAND includes studies of the growth of ferroelectric ice-XI, hole and charge ordering in colossal magnetoresistance materials, and studies of magnetic structures and correlations in low-dimensional magnetic systems and other magnetic materials.

WAND is operated in collaboration with the Japan Atomic Energy Research Institute under the US/Japan Cooperative Program on Neutron Scattering Research.

May 2008