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ABSTRACT

This paper describes a real-time robot vision system which uses only the divergen
of the optical flow field for both steering control and collision detection. The robot
has wandered about the lab at 20 cm/s for as long as 26 minutes without coll
sion.The entire system is implemented on a single ordinary UNIX workstation with
out the benefit of real-time operating system support. Dense optical flow data a
calculated in real-time across the entire wide-angle image. The divergence of th
optical flow field is calculated everywhere and used to control steering and colli
sion-avoidance behavior. Divergence alone has proven sufficient for steering pa
objects and detecting imminent collision. The major contribution is the demonstra
tion of a simple, robust minimal system that uses flow-derived measures to cont
steering and speed to avoid collision in real time for extended periods. Such a sy
tem can be embedded in a general, multi-level perception/control system.

1 Introduction

Mobile robots that drive at reasonable speeds (e.g., 20 cm/s indoors) must robustly

sense and avoid obstacles in real time. Image motion provides powerful cues for u

standing scene structure. Divergence of optical flow (the sum of optical flow derivat

in two perpendicular directions) is theoretically unaffected by camera rotation, so it g

a robust measure of scene structure for a moving observer. The robot system des

here uses flow divergence to steer around obstacles while it attempts to achieve

(which for now is simply to drive straight ahead). When the obstacle cannot be avoide

changes in steering alone, the divergence data warn the robot of the impending col

The robot stops, turns, and resumes wandering straight ahead in the new direction.

1. This research was conducted while the first author held a National Research Council Research Associateship at NIS
Current address: Sensar, 121 Whittendale Drive, Moorestown, NJ 08057. email: tedcamus@sensar.com
2 Current address: NIST, Information Access and User Interfaces Division, 100 Bureau Drive Stop 8940, Gaithersburg
MD  20899-8940
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integrated behaviors have driven the robot around the lab at 20 cm/s for as long as 26

utes without collision. Because this wandering behavior is already a real-time capab

there is promise that future increases in computational power will fuel developme

both increasingly robust basic skills and additional behaviors for robots.

The simplicity of the system improves robustness and makes the system easier

tend. The system uses only a single framegrabber, a single processor, a single

stream, and a single low-level percept for all control functions. Simple robust filters

chosen in lieu of complex filters that require sensitive system modeling and synchro

tion. These filters are able to ignore momentary noise and artifacts that result from sy

module interactions, which enables modules to cooperate without delicate synchro

tion.

In addition, the obstacle avoidance system is extensible. Egocentric hazard ma

derived from divergence data, goals, and steering history. A composite hazard map i

to steer the vehicle. This design supports the use of multiple cues, which can be inc

rated with additional hazard maps. Additional redundant or complementary sensing m

can be exploited by the existing framework.

Our approach achieves real-time intelligent behavior by using minimalist visually

rived representations. In such representations, a minimal amount of information req

to achieve the given task is extracted from the imagery [2][4]. The representations co

only task-relevant information (i.e., relevant to obstacle avoidance), and the informati

is only represented in 2-D image coordinates. The control algorithms directly use ob

able image information represented in the 2-D image sequence; a 3-D reconstruction

required [18][31]. Such an approach is particularly useful in closing control loops with

sion at lower levels of a multi-level control system. The limited body-centered data

are used are mapped into the local visual space for steering and speed control polic

minimalist approach requires fewer calibrations, fewer scene hypotheses, and less c

tation. It is, therefore, simpler and faster.

The obstacle avoidance system we describe in this paper is designed in accor

with the Real-Time Control System (RCS) hierarchical architecture described in [1]. R

decomposes goals both spatially and temporally to meet system objectives. The s

monitors its environment with sensors and updates models of the states of the system
DRAFT, submitted 1997, revised 1999 2
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and the world. Figure 1 describes the functionality of the obstacle avoidance system

first three levels of the RCS hierarchy.

The RCS architecture is composed of three parallel legs (sensory processing

world modeling (WM), and behavior generation (BG)) that interact to control comp

systems. The hierarchical levels run in parallel. The present system uses the three

levels: elemental-move (e-move), primitive (prim) and servo. Generally, BG mod

control physical devices. WM modules supply information to both the BG hierarchy

the SP hierarchy. WM modules maintain a database of system variables and filter an

alyze data using support modules. SP modules monitor and analyze sensory inform

from multiple sources in order to recognize objects, detect events and filter and inte

information. The world model uses this information to maintain the system’s best esti

of the past and current states of the world and to predict future states of the world.

The testbed mobile robot is shown in Figure 2 (a).Video images are obtained fro

onboard uncalibrated camera with a field of view. The camera is mounted on a

motor. The robot’s view from this camera is shown in Figure 2 (b). Figure 1 sketches

obstacle avoidance system consisting of seven processing modules. The SP module

Figure 1   Obstacle Avoidance System Architecture

motorswide angle video
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pute flow and divergence everywhere in the image. The WM modules apply spatia

temporal median filters to reduce momentary fluctuations in the divergence field. The

modules use divergence to steer the robot around obstacles seen in the wide came

and provide the body and gaze controllers with desired driving, steering, and gaze v

ties. Using active gaze control, the camera is rotationally stabilized to reduce the m

tude of the flows in the image stream. When the camera points too far away from the

ing, a saccade is made toward the heading. These saccades introduce momentary

bances of the flow data, but the temporal median filter effectively eliminates disrup

effects. When divergence data indicate imminent collision ahead because steering

cannot avoid an obstacle, the robot stops, turns away, and resumes wandering.

2 Full optical flow estimation

Robust, real-time optical flow is now becoming a practical means of robotic percep

given new fast algorithms and increasingly faster hardware. Given that our entire sy

(flow, divergence, and body control) is implemented on a single workstation without

benefit of a real-time operating system, it is important to have sufficient processor

time available to buffer the overhead of the operating system. Otherwise, the image

ture frame rate could vary from frame to frame. Camus [7][8] describes a robust, real

correlation-based optical flow algorithm which returns dense data even in areas of

tively low texture. This is the starting point of our implementation.

(a) Test mobile robot
(b) Robot’s view of the lab
through its 115-degree wide

angle lens

Figure 2   Robot and Its View
DRAFT, submitted 1997, revised 1999 4
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In correlation-based flow such as in [5][17][21], the motion for the pixel at

one frame to a successive frame is defined to be the displacement of the patch of

pixels centered at , out of possible displacements (where

an arbitrary parameter dependent on the maximum expected motion in the image). W

termine the correct motion of the patch of pixels by simulating the motion of the patch

each possible displacement of and considering a match strength for each dis

ment. If represents a matching function which returns a value proportional to the m

of two given features (such as the absolute difference between the two pixels’ inte

values, and respectively), then the match strength for a point

displacement (u,w) is calculated by taking the sum of the match values between each

in the displaced patch in the first image and the corresponding pixel in the actual p

in the second image:

(1)

The actual motion of the pixel is taken to be that of the particular displacement, o

possible displacements, with the maximum neighborhood ma

strength (or equivalently, minimum patch difference); thus this is called a “winner-ta

all” algorithm.

This algorithm has many desirable properties. Due to the relatively large size o

matching window, the algorithm generally does not suffer from the aperture problem

cept in extreme cases [5][8], and it tends to be very resistant to random noise. Becau

patch of a given pixel largely overlaps with that of an adjacent pixel, match strength

all displacements for adjacent pixels tend to be similar (except at motion bounda

Therefore the resultant optical flow field tends to be relatively smooth, without requi

any additional smoothing steps. In gradient-based optical flow, on the other hand,

usually results in direct errors in the basic optical flow measurements due to the sens

of numerical differentiation. Finally, because one optical flow vector is produced for e

pixel of input (except for a small border where flow may not be calculate

optical flow measurement density is 100 percent.

x y[ , ]

Pν ν ν×

x y[ , ] 2η 1+( ) 2η 1+( )× η

x y[ , ]

φ

E1 E2 M x y u w,;,( ) x y[ , ]

Pν

u w,( )M x y u w,;,( )∀ φ E1 i j,( ) E2 i u j w+,+( )–( )
i j,( ) Pν∈
∑=

2η 1+( ) 2η 1+( )×

η ν 2⁄+
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A significant limitation with the traditional correlation-based algorithm is that its tim

complexity grows quadratically with the maximum possible displacement allowed for

pixel [5][9] (Figure 3 (a)). Intuitively, as the speed of the object being tracked doubles

time taken to search for its motion quadruples, because the area over which we h

search is equal to a circle centered at the pixel with a radius equal to the maximum

we wish to detect.

However, note the simple relationship between velocity, distance and time:

.

Normally, in order to search for variable velocities, we keep the inter-frame delay

stant and search over variable distances (pixel shifts):

.

However, we can easily see from Figure 3 (b) that doing so results in an algorithm th

quadratic in the range of velocities present. Alternatively, we can keep the shift dist

 constant and search over variable time delays:

.

(a) As the maximum pixel shift increases
linearly, the search area increases quadrat-

ically.

(b) However, with a constant shift dis-
tance and variable discrete time delays,

search over time is linear.

Figure 3   Time Delays and Distances

A

B

A

C

Constant time delay, variable distances. Constant distance, variable time delays.

C

B

t 1

t 2

vel
δdist
δtime
--------------=

δt

∆ν ∆d
δt
-------= d η≤,

δd

∆v
δd
∆t
------=
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In this case, we generally prefer to keep as small as possible (for example a s

pixel) in order to avoid the quadratic increase in search area. (Note, however, there is

ing preventing an algorithm based on both variable and .) This temporal matc

concept is depicted in Figure 4. This time-space trade-off reduces a quadratic sea

space into a linear one in time (at a cost of measurement precision), resulting in a ver

algorithm: optical flow can be computed on 32x64 images, quantizing flow speeds in

bins, at 35 frames per second on an 80 MHz Themis HyperSPARC1 10 computer. Al-

though this algorithm is not as accurate as many other optical flow algorithms, it is ge

ally superior in terms of computational efficiency [23].

In our implementation, an original image of 256x512 pixels, captured with a

field-of-view camera, is subsampled to 32x64 pixels using a simple block-subsamplin

gorithm which averages anNxN block of pixels. This simple subsampling is very fast an

(a) The search area for
the example pixel (1,1) in
this example is shown in
the current frame (Image
t). This search begins
from a previous frame (2
such previous frames are
shown).

(b) The correlation match
is the sum-of-absolute
differences between the
corresponding pixels’
intensity values in a patch
centered at the given
pixel (a patch size of 7x7
is used in all examples;
these patches are not
shown for clarity).

(c) Optical flow is calcu-
lated to be the best-
matching pixel shift
divided by the corre-
sponding frame delay.

Figure 4 Space-time correlation search of Camus’ real-time optical flow algorithm

1. Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the

mental procedure. Such identification does not imply recommendation or endorsement by NIST, nor does it imply that the mate

equipment identified are necessarily best for the purpose.
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effective for this correlation-based algorithm (although perhaps not for other flow a

rithms [8]). In this case, blocks of 8x8 pixels would be averaged into a single value

practice, this requires more image bandwidth than is available using the framegrab

VME bus connection to the Themis HyperSPARC 10 board’s main memory. There

the images are first subsampled by a factor of 2 on each side (yielding 1/4 the image

using the framegrabber’s own image scaling function. (This is the only function perfor

on the framegrabber other than capturing the images and transferring them to the

memory.) Because the framegrabber’s method of subsampling is not as effective a

one we use in software, the final subsampling by a factor of 4 on a side is performe

the host workstation itself.

The above algorithm returnsquantizedoptical flow values. Although this is adequat

for various robotic vision tasks [6][14][15][25], it is not sufficient for our application, b

cause the calculation of divergence requires the ability to measure spatial derivativ

the optical flow. Because quantized optical flow is basically a step function, these de

tives do not exist. Consistent with theory, it was found that the divergence of the op

flow field could not be estimated successfully using only the quantized algorithm.

tempting to interpolate the optical flow field itself is not appropriate in this case beca

the quantizations are relatively coarse and the flow field is already dense. Smoothin

optical flow field would require extremely large masks and would, therefore, likely co

multiple objects simultaneously. This would be especially problematic in our case w

a wide-angle lens is used and individual objects occupy only a small fraction of the v

field. Calculating a least-squares best fit to the correlation surface as in [3] was rule

due to real-time performance requirements (see efficiency experiments in [22][24]). I

der to satisfy our real-time requirements, a fast approximation method was used to d

continuously-valued flow fields.

To avoid a computationally expensive search for the true flow, the 2-dimensiona

terpolation is decomposed into two 1-dimensional interpolations; the first estimate

magnitude of a flow vector and the second estimates its precise angle. (The initial flo

returned as X and Y components. This is then converted to polar coordinates.) Bot

directional component (consisting of one of eight possible directions or no motion) as

as the magnitude component (consisting of the time delay in frames) are quantized

first one-dimensional interpolation is along the magnitude component of the flow.
DRAFT, submitted 1997, revised 1999 8
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correlation match values for the best motion of a given pixel along with the match va

for the “virtual” flow vectors of “adjacent” magnitudes in the same direction (i.e., of p

and minus one time delay in frames) are used. For example, in Figure 4 (c) assume th

shift of (0, 1) pixels with a delay of 2 frames (equivalently a motion of (0, 1/2) pixels

frame) has the best correlation match of any pixel shift. The correlation match values

for interpolation in this example are those that correspond to the pixel shifts of (0, 1)

3 frames and (0, 1) over 1 frame, or “virtual” motions of (0, 1/3) and (0, 1/1) pixels

frame respectively. (If the peak correlation match magnitude is 1 pixel per frame, inte

lation cannot be performed.) Roof interpolation is used to find the total time delay co

sponding to the minimum correlation match value as shown in Figure 5 (a). Two line

formed connecting the best correlation match strength and the match strengths corre

ing to those two time delays which immediately bracket the former time delay. The n

tive value of the steeper of the two slopes is then substituted for the more gradual o

two. The abscissa of the intersection point of these two lines is taken as the new int

lated magnitude component of the flow.

(a) Parabolic and roof methods (b) Angular estimation of flow vect

Figure 5   Image flow interpolation

1/4 1/3 1/2

correlation 
   match
 strength

parabolic
magnitude
estimate

roof−peak
magnitude
estimate

pixels
  per
frame

 maximum correlation
 strength for a 1−pixel
 shift occurs after a  
 time delay of 3 frames

quantized magnitudes 
next to vector with 
max correlation strength

   best
match

direction of best matching
vector along with the two
adjacent  magnitude vectors

vectors adjacent to
direction of best match

estimated
flow vector

               vectors 
adjacent to direction
     of best match
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The second interpolation is along the angular component of the flow (Figure 5

The first step is to calculate the match values for “virtual” flow vectors of neighboring v

tor directions but with the same magnitude as just calculated for that pixel. (Becaus

only calculate the correlation match values for eight directions of motion, this means

the motion vector with the best correlation match has two neighboring directions at

on either side.) This interpolation is not trivial because the magnitude of the motion a

the diagonals is the times that of motion along the north, south, east and west d

tions for a given velocity (time delay). In order to perform the second 1-dimensional in

polation, it is necessary to estimate the correlation match values of the neighboring d

tions at thesamemagnitude as the best matching flow vector. Although the roof inter

lation was slightly more accurate than parabolic interpolation for finding a real-val

magnitude for a given optical flow vector, it was found to have the disadvantage o

returning as accurate a correlation match value estimate. A more accurate corre

match value estimate was instead found by calculating the coefficients of an interpol

parabola and taking the correlation match value at the same magnitude as found duri

roof interpolation stage (Figure 5 (a)). The following formulas for the parabola coe

cients can be derived given a parabola :

,

,

,

where ,  and  are the points used to fit the parabola.

These formulas are used to estimate the correlation match strengths for neighb

“virtual” flow vectors that correspond to the same magnitude as that of the best matc

flow vector; these three parabolic interpolations are shown in Figure 5 (b). A final p

bolic interpolation is then calculated using these three estimated correlation m

strengths, and is also shown in Figure 5 (b).

45°

2

ax2 bx c+ +

a
y2 y0–( ) x0 x2–( ) y1 y0–( ) x1 x0–( )⁄+

x2( )2 x0( )2– x0 x2–( ) x1( )2 x0( )2–( ) x1 x0–( )⁄+
-------------------------------------------------------------------------------------------------------------------------=

b
y1 y0– a x1( )2 x0( )2–( )–

x1 x0–
--------------------------------------------------------------=

c y0 a x0( )2– bx0–=

x0 y0( , ) x1 y1,( ) x2 y2,( )
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An example of the optical flow output of this algorithm is shown in Figure 6. The t

part of this figure shows two 256x256 pixel images, spaced ten images apart, of a ty

image sequence resulting from a robot’s own forward motion. The bottom of this fig

shows grey-level images indicating the magnitude of the optical flow vectors at each p

brighter pixels correspond to faster motion. Figure 6 (c) shows the output of the quan

optical flow algorithm on these ten images (subsampled to 64x64 pixels in size). This

be compared to the results of the interpolated optical flow algorithm, seen in Figure 6

(a) frame 25 of approach to two
chairs

(b) frame 35

(c) quantized flow (pixel brightness
indicates image motion magnitude)

(d) interpolated flow

Figure 6   Quantized and interpolated optical flow results
DRAFT, submitted 1997, revised 1999 11
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The quantized optical flow field (Figure 6 (c)) contains a total of only 19 discrete mo

magnitudes, whereas the interpolated optical flow field (Figure 6 (d)) yields a continu

ly-valued flow field, which, when quantized to 8-bits for display, contains 144 sepa

motion magnitudes. Although the original quantization boundaries are still visible in m

places, this interpolated optical flow algorithm represents a greatly improved motion

tor resolution over the quantized optical flow algorithm and will prove sufficient for o

purposes. Also, note that in both cases the flow estimates are dense even on the rel

weakly-textured laboratory floor.

When compared to computing flow without interpolation, the use of two one-dim

sional interpolations cuts the frame rate approximately in half: real-valued optical flow

be computed on 32x64 images, calculating and interpolating 5 speeds per frame,

frames per second on an 80 MHz Themis HyperSPARC 10 computer. In our obst

avoidance application, the flow is run at only about 4 Hz. This consumes from 20-25

the processor’s total time and allows the entire obstacle avoidance system to run co

ably on a single workstation with a consistent frame rate and about a 20% processo

time to buffer unexpected operating system events.

3 Spherical Pinhole Camera Model

Most authors assume a simple planar pinhole camera model in deriving equation

will argue that the wide-angle camera used in our system more closely approxim

a spherical pinhole camera model than the traditional planar pinhole model. The loca

at any point on the spherical imaging surface can be approximated by a tangen

nar surface with at the tangent point. In the next section, we will exploit t

observation to use properties of image flow divergence which hold at

planar pinhole imaging model. This tangent planar surface approximation extends th

sults for in a planar pinhole coordinate system to all points in a sph

ical pinhole coordinate system, as long as all calculations performed are limited to a

area around the given .

An image from the wide-angle camera appears in Figure 7 (a). This image is

ibly distorted, as expected with a wide-angle camera. To show that the wide-angle ca

more closely approximates a spherical pinhole camera model, we warp the wide-ang

115°

x y( , )

x y( , ) 0 0( , )=

x y( , ) 0 0( , )=

x y( , ) 0 0( , )= x y( , )

x y( , )

115°
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age into a planar pinhole camera image under the spherical pinhole camera assump

this assumption is true, the warped image should appear relatively flat and undistor

There are two steps to this process. First, we transform a spherical pinhole came

ina into a planar pinhole camera retina,i.e., we warp an image created from a spheric

pinhole camera into an equivalent image as it would appear if it were created from a

ditional planar pinhole camera; this is shown in Figure 8 (a). However, we are not g

true spherical retinas as imaging surfaces. We are given flat, distorted images. Thus

to this transformation, we must convert the flat, distorted image into its equivalent sp

ical retinal representation, as shown in Figure 8 (b). Note that this latter mapping is

form and is equivalent to simply “rolling” a flat planar representation onto a spherical

ina. Thus, the complete sequence involved to map a spherical pinhole model image

sented in the form of a flat, distorted image) is to take its spherical imaging sur

equivalent (shown in Figure 8 (b)) and map it to its planar imaging surface equiva

(shown in Figure 8 (a))

The result of this mapping/warping process on Figure 7 (a), using a focal length eq

alent of 150 pixels (given an image width of 256 pixels), results in Figure 7 (b), whic

clearly much less distorted than the former image. From experiments such as thes

conclude that our 115-degree wide-angle camera is better approximated by a spheric

(a) Actual wide-angle image.

(b) Same image warped to a planar imag
assuming that the wide-angle camera

approximates a spherical pinhole camer
model.

Figure 7   Wide-angle Optics
DRAFT, submitted 1997, revised 1999 13
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hole camera model than a more traditional planar pinhole camera model. As describe

viously, this fact is exploited in the next section.

4 Divergence for Obstacle Avoidance

Process 2 (Figure 1) computes flow divergence. Divergence of flow can be used

timate time-to-contact (Tc). Both theory and implementation are discussed here as we

considerations for employing  for obstacle detection by a moving robot.

The equations for the and components of optical flow due to gen

camera motion (arbitrary translation and rotation) in a stationary environment given a

nar projection coordinate system are

(2)

(a) Above left: warping a spherical
pinhole camera retina to a planar pin-
hole camera retina as a function of
equal angle from the center of pro-

jection

(b) Above right: uniformly mapping
a spherical pinhole camera image to
a flat image as a function of equal

linear distance from the center of the
imaging surface

Figure 8   Spherical projection camera model

light
rays

spherical
   retina

planar retina

 spherical 
 to planar 
  retinal
 warping

 center of
projection

spherical
to planar
 uniform
  image
mapping

Tc

x y Ox Oy,( )

Ox 1 z⁄( ) Tx– xTz+( ) xyωx 1 x
2

+( )ωy– yωz+( )+=
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(3)

where is the depth of the object in the environment relative to the camera,

and are the translational and rotational motion of the enviro

ment relative to the camera [35]. This camera frame is a right-handed coordinate sy

centered behind the image plane with the positiveX direction extending leftward, positive

Yupward, and positiveZ forward. The divergence of an optical flow field (parameterize

by image coordinates  is defined as:

. (4)

Note that

(5)

(6)

where  = . From equations (4) through (6), at :

. (7)

This can be rewritten in terms of the gradient  as

(8)

(9)

where is the surface gradient [10]. As stated, this equation holds f

planar coordinate system at . Because we are modeling our wide-an

camera using a spherical coordinate system, the spherical imaging surface at every

can be approximated by a tangent planar surface with in that tan

plane’s local coordinate system. A precise derivation of the consequences of this as

tion is future work. The localZ axis is the ray through the point . Equation (9) no
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holds for every point in the image of the wide-angle camera that is well-approximate

a spherical pinhole camera model. From equation (9),

(10)

whenever the imaged surface is perpendicular to the localZ axis, or the gradient of the

surface, , is perpendicular to the transverse velocity , or the transverse vel

is zero.

As will be explained below, we use relatively large image masks for computing di

gence. In our lab experiments, these masks, when projected out into the 3-D scene,

ly cover a scene area 1 to 4 square meters. There are often many surfaces, at di

orientations, in such an area in our scenes. We believe that when the surface gradien

pressed in the local camera coordinate system, are averaged in such an area, the

gradient tends to be very small. Given two (nearly planar) surface segments of the

size in 3-D space, the segment with large gradient (i.e., steep slope in the local coor

system) will project into a much smaller area of the image than the segment with s

gradient (i.e., which is nearly perpendicular to the line of sight). Therefore, surfaces

small gradients should tend to contribute more to the “average surface gradient” w

the mask area than surfaces with large gradients. Because of these effects, the first

the right-hand-side of equation (9) usually dominates the second term. For surface

the direction of motion, is small. This further reinforces the domination of

first term.Therefore, we can estimate time-to-contact directly from equation (10).

Divergence is a particularly useful measure for obstacle avoidance during visual

igation because it is invariant under the rotational motion of the sensor that is inevi

due to imperfect stabilization.

(a) (b) (c) (d)

Figure 9   Flow divergence templates
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Equation (10) suggests thatdivergencehas only time as its dimension. The values

divergenceover any significant area represent the inverse of time-to-contact, i.e., the

needed to reach an object at depth with velocity in the direction. A family of s

ple fixed flow divergence templates can be applied to any image sequence to estima

vergence [28]. Each template is symmetrically divided into positive and negative ha

(Figure 9). Flow divergence is calculated by convolving the template with a window in

flow image and computing the sum of the optical flow derivatives in perpendicular di

tions. In particular, the convolution of the first two such templates may be performed

tremely quickly using abox filteras described in [7][8]. In order to improve the consiste

cy of the divergence estimates, we apply temporal and spatial median filters to the ind

ual divergence values (process 3 in Figure 1).

5 Simple Robust Filters

Median filtering performed on dense two-dimensional data can use fast running-h

gram methods such as in [19] if the dynamic range of the data and desired quantiz

resolution of the median value can be specified. The algorithm described in [19] wa

tended for finding the true median and reduces anO(nm)complexity algorithm to approx-

imatelyO(n) per pixel for an filtering window, where . It can, however, b

generalized to the separable median [26] which approximates a two-dimensional tru

dian filter by the successive application of two orthogonal one-dimensional median fil

first the median of each row of a two-dimensional window is computed, and then, the

dian of these row-medians is returned as the separable median. This transformation

es the time complexity fromO(n) for the running-histogram method alone to approxima

ly constant time for the combined method. To the authors’ knowledge, this is the first

that this combined, approximately constant time median filtering algorithm has been

in image analysis. Because of this, its utility will be explored further.

Exploiting this combined approach assumes that there are only a limited numb

histogram bins, which would not be the case with floating-point data. In that case

could modify the algorithm to first quantize the data into a histogram of 256 bins (for

ample). The true median could then be found by performing a quicksort-partitioning

on that bin which contains the midpoint of the histogram for that pixel’s local window

our case, however, the divergence data are already quantized to 8-bit values (neces

Z Tz Z

n m× n m<
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order to reduce the data bandwidth in the previous system’s implementation [11]) so

extension is not necessary.

Although the separable median filter is not guaranteed to find true median valu

reduces noise almost as well as a true median filter [26]. By definition, the true medi

greater than or equal to half the data in the data set and less than or equal to the oth

of the data. The separable median, however, is greater than or equal to all points les

or equal to those row-medians which are less than or equal to the separable media

definition, the separable median is greater than or equal to 50% of the row medians,

fore, the separable median is greater than or equal to 25% of the data. Similarly, the

rable median is guaranteed to be less than or equal to 25% of the data. Its relations

the rest of the data is unknown.

The “breakpoint” of an estimator is defined as the smallest fraction (or percent) of

tamination of a data set that can result in an arbitrarily incorrect value [32]. In the ca

least-sum-of-squares (a non-robust estimator), that percent tends to 0% for large

single outlier can cause an arbitrarily incorrect result). In the case of the true median

that percent is 50%. In the case of the separable median filter, that percent is 25%,

our arguments above. Although this means that the separable median filter is not as

as the true median filter, it still performs extremely well in most cases.

The current system first performs an (height by width) spatial median fi

on the divergence estimates (The filter’s proportions roughly paralleled the proportio

the image field). Because our robot operates in a 2-D world (i.e., its motion is

constrained to two degrees of freedom: speed and steering), we use the fil

produce a single horizontal array of divergence values, which is centered on the m

row of each image.

The 1-D divergence arrays are stored in a history buffer of 1-D arrays of spatially

tered divergence estimates. The dimensions of the temporal filter are 11 pixels in s

(horizontally within each array) and 11 frames in time (across arrays). Because of the

poral median filter’s width, the filtered divergence information has a latency of 5 fram

or about 1.25 seconds. This effect is offset, however, by the ability of the system to s

obstacles at a range of up to several meters.

n

11 17×

256 512×

11 17×
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Both the separable and true median filters have the desirable property of prese

horizontally and vertically aligned edges. This means that unlike many other averagi

smoothing filters, these filters have no temporal hysteresis. Unlike the true median f

however, the separable median filter has the additional desirable property of prese

corners [26]. Preserving corners can be advantageous in ordinary image processing

especially valuable in our application, because an erosion of an object’s full spatial or

poral extent could create the illusion of an open space and cause a collision. This c

preservation can also prevent distinct objects from blurring together [29], which coul

equally undesirable because some valid pathways may otherwise falsely appear

blocked.

When performing the separable temporal median filter, the order of the two 1-D

dian operations can make a difference in some cases [29]. By performing the spatia

median filter first, we slightly emphasize spatial coherence over temporal continuity

6 Driving Control

Processes 4 and 5 (Figure 1) control driving and gaze. The robot’s task is to avoi

stacles while achieving mobility goals. In general, such goals might be specified by c

dinates in a map, features that uniquely identify a location, or simply features that sa

a precondition required for the next subtask (e.g., the mobility goal might be positioning

the robot to pick up an object.) Ideally, the robot would survey the visual data to iden

the direction nearest its desired path that is also a safe direction in which to travel.

Figure 10   Body control automaton
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In these experiments, the goal is to maneuver without collision using only flow div

gence to sense the environment. The robot’s behavioral goal is simply to drive forw

steering away from obstacles in its path, and to stop and turn when it senses that co

is imminent. The robot drives at up to 20 cm/s. Speed is regulated to keep visual datai.e.,

flow and divergence estimates) within measurable ranges and to avoid detrimental b

ior that results when high rates of speed and steering occur simultaneously. The st

policy uses the sensed flow divergences to steer around obstacles while attempting t

toward the provided goal direction. (In these experiments, the goal direction was al

straight ahead for simplicity.) Indication of imminent collision in the central quarter of

camera’s divergence data causes the robot to stop, turn away and resume wanderin

sequencing is implemented with a finite state automaton, with a command associate

each state (Figure 10). Some state transitions are triggered by sensed events, and

merely provide command sequencing. For instance, the system remains in the refr

state until visual motion lingering from the brisk turn is no longer seen by the visual

tem. An interesting consequence of this behavior is that the robot in the refractory

will remain still while a person moves in its view.

The robot steering and collision detection improve when the robot turns relati

slowly for two reasons: (1) temporal consistency of the spatial locus of samples for d

gence estimation is improved, and (2) accuracy of motion estimates themselves

proved. Therefore, the behavior and motor control systems are designed to reduce ro

of the cameras. This is accomplished by stabilizing the cameras with active motor

mands and by limiting rotation of the body so the gaze stabilization system is not o

stressed. Despite these precautions, gaze stabilization is imperfect and some data a

taminated. However, the edge-preserving spatio-temporal median filtering effectively

cards intermittent unusable data

The steering policy is implemented using hazard maps derived from flow diverge

the desired goal direction, and the target heading that was previously selected b

steering policy. Each hazard map is a 1-dimensional horizontal array that encode

“risk” associated with each possible steering direction. Traces of median-filtered flow

vergence maps and composite hazard maps are shown in Figure 11 (b) and (c). The

heading selected in each hazard map is highlighted in white. The path of the robot i

θ'
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oint
trial appears in (d) for the gauntlet of office chairs seen in (a) from the robot’s viewp

before the trial began.

(a)   Robot’s view of the gauntlet of office chairs before the trial.

(b)   Trace of
median-filtered
flow divergence
maps (brighter
intensity indi-
cates larger
divergence).

(c)   Trace of
hazard maps
with selected
goal direction
highlighted in

white.

(d)   XY path trace beginning at (0,0).

Figure 11   Trace of Robot’s View
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A hazard map is derived from the divergence map. During each steering control c

it encodes not only the present divergence data, but also the past steering choices

robot to help the robot commit to passing an obstacle on one side without switching

and forth. The hazard map is a 64-element wide map per sample interval that indicate

stacles and also encodes the cost of crossing local maxima in the divergence map, s

from the previously selected heading. Imagine the divergence map as a cross-sectio

topographic map, such as the divergence map trace of Figure 11(b). Obstacles are in

ed by hills and open spaces by valleys. In the previous cycle, the steering policy sel

a heading value and committed to one of the valleys in the divergence map. In the pr

cycle, a different valley may appear deeper, but the cost of changing course to pass

other side of an obstacle that has not yet been cleared is represented by the cost of c

the hill to reach the valley on the other side.

Similarly, another hazard map is derived from the desired goal direction and the

viously selected heading (accounting for the gaze angle). This map appears roughl

shallow trough centered midway between the previously selected heading and the

heading, which has the effect of drawing the selected heading back to the goal direct

the absence of obstacles in this path.

These hazard maps are combined into a single hazard map by summing the comp

hazard maps. The steering policy chooses the direction of minimum hazard in the com

ite hazard map, with a preference for directions nearest the previously selected head

case of a tie. The result in general is that ifanysensing mode shows strong evidence

danger in some direction, it is unlikely that direction will be chosen.

Summarizing, the image-based heading is a heading angle in image space, th

angle is relative to the robot’s current heading , and from these the new target he

 is calculated.

(11)

When a new desired heading is chosen, the robot steers smoothly to it with satu

negative feedback controls [13]. Desired change in heading, , is simply the differ

between the desired heading and current heading.

(12)

ψ

φ θ

θ'

θ' θ φ ψ+ +=

θ'

∆θ

∆θ θ' θ–=
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The steering control policy uses a saturated steering velocity proportional to the de

heading.

(13)

The gain (usually <1) determines how quickly the steering is servoed to the de

heading. Time is normalized to seconds by dividing by the body control cycle time,

Thus angular velocity is expressed in degrees/s rather than degrees/cycle. For ins

setting will command a velocity that would reduce the error by 30% in the n

control cycle (assuming nearly instantaneous acceleration of the steering motor). Th

gular velocity is saturated at deg/s(e.g., 6 deg/s) to limit the peak rotation rate to rea-

sonable levels. There are three reasons for this limit. First, the latency of robot comm

execution is quite large, and the command cycle is not entirely uniform. Therefore,

possible to overshoot the desired heading if the rotational velocity is too high, becaus

controller might not be able to stop steering at the right time. Second, motion estim

suffers if the camera rotates too fast, because our computation of flow is based on a

lation method which limits motion to less than one pixel per frame. Poor flow meas

ments degrade divergence estimates. This impacts the quality of steering and sto

Third, slower steering improves the temporal consistency of flow data for divergence

mation. Although the median filtering is quite robust to disturbances, cleaner data

duce smoother estimates over time. The second and third issues would be of no con

gaze were perfectly stabilized, but stabilization is not perfect, and the residual came

tation is correlated with the steering rate.

Like steering, the robot's speed is regulated to maintain all systems within their o

ating ranges. The robot's top speed is set at 20 cm/s based on empirical trials in sh

that divergence estimation was compromised at faster driving speeds when the

steered at the rates necessary to negotiate the lab. (The crash tests reported later in

per were run at speeds up to 80 cm/s, but these tests used no steering.) Impairmen

vergence estimation was proportional to steering rate. Below the top speed, the rob

tempts to keep visual data within measurable ranges. Robot speed is increased wh

served flows are too near noise levels, and speed is decreased when flows are too la

the estimation system to observe. Specifically, the speed is increased to keep the ma

observed flow estimate above a set value (50% of the maximum flow estimate that c

θ̇ Saturate ks ∆θ 1
Tb
------ s,⋅ ⋅ 

 =

ks

Tb

ks 0.3=

s±
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detected by the system). This ensures that most flows are large enough to be with

operating range of the flow estimator. Similarly, robot speed is decreased when too

flow estimates (50%) are saturated (have the maximum value the estimator can de

7 Gaze Control

The nonlinear gaze control is anystagmus, a repetitive eye motion of slow phase rota

tions punctuated by quick phase rapid returns. It is also implemented as a finite sta

tomaton (Figure 12). The camera is rotated at velocity to counter the body r

tion and stabilize the camera images. The gaze control also checks the deviation

gaze angle, , from the robot’s heading and snaps the camera back to the heading

limit is exceeded (limit = 12o).

The nystagmus quick phase that returns gaze to the vehicle’s heading turns the

beyond the current heading in the direction the robot is turning: . This heur

attempts to reduce the number of quick phases required by putting gaze a little bit a

of the vehicle heading, rather than always lagging behind it.

The saccades that perform the quick-phase return to realign gaze with the robot’s

ing briefly produce extremely large optical flows. These large flows often are encount

by the flow estimator. Although the resulting divergence estimates are unusable, the

Figure 12   Gaze control automaton
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preserving spatio-temporal median filtering effectively discards them, providing only

divergences observed preceding and following the saccade.

8 Experiments and Results

Experiments with the obstacle avoidance system were performed in a laboratory

taining office furniture, robot, and computing equipment. Furniture and equipment l

the walls, and free space was roughly 7 m by 4 m in thecenter of the lab. Office chairs

provided obstacles. In addition, there was some space leading to doors in two corn

the lab. In all experiments, a single camera with a field of view was used. Only

half height band in the center of the image was processed. (See Figure 11 (a) for an

ple of the robot’s view of the lab.) Three sets of experiments were performed: (1) “c

tests” evaluated the system’s ability to detect obstacles and warn of imminent colli

(2) the robot was forced to run a gauntlet bristling with office chairs to evaluate its ab

to avoid obstacles while traveling through the room; (3) wandering trials tested the ro

ability to move about for extended periods of time.

115°
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8.1 Crash tests

Initial experiments tested the robot’s ability to detect obstacles and warn of immi

collision. To test the robot’s ability to detect objects across the wide visual field, a row

chairs was placed across the far end of the lab. The robot drove straight toward the

at fixed speeds (see Figure 13). The system should not only detect obstacles at a reas

distance, but should also continue to detect obstacles as they are approached until th

no longer visible in the bottom of the image. To evaluate this property, the robot did

attempt to stop to avoid collision, but rather drove into the chairs until the bumper

gered the systems to shut down due to collision.

Examples are shown in Figure 14 (20 cm/s), Figure 15 (30 cm/s), Figure 16 (40 c

and Figure 17 (50 cm/s), all beginning at a distance of 4 m from the chairs. The uppe

quarter (a) of each frame is the original 256x512 pixel image, taken from a w

angle lens, subsampled to 128x256 pixels. Results of processing the image are

clockwise (b-d). The upper right quarter (b) shows the optical flow “needle” plot calcu

ed from a 32x64 subsampled version of the original image with the needle diagram

subsampled to 16x32 for clarity. The lower right quarter (c) of each frame shows a t

(a) frame 0 (b) frame 30

(c) frame 60 (d) frame 70

Figure 13   Frames from a 20 cm/s approach to chairs 4 meters distant

115°
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13)
space plot of the 1-D divergence estimates, median-filtered in space (11x17 pixel win

centered on the middle row of each image) but not in time. In these plots, brighter a

indicate higher divergence and thus closer objects (each individual plot is automat

contrast-adjusted for better clarity). In these plots, time moves upward. Thus, the 1-

vergence map for the current frame is found at the top of the sub-image with the 31 p

ous frames displayed in addition. The lower left quarter (d) of each frame shows the

divergence plot but median filtered in time (11 frames) as well as in space (11 pixels)

second filtered 1-D map of divergence estimates is used at each frame to control t

bot’s steering. In the examples, the divergence due to imminent collision with the c

can be clearly seen. The divergence due to a nearby stepladder and some cables th

suspended from the ceiling on the right side of the lab (visible in Figure 11 and Figure

(a) intensity frame 64: original 256x512
pixel image, taken from a  wide-

angle lens, subsampled to 128x256 pixels

(b) optical flow “needle” plot: calculated
from a 32x64 subsampled version of the
original image, with the needle diagram
itself subsampled to 16x32 for clarity

(d) median-filtered divergence: the same
divergence plot but median filtered in

time (11 frames) as well as in space (11
pixels). This filtered 1-D map of diver-
gence estimates is used at each frame to

control the robot’s steering.

(c) divergence plot (top row is current):
time-space plot of the 1-D divergence

estimates, median-filtered in space
(11x17 pixel window centered on the
middle row of each image). Brighter

areas indicate higher divergence and thus
closer objects (automatically contrast-

adjusted for better clarity).

Figure 14   Frame 64 of a 20 cm/s approach to chairs 4 m distant

115°
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can also be seen in the history of the time-space divergence plots. Because of the tem

median filter’s width, the filtered divergence information has a latency of 5 frames

(a) intensity frame 49 (b) optical flow “needle” plot

(d) median-filtered divergence (c) divergence plot (top row is current)

Figure 15   Frame 49 of a 30 cm/s approach to chairs 4 m distant

(a) intensity frame 36 (b) optical flow “needle” plot

(d) median-filtered divergence (c) divergence plot (top row is current)

Figure 16   Frame 36 of a 40 cm/s approach to chairs 4 m distant
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ity of
about 1.25 seconds. As shown in the figures, however, this effect is offset by the abil

the system to sense objects well in advance.

(a) intensity frame 30 (b) optical flow “needle” plot

(d) median-filtered divergence (c) divergence plot (top row is current)

Figure 17   Frame 30 of a 50 cm/s approach to chairs 4 m distant

Figure 18   Space collision threshold as a function of robot speed
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The system is able to detect objects (at divergence estimates above the noise le

ranges up to 6 m (the maximum testable in the lab) at forward speeds ranging from

0.8 m/s. The divergence estimate arising from an object rises reasonably smoothly

object is approached, and the object continues to be visible until the robot is very ne

it. These results represent a considerable improvement in both range and persistence

tection over the results reported in [11], in which objects were detected in the narrow r

of 1 to 2.5 m from the vehicle. Based on these trials, an imminent collision function

derived for robot speeds up to 0.8 m/s (Figure 18).

8.2 Gauntlettrials

The robot ran a gauntlet of office chairs to demonstrate the system’s ability to a

obstacles while traversing the lab. The lab setup and results for a run are shown in F

11. The robot deflected left to avoid the chairs blocking its path and then continued

versing the room, deflecting to the right to avoid the opposite row of chairs. After defl

ing right, the robot’s path was partially blocked by the end of a desk, as shown in Fi

19, causing the robot to deflect left. After the robot deflected left, its closest obstacle

a chair as shown in Figure 20. The robot then deflected right and headed toward the

(a) intensity frame 28 (b) optical flow “needle” plot

(d) median-filtered divergence (c) divergence plot (top row is current)

Figure 19   Frame 28 of a 20 cm/s obstacle-avoidance test run
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(the robot’s complete path is shown in Figure 11 (d)). In these trials, the robot travel

20 cm/s and steered at a maximum rate of 8 degrees.

Gaze stabilization contributed considerably to the effectiveness of the system b

ducing the magnitude of the optical flows while the robot was steering. In control tr

without gaze stabilization, analysis of the data showed that optical flows observed w

the robot was steering routinely exceeded the range of the flow estimation system. T

sulting corrupted data rendered obstacles “invisible,” and the robot consequently fail

continue seeing obstacles as executed evasive maneuvers.

The simple memory of the steering policy, together with the spatio-temporal edge

serving median filtering of divergence and assigning a cost to “crossing ridges” in th

vergence data (discussed in Section 6), served to commit the robot to a single c

around an obstacle until it was cleared. In control trials without these features, the

was sometimes lured back toward an obstacle by lower hazard estimates on the far

the obstacle.

An MPEG video of an example test run may be found in thehypertext portion of this

paper. It demonstrates the relationships between the image, the optical flow, the d

(a) intensity frame 43 (b) optical flow “needle” plot

(d) median-filtered divergence (c) divergence plot (top row is current)

Figure 20   Frame 43 of a 20 cm/s obstacle-avoidance test run
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gence estimates, and the time-filtered divergence estimates which control the ro

steering behavior.

8.3Wanderingtrials

The third set of experiments tested duration. In the wandering trials, the robot was

mitted to wander about the relatively uncluttered lab one day while the authors prepa

report of the present work. Throughout the day, the authors ran 13 trials and collected

(a) Trial 0, 7.67 minutes (b) Trial 9, 7.22 minutes

(c) Trial 12, 6.75 minutes (d) Trial 1, last 8 of 26 minutes

Figure 21   Wandering trial paths: x-y plots
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In these trials, the robot was started toward open space from various locations in th

The longest trial lasted 26 minutes. The path of the robot in the final 8 minutes of this

is shown in Figure 21 (d). Three moderate length paths of about 7 minutes are show

tirely in Figure 21 (a-c). The mean trial length was roughly 7.1 minutes and the me

length was 6.75 minutes. While the robot generally drove back and forth along sim

paths, it also often worked its way out of such limit cycles. These results were achi

with extremely simple behavior control. More sophisticated behavior control making

of various mechanisms (e.g., an explicit notion of segmented objects, adaptation) to der

or interpret hazard maps can be expected to shorten the time to escape such situatio

robot also covered a considerable fraction of the lab’s open space in the longer trials

failure modes that most commonly terminated these trials with collision are discuss

Section 9. While this performance falls far short of the ideal of limitless collision-f

(however crude) mobility as a base of competence, it is promising enough to be consi

as a low-level competence in a goal-directed mobile robot system.

9 Discussion

Some researchers [20][33][34] have proposed using divergence or flow derivative

visual cues, but did provide real-time implementations of these ideas. Nelson and

monos [27][28] used directional flow divergence for stop-and-look obstacle avoida

(not real-time smooth driving). Their environments were simplified, and they did not d

onstrate extensive robust behavior over extended periods of time.

Duchon,et al. [14][15][16] demonstrated flow and flow-derived time-to-contact fo

free wandering at 5 cm/s for as long as 5 minutes. In a second implementation, spe

up to 30 cm/s have been achieved, and unrecorded trials have lasted up to 25 minute

out collision. Their most robust steering strategy was balancing peripheral flows,i.e.,com-

paring left and right peripheral flows to steer the robot down a conceptual corridor

ferred to as corridor-following, flow-balancing, centering,etc.). However, the “corridor-

following” technique is not well-suited to goal-oriented behavior. In [16] target chas

and flow balancing are combined by summing the egocentric heading changes dicta

both systems. It is possible for this strategy of combining behaviors to result in taki

heading that is dangerous because there is no way for behaviors to eliminate all dang

headings from consideration.
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Coombs,et al.[11][12] also used flow to implement “corridor-following” and used d

vergence to detect imminent collision. The present work achieves similar results usin

vergence alone and is, therefore, not limited to “corridor-following.” The present sys

supports goal-directed behavior while providing local obstacle avoidance. The meth

estimating optical flow described in this paper has been shown to detect obstacles

away as 6 meters under good conditions. On the other hand, the flow returned from

PIPE image processing computer used in [11][12] was limited to a range of about 1 t

meters due to the difficulty of detecting edges of distant surfaces. The range of our sy

is even more remarkable given the coarse resolution (32x64) of the images used. In

tion, our system implements both wide-angle and narrow-angle camera functions

only one wide-angle camera and a single framegrabber, unlike the two cameras and

channels used in [11][12].

System performance depends on many factors. Underlying the divergence esti

are optical flow measurements. Although divergence is theoretically unaffected by ca

rotation, rotation contributes directly to optical flow. The system calculates optical f

using a correlation method, which, like all techniques, has limited spatiotemporal sen

ity. In particular, large flows are underestimated, so fast camera rotation can corrup

optical flow estimates on which the divergence estimates rely. Similarly, differential m

sures such as flow and divergence are inherently susceptible to noise.

Our system relies on gaze stabilization and robust data filters to cope with these

lems. Rotational stabilization of the camera reduces flow magnitudes to manageabl

els. The brief disturbances introduced by saccades that re-orient the camera to the r

heading are effectively ignored by the spatial and temporal median filters that also

press noise (in contrast to a non-robust smoothing filter which would be affected).

enables the sensing and behavior modules to complement one another without req

tight coordination among them.

Optical flow also depends on the field of view and scene texture. Although the op

flow algorithm used requires very little texture given adequate lighting [7][8], naturally

obstacle must appear in the field of view in order to be detected. Even with a wide-a

( ) lens, not all obstacles will be visible.115°
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There are two main causes of collision. The first case involves a collision with an

stacle in one of the lower corners of the full-sized image. Currently, due to real-time

quirements, only a central 256-pixel band of the 512-pixel height image is used in c

lating flow. Grabbing the bottom 256 rows of the 512 rows available would enable th

objects to be seen. However, lowering the visual band taken from the full field of vie

undesirable because this also lowers the top edge of the image and thus limits the

mum visual range of the system. Given that the current image size allows for about a

idle time to buffer OS events, it is likely that a more refined system (perhaps making

of real-time OS facilities) could use this available CPU time to process a larger ima

The second most common cause of collision involves a very narrow object, such a

back of a chair-viewed edge-on; such an object does not have enough spatial extent

ger a reaction from the system. Because very wide images are being subsampled (

width of 512 pixels down to 64 pixels), these objects may be only a few pixels wide in

image and they are therefore difficult to detect. This is especially true given the spatia

tering performed to increase robustness.

A sensible extension would be construction of a local map of space to help pre

such collisions, though this would introduce new problems, such as maintaining the m

integrity. Our hazard maps with the steering policy’s limited hysteresis provides a sim

local spatiotemporal map that has proved sufficient to carry the robot around most o

cles in its path without introducing a complex spatial memory or world map. Dealing w

very narrow objects remains future work.

It has been argued that there are computational advantages in keeping the search

of the optical flow algorithm as small as one pixel [7][8] and keeping the frame rate h

It should be noted that because images are subsampled from a size of 256x512 pixels

to 32x64 pixels, a single pixel shift at the new coarser scale is equal to an 8 pixel sh

the original resolution. In addition, because sub-pixel flows are detected, a magnitu

1/2 pixels per frame corresponds to a 4 pixel shift at the original resolution, 1/4 pixels

frame corresponds to a 2 pixel shift,etc. Even so, when the robot is rotating, the optic

flow velocities can be extremely high. (Adding to this effect is the fact that the came

mounted about 30 centimeters in front of the rotational axis; each “rotation” of the ro

results in combination of a rotation and a translation of the camera in inertial space
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this application, we could easily modify the search space to detect faster velocities in

the horizontal directions, where the greater flows occur. This would allow the vehic

turn faster without saturating the computed flows, with only a linear increase in the c

putational time.

In the previous version of the optical flow algorithm [7][8], the correlation match v

ues are not saved as they are calculated, because only the best matching correlation

is needed. Instead, as each one is calculated, it is compared with the current best ma

saved if it is the new best match or discarded if it is not. In the new version described

the correlation match values are interpolated, and thus all match values are save

though this only requires 553 KB of memory for current parameters, cache thrashing c

become a performance bottleneck for higher image and velocity resolutions. Future

sions will be streamlined to reduce this effect.

Sensorimotor interactions also affect overall performance. There are significant l

cies in the sensing, estimation, and control modules shown in Figure 1. These modul

only loosely synchronized. Although in general the latency for each module equals it

cle time, in some cases the latency is a bit greater. The modules produce and consum

at various rates, and the interactions of the unequal cycle times have considerable

quences. Flow and divergence estimates are produced approximately every 260 m

under 4 Hz). The robot accepts speed and steering commands at about 3 Hz. At a

velocity of 20 cm/s, visual data become available about every 5 cm of robot travel

steering is adjusted about every 7 cm. To avoid losing valuable data, especially time

ical impending-collision indications, the behavior controller runs at 20 Hz, evaluating

fresh data and writing appropriate steering and speed commands. These comman

only single-buffered, so only the most recent command is read by the robot contr

when it is ready for a new one. This minimizes the overall latency in the system. Howe

it also means the behavior controller does not know exactly which command is bein

ecuted unless the robot controller sends an acknowledgment that identifies the acc

command. This condition, coupled with considerable latencies in executing a robot

mand, means it is difficult for the control (and sensing) systems to know precisely w

the robot is doing, short of installing high-speed low-latency feedback sensors. Co

quently, the systems are designed to require only approximate knowledge of the ro

current motion state if they use any at all. Instead, for instance, robust data filters are
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to ignore momentary noise and artifacts that result from system module interactions, and this e

modules to cooperate without delicate synchronization.

10 Conclusions

A robot system is presented that uses only real-time image flow divergence to avoid obs

while driving toward a specified goal direction (straight ahead in this demonstration) in a lab con

ing office furniture and robot and computing equipment. The robot has wandered around the lab

cm/s for as long as 26 minutes without collision. To our knowledge, this is the first such demon

tion of real-time smooth wandering for extended periods of time using only flow divergence.

The paper describes how flow divergence is computed in real-time to provide the robot’s se

space and also how steering, collision detection, and camera gaze control are used together

obstacles while attempting to drive in the specified goal direction. The major contribution is the

onstration of a simple, robust, minimal system that uses flow-derived measures to control steeri

speed to avoid collision in real time for extended periods.

Although image motion has long been considered a fundamental element in the percept

space, attempts to use it in real-world mobility tasks have always been hampered by problem

as noise, brittleness, and computational complexity. We demonstrate that robust image motio

can be extracted using a single ordinary UNIX workstation to safely move about a complex env

ment in real-time for extended periods.

These results demonstrate that real-time robot vision and control can be achieved with care

plementations on ordinary computing platforms and environments. Similarly, an extensible fr

work can combine simple robust components in a manner than minimizes requirements for tigh

chronization.
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