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What's Hybrid ETKF-3DVAR ?
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Why Hybrid ETKF-3DVAR ?

3DVAR problem:
static isotropic covariance

Compared to 3DVAR:

 Hybrid can benefit from
ensemble-estimated flow-
dependent error statistics
(examples later).

Compared to conventional ENSDA:

d Hybrid may be more robust for small ensemble size
and/or large model error (Wang et al. 2007a,b, MWR).

d  Hybrid can be conveniently adapted to the existing
operational variational framework; potentially less
expensive.



Hybrid DA Theory

® Ensemble covariance is included in the 3DVAR cost function
through augmentation of control variables.
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1

=5, %x'lTlell + 5, %aTcla + 5 (yo' — HX')T R‘l(y(" — Hx')

. e
X =X+ Z(ak © Xk) Extra increment associated
with ensemble

B 3DVAR static covariance; R observation error covariance; K ensemble size;

C correlation matrix for ensemble covariance localization; x; kth ensemble perturbation;
x, 3DVAR increment; x total (hybrid) increment; y° innovation vector;

H linearized observation operator; £, weighting coefficient for static covariance;

S, weighting coefficient for ensemble covariance; a extended control variable.



Hybrid DA Theory

- Wang et al. 2007c¢c show solution equivalent to
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Hybrid DA Theory

® In current system, ensemble covariance localization applied
through recursive filter.

Preconditioned by x, = U,v,
1 T and Ul ~ B1/2

a=U,v, U,
U ~ C1/2
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Ensemble generation by ETKF

« ETKF generates ensembles by rescaling forecast
perturbations with a transformation matrix (e.g., Wang
and Bishop 2003, Wang et al. 2004, 2007a)

Transformation matrix solved
/from Kalman filter theory
X® =X"T
A
Initial ensemble
perturbation



Ensemble generation by ETKF

12hr ensemble covariance
eigenvalue spectra

Previous studies 2500 mmasked BRED
indicated advantages of 3000 =
ETKF over breeding
method (Wang and
Bishop 2003).
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Relatively inexpensive for ensemble size of 0(100).

Systematic underestimate of the analysis error variance
due to sampling error. Ameliorated by two parameters.



Hybrid ETKF-3DVAR experiment

WRF domain, observation

. o .  WRF domain: North America; coarse
locations and verification region

resolution (Ax=200km; 28 levels)

/o SRRV N ~ * Observation: radiosonde wind and
o 3 temperature
* Test period: Jan 2003
) .. “'ﬁ ' +Ensemble size: 50 members
i _- A ~ « Verifications: Compare forecasts
| initialized by the hybrid and 3DVAR
j analyses.

Wang et al. 2008ab, MWR



flow-dependent increments by the hybrid

850mb T increment (k)

* The hybrid system can provide flow-dependent
iIncrements.
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Improvement relative to obs. density

difference of V rms ana. error (ms™!)

The simulated observation
experiment shows that

* Hybrid has larger improvement
over and downstream of data
sparse regions.

* Flow-dependent ensemble
covariance has the largest
impact over and downstream of
where observation is sparse.




Real obs. experiment: 12h forecast error

(a) wind 12h fest fit to obs (ms™!) (b) T 12h fest fit to obs (k)
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» Hybrid 12h forecast is more accurate than the 3DVAR for
most time.



pressure (hPa)

Vertical profile of 12h forecast error

(a) wind 12h fest fit to obs (ms™!) (b) T 12h fest fit to obs (k)
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« Wind: Hybrid has the largest improvement at 200mb-
300mb;

 Temperature: Improvement smaller than wind. No
improvement at lower troposphere (significant bias).



How was the moisture field updated?

(a) HYBRID increment qv (g/kg) 700hPa 2003010812
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* flow-dependent adjustments
produced by the hybrid
extended a large distance into
eastern Pacific data void region.
It dried the lower troposphere
along the front.

* Although no moisture
observations were assimilated,
hybrid through cross-variable
covariance estimated by the
ensemble can update moisture
field whereas 3DVAR can not.



What next?

3D extended control variables with vertical covariance
localization

Include microphysical state variables for e.g. radar DA
Adaptive spatially varying weighting factors?

Better methods to ameliorate ETKF sampling errors:
spatially varying inflation, Local ETKF

Better LBC ensembles, better representation of model
errors in the ensemble

ETKF-4DVAR; inter-comparison of different DA schemes
Meso/convective scale application
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Hybrid DA namelist variables

« alpha corr_scale
Correlation length scale (km) of recursive filter

* |b_factor ~ 31
« |e_factor ~ 32
1/ B1+1/ B2=1

e alphacv_method
1 control-variable space ensemble perturbations
2 model space ensemble perturbations



ETKF namelist variables
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