

Roadrunner and hybrid computing

Ken Koch

Roadrunner Technical Manager

Scientific Advisor, CCS-DO

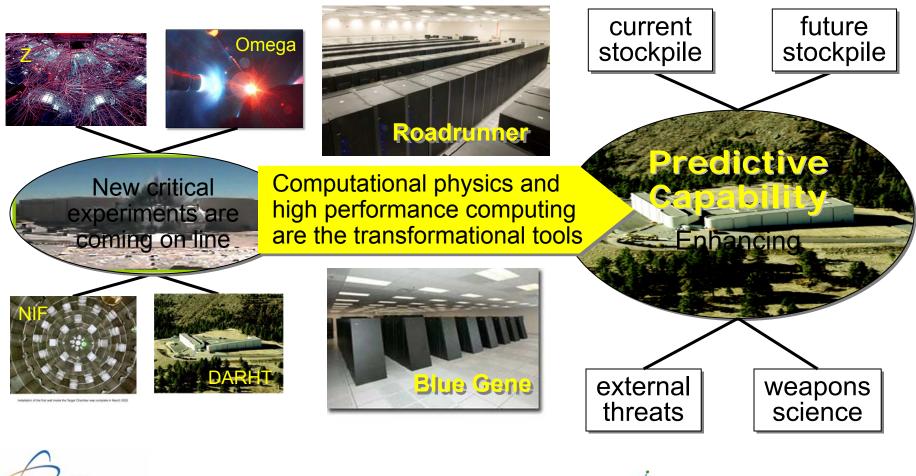
August 22, 2007

Operated by Los Alamos National Security, LLC for NNSA

LA-UR-07-6213

Outline

- 1. Roadrunner goals and thrusts
- 2. Hybrid computing and the Cell processor
- 3. Roadrunner system and Cell-acceleration architecture
- 4. Overview of programming concepts
- 5. Overview of algorithms & applications


Roadrunner is essential for fulfilling our science and stewardship missions for the weapons program

Operated by Los Alamos National Security, LLC for NNSA

NNS

Petascale computing is essential to ensuring a sustainable nuclear deterrence

Operated by Los Alamos National Security, LLC for NNSA

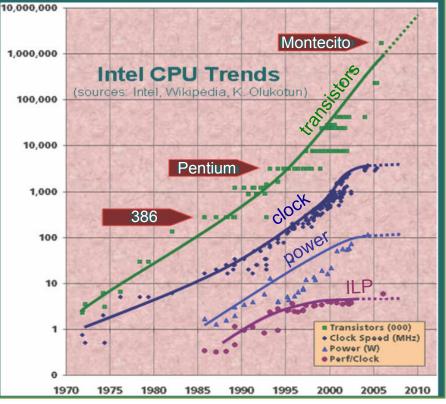
The Cell-accelerated Roadrunner targets two goals

- Science @ Scale
 - Multi-scale unit physics for weapons & open science
 - o Validate model assumptions
 - Better understand physics
 - o Cross-validate physics models at overlapping resolutions
 - Run at Petascale (25% to 80+% of machine)
- Advanced Architecture for algorithms and applications
 - Target select physics and work on algorithms and implementations
 - Convert algorithms to Cell & Roadrunner
 - Or use an alternative or modified parallel algorithm
 - Provide faster solutions or improved accuracy
 - Incrementally update existing ASC integrated codes for targeting key uncertainties
 - o Target focused simulations, not general usage
 - Focus is more predictive science oriented than speeding up production jobs
- More on this at end of talk

Heterogeneous & hybrid computing is an industry trend

The Cell processor is a powerful hybrid processor that can accelerate algorithms

Operated by Los Alamos National Security, LLC for NNSA

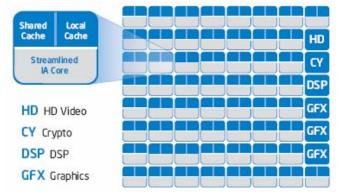


Microprocessor trends are changing

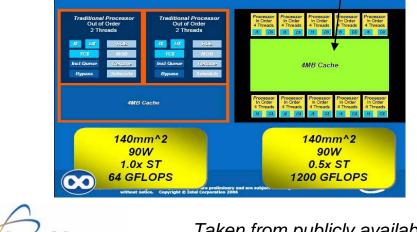
- Moore's law still holds, but is now being realized differently
 - Frequency, power, & instructionlevel-parallelism (ILP) have all plateaued
 - Multi-core is here today and manycore (≥ 32) looks to be the future
 - Memory bandwidth and capacity per core are headed downward (caused by increased core counts)
 - Key findings of Jan. 2007 IDC Study: "Next Phase in HPC"
 - new ways of dealing with parallelism will be required
 - must focus more heavily on bandwidth (flow of data) and less

• Los Alamos

Operated by Los Alamos National Security, LLC for NNSA



From Burton Smith, LASCI-06 keynote, with permission


WEAPONS SCIENCE & ENGINEERING CAPABILITY REVIEW

Industry presentations show changing trends in processors

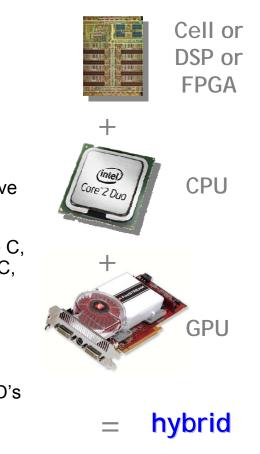
Intel's Microprocessor Research Lab

Intel's Visual Computing Group -, Larabee

Taken from publicly available information

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED


ANS®

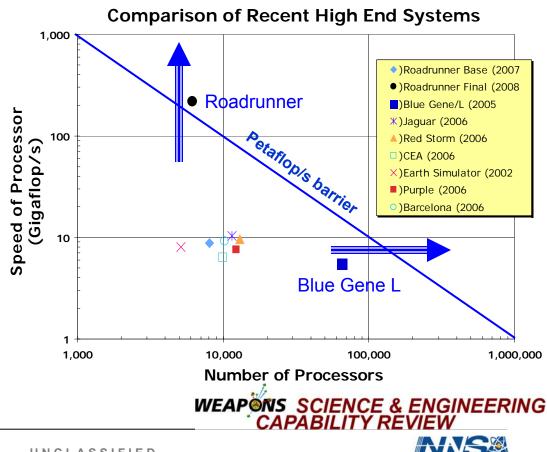
The change is already happening

• New processors & accelerators:

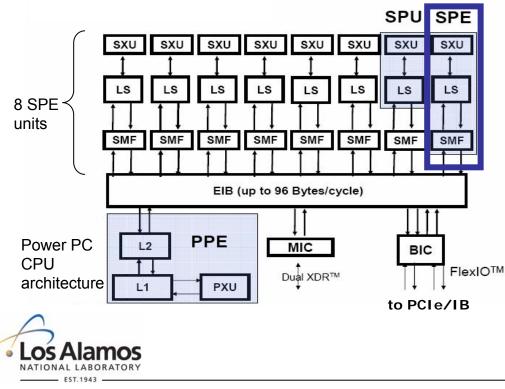
- Multi-core to many-core: 8, 16, 32, ... 80, 128, 1000?
- IBM Cell , AMD Fusion, Intel Polaris, NVidia G8800
- Distributed memory & caches at core level
- FPGAs, GPGPU, Clearspeed CSX600, IBM Cell, XtremeData XD1000, Nvidia G80, AMD Stream Processor
- Connection standards
 - AMD Torrenza, Intel/IBM Geneseo, AMD HyperTransport Initiative
- Programming
 - IBM Roadrunner Cell libraries, RapidMind, Peakstream, Impulse C, Standford's Sequoia, NVidia CUDA, Clearspeed C, Mercury MFC, stream programming
- Heterogeneous architectures
 - Clusters of mixed node
 - Hybrid accelerated node (e.g. Roadrunner, Clearspeed, FPGA)
 - Hybrid on the same bus (e.g. CPU+GPUs, Intel's Geneseo, AMD's Torrenza)
 - Within processor itself (e.g. Cell, AMD Fusion)

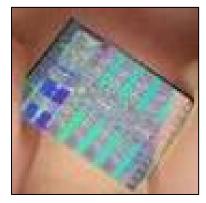
There were hybrid computers before Roadrunner

- Floating Point Systems FPS Array Processors (AP-120B, FPS-164/264) (circa 1976-1982)
 - http://en.wikipedia.org/wiki/Floating_Point_Systems
- Deep Blue for chess (IBM SP-2: 30 RS6K + 480 chess chips) (circa 1997)
 - <u>http://en.wikipedia.org/wiki/Deep_Blue</u>
- Grape-6 for stellar dynamics w/ custom chips) (circa 2000-2004)
 - http://grape.astron.s.u-tokyo.ac.jp/~makino/grape6.html
- Various FPGA supercomputers from system vendors:
 SRC-6 (w/ MAP), Cray XD1 (w/ Application Acceleration), SGI Altix (w/ RASC)
- Titech TSUBAME (w/ some Clearspeed) (2006)
 - http://www.gsic.titech.ac.jp/English/Publication/pressrelease.html.en
- RIKEN MDGrape-3 "Protein Explorer" (w/ custom chips) (2006)
 - <u>http://mdgrape.gsc.riken.jp/modules/tinyd0/index.php</u>
- Terra Soft's Cell E.coli/Amoeba PS3 Cluster (cluster of 1U PlayStation 3 development systems) (2007)


http://www.hpcwire.com/hpc/967146.html

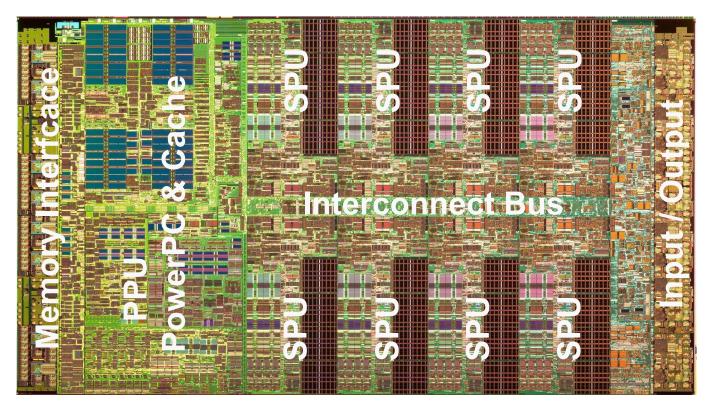
Roadrunner is paving the way along an alternate path for the future of HPC


- Roadrunner is the first of a new breed of high performance computers
- Roadrunner is sooner, cheaper, and smaller than building a petascale machine in the conventional way
- Roadrunner at Los Alamos attacks now the unavoidable software challenge early
 - "The Labs must be in the game now." LANS Independent Functional Management Assessment of RR project (May, 2007)



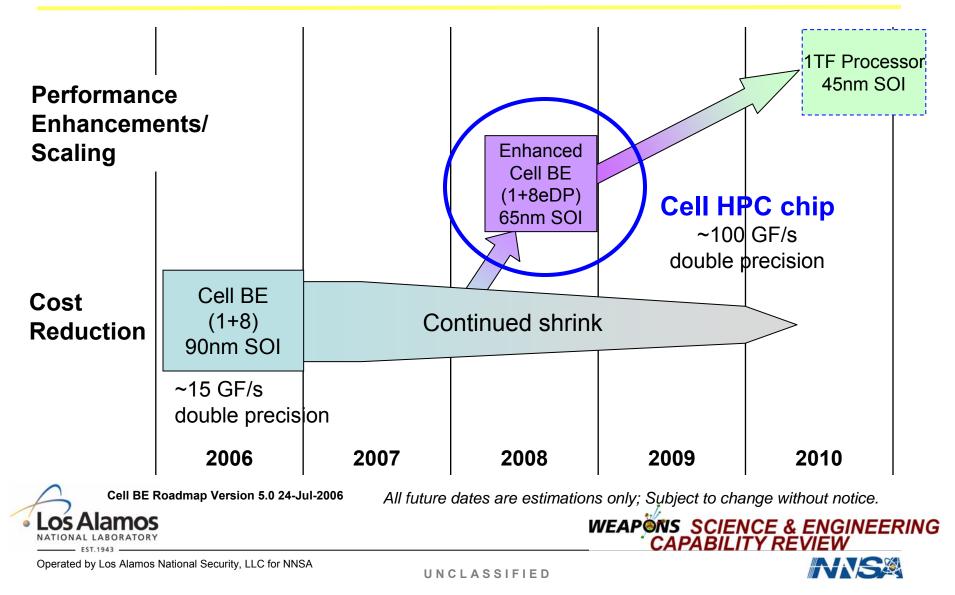
The Cell is a powerful hybrid multi-processor chip

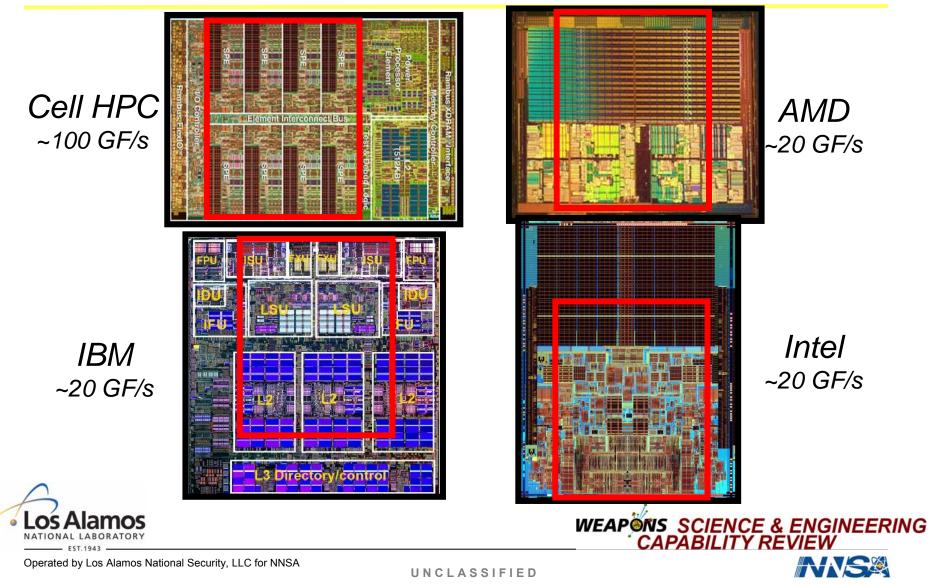
- Cell Broadband Engine[™] * (Cell BE)
 - Developed under Sony-Toshiba-IBM efforts
 - Current Cell chip is used in the Sony PlayStation 3
- An 8-way heterogeneous parallel engine

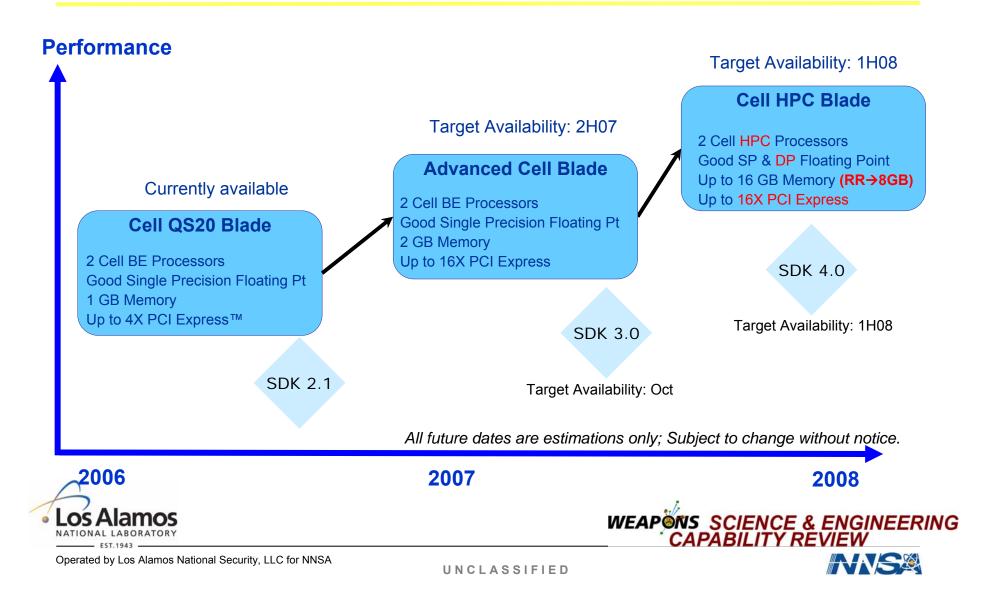


- Each of the 8 SPEs are 128 bit (e.g. 2-way DP-FP) vector engines w/ 256KB of Local Store (LS) memory & a DMA engine.
- They can operate together or independently (SPMD or MPMD).
- ~200 GF/s single precision
- ~ 15 GF/s double precision (current chip)
 - * Trademark of Sony Computer Entertainment, Inc.

Cell Broadband Engine


Heterogeneous: 1PPU + 8 SPUs


Operated by Los Alamos National Security, LLC for NNSA


A new Cell rev. was needed for Roadrunner

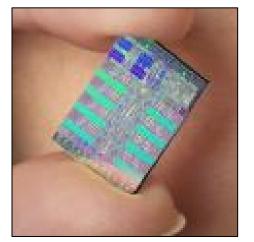
Cell local store architecture has a performance per area advantage

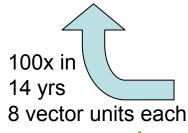
Cell blades and software improve during Roadrunner development period

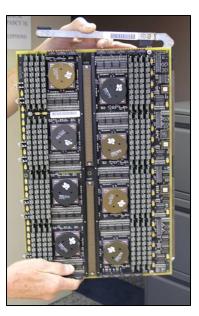
Roadrunner is a hybrid architecture for 2008 deployment achieving a <u>sustained</u> PetaFlop/s performance level

Operated by Los Alamos National Security, LLC for NNSA

Roadrunner project is a partnership with IBM


 Contract contract signed September 8, 2006 with


- Critical component of stockpile stewardship
 - Phase 1 (Base system) supports near-term mission deliverables
 - Phase 2 (Cell prototypes) supports pre-Final assessment
 - **Phase 3** (Hybrid final system)
 - Achieves PetaFlops level of performance
 - Demonstrates new paradigm for high performance computing
- Accelerated vision of the future



Operated by Los Alamos National Security, LLC for NNSA

Cell processor (2007, 100 GF)

CM-5 board (1994, 1 GF)

WEAPONS SCIENCE & ENGINEERING CAPABILITY REVIEW

Status of the Roadrunner Phases

• Phase 1

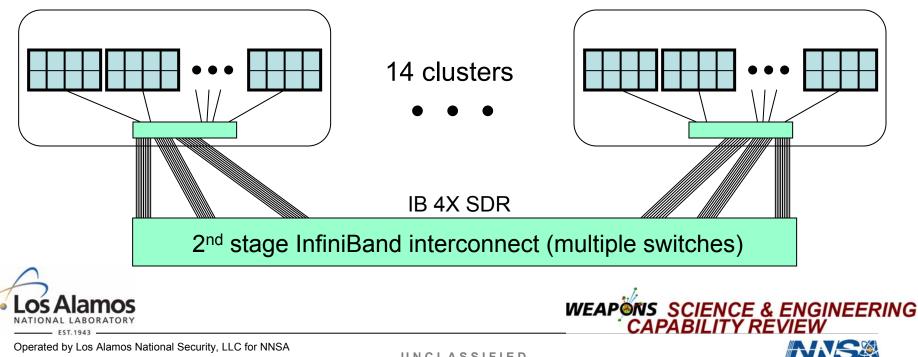
- Known as "Base" system
- 14 clusters of Opteron-only nodes
- In classified operation now with general availability early September
- Already contributing to DSW efforts
 - Application Readiness Team (ART) provided early support

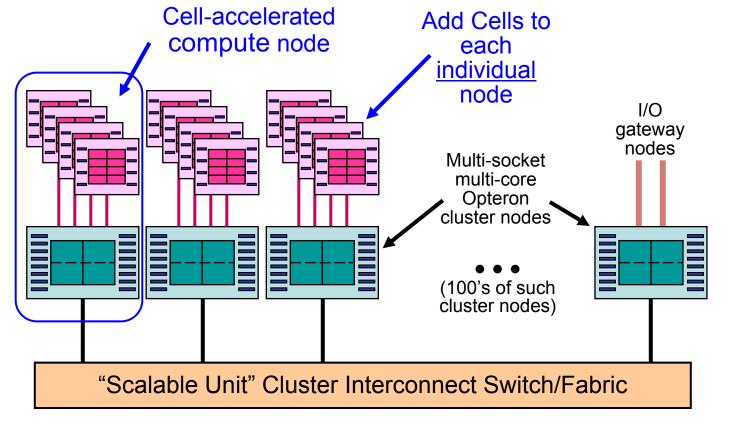
• Phase 2

- Known as "AAIS" (Advanced Architecture Initial System)
- 6 Opteron nodes and 14 Cell blades on Infiniband
- Has been in use since January for Cell & hybrid application prototyping

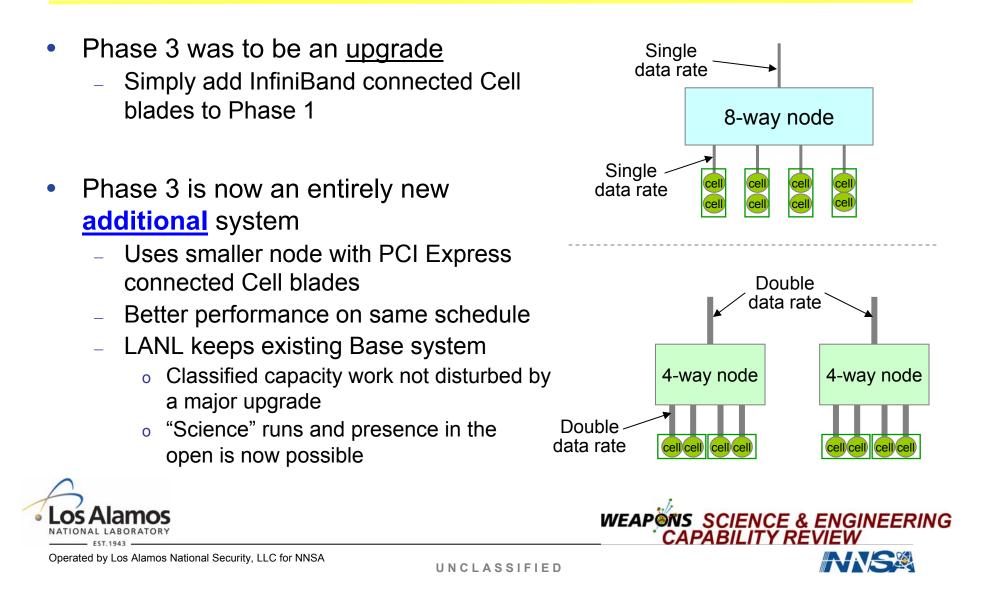
• Phase 3

- Contract option for 2008 delivery
- Two technical Assessments scheduled for this October
- A redesigned Cell-accelerated system for better performance
 - No longer an upgrade to the Base system



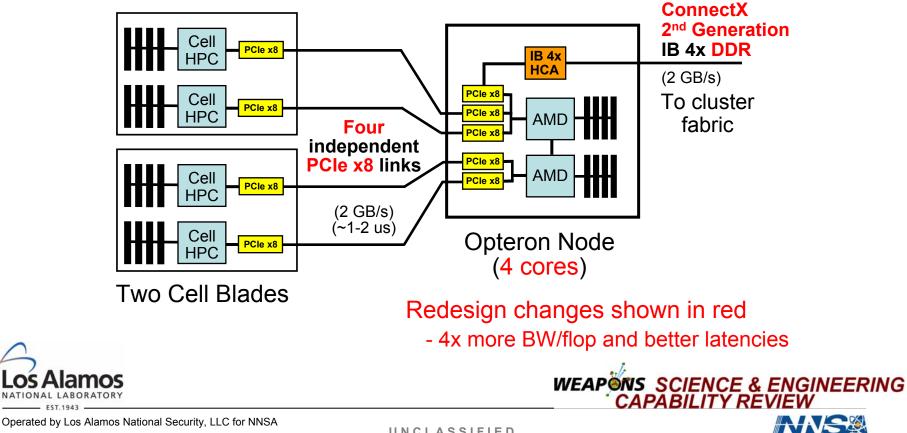

Roadrunner Phase 1 "Base" is deployed now as a capacity resource

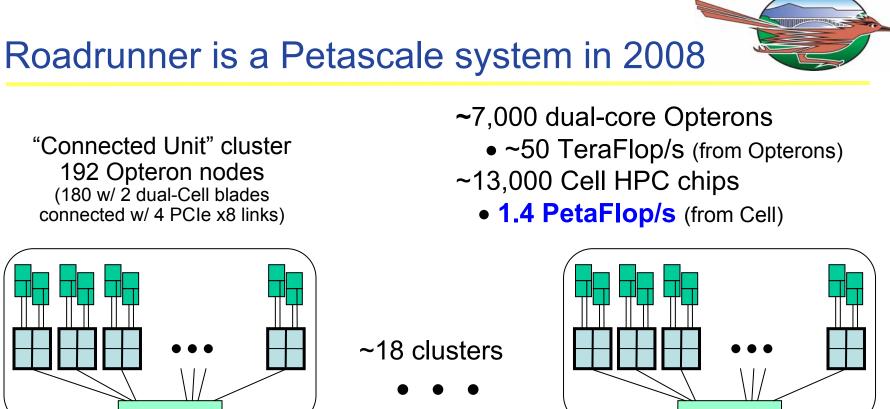
- Fourteen InfiniBand-interconnected clusters of Opteron nodes
 - Provides 70 Teraflop/s of needed capacity computing resources
 - In classified operation now with early September general availability
 - 144 4-socket dual-core 32 GB memory nodes per cluster


Roadrunner Phase 3 is Cell-accelerated, not a cluster of Cells

This is what makes Roadrunner different!

Phase 3 was redesigned to be a better system




Roadrunner uses Cells to make nodes ~30x faster

400+ GFlop/s performance per hybrid node!

One Cell chip per Opteron core

2nd stage InfiniBand 4x DDR interconnect (18 sets of 12 links to 8 switches) 2nd Gen IB 4X DDR VEAPOINTS SCIENCE & ENGINEERING CAPABILITY REVIEW

The Roadrunner procurement is tracked like a construction project via DOE Order 413 w/ NNSA

Stage 1			
Accelerator Technology Assessment (Phase 2)	Roadrunner Final System Phase 3		
 Accelerator Technology Refreshes Delivery FY07 Final System Assessment & Review 	 Final Delivery of Advanced Architecture system up to a "sustained" Petaflop Delivery FY08 		
CD-0 & CD-1 (Approved)			
CD-2 (Approved)			
CD-3a (Approved)			
CD-4a (Acceptance of Base System) (Planned 07/07)			
	CD-4b (11/08)		
Project Status/Milestones			
 Software Architecture Design Certification work on Roadrunner 	 Option to be executed in early FY08 Final System Delivery Final System Acceptance Test 		
	WEAP SCIENCE & ENGINEE		
	Accelerator Technology Assessment (Phase 2) > Accelerator Technology Refreshes > Delivery FY07 > Final System Assessment & Review CD-0 & CD-1 (Approved) CD-2 (Approved) a (Approved) Base System) (Planned 07/07) Project Status/Milestones > Software Architecture Design > Certification work on Roadrunner		

Roadrunner Phase 3 is an option with planned assessment reviews

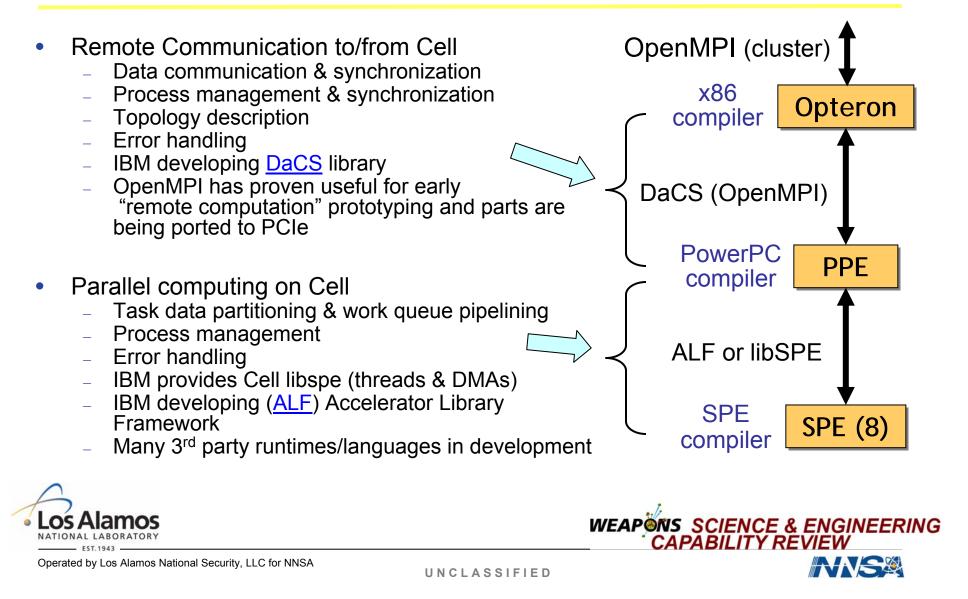
- Two assessments are planned for October 2007
 - LANL-chartered Assessment committee
 - NNSA ASC chartered independent assessments by HPC experts
- Assessment metrics
 - Performance
 - Future workload (e.g. Science@Scale & Advanced Architecture)
 - o Expected Linpack ≥ 1.0 PF sustained
 - Usability and manageability
 - System management and integration at scale
 - API for programming hybrid system
 - Technology

Delivery of advanced technology

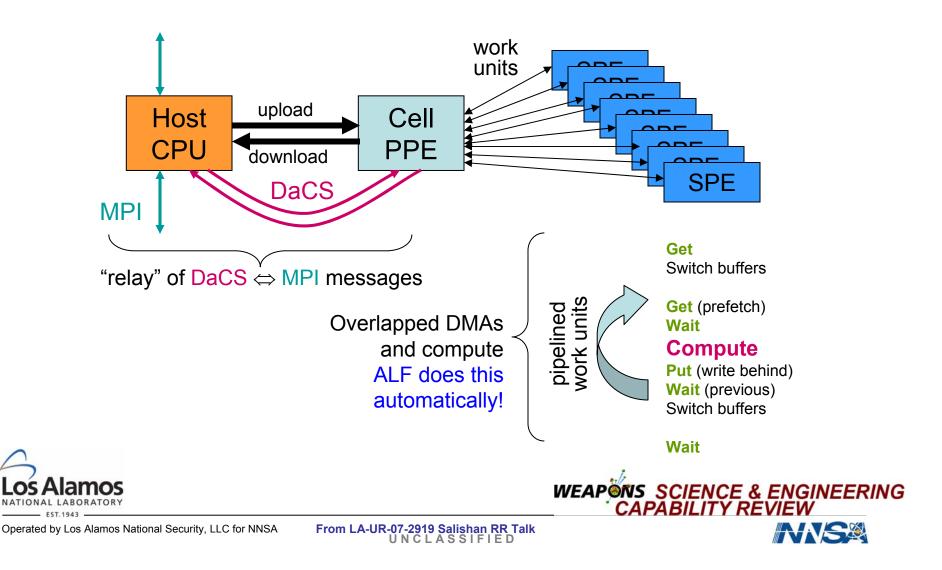
UNCLASSIFIED

Programming Roadrunner is tractable

Operated by Los Alamos National Security, LLC for NNSA

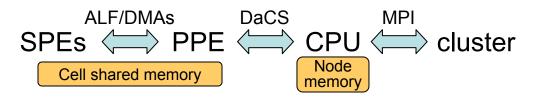


Three levels of parallelism are exposed along with remote offload of an algorithm "solver"


- MPI message passing still used between nodes and within-node (2 levels)
 - Global Arrays, IPC, UPC, Global Address Space (GAS) languages, etc. also remain possible choices
 - Additional parallelism can be introduced within the node ("divide & conquer")
 - Roadrunner does not require this due to it's modest scale
- Offload <u>large-grain</u> computationally intense <u>algorithms</u> for Cell acceleration within a node process
 - This is equivalent to function offload and similar to client-server & RPCs
 - One Cell per one Opteron core (1:1 process ratio)
 - Opteron would typically block, but could do concurrent work
 - Embedded MPI communications are possible via "relay" approach
- Threaded fine-grained parallelism within the Cell itself (1 level)
 - Create many-way parallel pipelined work units for SPMD on the SPEs
 - MPMD, RPCs, streaming, etc. are also possible
 - Consistent with heterogeneous chips future trends

Considerable flexibility and opportunities exist
 WEAPONS SCIENCE & ENGINEERING

Three types of processors work together



Three types of processors work together

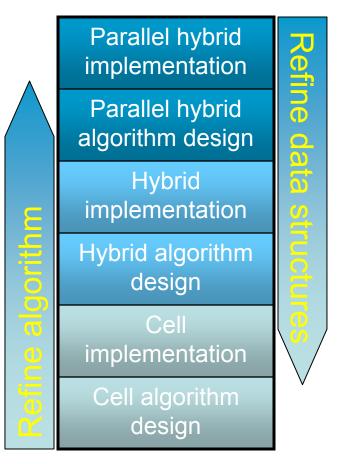
Message-passing MPI programs can evolve

- Key concepts:
 - Pair one Cell core with one Opteron core

- Move an entire compute-intensive function/algorithm & associated data onto Cell
 - Can be implemented one function or algorithm at a time
 - Use "message relay" to/from Cells to cluster-wide MPI on host CPUs
- Identify & expose many-way fine-grain parallelism for SPEs
 - Add SPE specific optimizations, many of which are also good on multi-core commodity processors, some are more SPE specific
 - Current SPE programming is limited in C/C++
- Retain main code control, I/O and MPI communications on host CPUs

UNCLASSIFIED

And what about applications


Operated by Los Alamos National Security, LLC for NNSA

A few key algorithms are being targeted

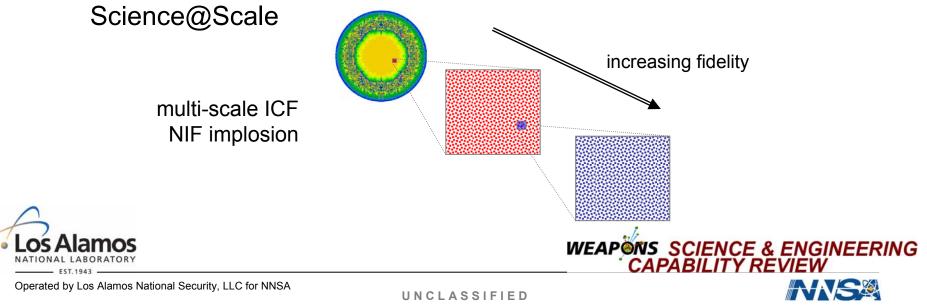
- Transport
 - PARTISN (neutron transport via Sn)
 - Sweep3D
 - Sparse solver (PCG)
 - MILAGRO (IMC)
- Particle methods
 - Molecular dynamics (SPaSM)
 - Data parallel CM-5 implementation
 - Particle-in-cell (VPIC)
- Eulerian hydro
 - Direct Numerical Simulation
- Linear algebra
 - LINPACK
 - Preconditioned Conjugate Gradient (PCG)

We are making good progress on applications

Target full application	SPaSM	VPIC	PARTISN MILAGRO		RAGE	PARTISN, RAGE, Truchas, etc.		
Parallel hybrid implementation	8/07 SPaSM in progress	Coding completed	Late due to re-design	Cell cluster version exists	Near coding completion	Near coding completion		
Parallel hybrid design	42			\wedge	42	11		
Serial Hybrid implementation			On hold	In progress				Hybrid coding completed
Serial Hybrid design							curtailed	Optimizations possible
Cell implementation			R€-design n ¢rogress			SIMD coding		
Cell design	CellMD	VPIC	Re-design completed Sweep3D JK-iagonals	PAL- Sweep3D Domain decomp	Milagro	Milagro rewrite	Research code	CG and GMRES
	Molecular	Particle-in-	SPE Threads	SPE Sweeps	re- implement	re-design	Eulerian	Sparse Linear
	Dynamics (MD)			tic Neutron sport rdinates, S _N)	Tran	Radiation sport te Carlo, IMC)	Hydro	Algebra (Krylov methods)
Los Alamo					И			E & ENGINEI REVIEW
Operated by Los Alamo	os National Security	, LLC for NNSA				27117		INNS

Slide 34

Roadrunner hybrid implementations are faster


- Speed ups so far range from 1x (disappointing: redesign & more optimizations) to 9x (very good)
 - Reference performance is taken as the performance on a 2.2GHz Opteron core or cluster of such Opterons
 - Science codes are fairing the best
- Extensive performance modeling with key measurements on hardware prototypes will be used to used to <u>project</u> final Roadrunner performance of these applications
 - AAIS machine has IB-connected Cell blades
 - A few Cells are connected to Opterons via PCIe at IBM Rochester site
 - IBM is building a ConnectX IB cluster for testing at Poughkeepsie
 - A few prototype hybrid nodes with current Cell chips will be available in late August in Rochester
 - A couple of new Cell HPC chips are available at IBM Austin in test rigs
- Much work is yet to be accomplished by the October Assessments

Roadrunner targets two application areas

- Science@Scale
 - Targeting VPIC & SPaSM codes for weapons science
 - Cross-validate physics models at overlapping resolutions
 - Run at Petascale
 - ~75% of machine, for 1½ to 2 week durations, is minimally needed for each VPIC ICF study
 - Guy Dimonte will talk next about VPIC and its role for

Roadrunner targets two application areas

- Advanced Architecture for algorithms and applications
 - Targeting unclassified transport algorithms initially
 - Provide faster solutions or improved accuracy
 - Advanced parallel hybrid algorithms and application development
 - Demonstrate a path to incrementally updating existing ASC integrated codes
 - Target key physics or simulation uncertainties, not general DSW/baselining usage
 - Potentially target 3D safety

More is information is available on the LANL Roadrunner home page

http://www.lanl.gov/roadrunner/

Roadrunner Architecture Other Roadrunner talks Computing Trends Related Internet links

UNCLASSIFIED

The End

Operated by Los Alamos National Security, LLC for NNSA

NNSA