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ABSTRACT

This paper provides twenty rules of thumb for comparing
algorithms having the same function, one of which is to be
selected for use in an intelligent system. The rules are
illuminated by a specific example, the comparison of three
algorithms for dealing with the collection of open nodes that is
at the heart of the Dijkstra graph search method. For each rule,
a description is given of how the rule was applied in building
the example.
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1. INTRODUCTION

To produce intelligent behavior, most intelligent systems
include computer implementations of one or more complex
algorithms. Often a comparison must be done to support
making a choice among algorithms performing the same
function.

This paper1 provides a set of rules of thumb for comparing
algorithms having the same function. The rules given here are
elementary. Most readers will already know many or all of
them. The paper also presents a specific example of comparing
algorithms. The example is intended to highlight the utility of
following the rules. Our purposes are to help builders of
intelligent systems make better decisions among competing
algorithms and to encourage caution and thoroughness in
comparing algorithms.

Section 2 gives our rules of thumb for comparing
algorithms for use in an intelligent system. Section 3 presents
the example, comparing algorithms for dealing with open
nodes in Dijkstra graph search. Section 4 discusses how the
rules were used in the example. Section 5 gives the paper’s
conclusion.

2. RULES OF THUMB

RULE OF THUMB 1: Compare algorithms both in theory
and in practice. Algorithms may be compared using theory (by
examining how they work) or using experimentation (by
examining the behavior of a system running an implementation

of the algorithm). Both methods should be used. Theory directs
experimentation, but reality is sufficiently more complex than
theory that it is naive to rely on theory alone.

2.1 Comparing Algorithms in Theory

RULE OF THUMB 2: Do a big O analysis. Theoretical
analysis of the running time of algorithms is a mainstream
activity of computer science. The well-known idea [7], [11] is
to identify the “big O” order of the time a program will take as
a function of the size of the problem being solved. The
difficulty of doing this ranges from fairly easy to impossible. A
theoretical analysis can never guarantee an algorithm will work
well, but if it indicates the algorithm should work badly for
large problems (by running in order 2N time, for example,
where N quantifies the size of the problem under
consideration), one can be quite sure it will work badly.
Depending on the application, it may be appropriate to do a
worst-case analysis, an average behavior analysis, or both.

If the order of time taken, T, is O(F(N)) for some function
F, this means, T = K(F(N)) for some constant K. The constant
of proportionality, K, is constant only for a given computer,
compiler, and operating system. If the usual assumption of a
one-tier memory model (only RAM) is made, K may still fail to
be constant. As pointed out in [8], modern computers generally
have a multi-level memory hierarchy, including at least cache,
RAM, and disk. Cache memory may be up to ten times as fast
as RAM, and disk memory may be 1000 times as slow. Thus, K
will actually be a constant only if the characteristics of memory
handling do not change over the range of N being tested.

RULE OF THUMB 3: Do a functional analysis. A
functional analysis is an analysis of how the algorithm works
— what the main routine does, what the subroutines are and
what they do, etc. This is a harder, one-off activity, usually
requiring understanding of a large body of source code or
pseudocode and the language in which it is written. Here again,
only negative guarantees are available; if it does not work in
theory, it won’t work in practice.

RULE OF THUMB 4: Identify dimensions of the
domain space. Typically, the problem domain an algorithm
addresses will have several independent aspects that affect the
functioning of the algorithm. These aspects can be used as the
dimensions of a domain space. Some aspects, such as problem
size, may be effectively continuous, while others may have
continuous segments divided by discontinuities or may be
discrete.

RULE OF THUMB 5: Identify regions of interest in the
domain space. Also typically, only a limited part of a domain
space will be of interest. The portion of interest may be

1. Certain commercial equipment, instruments, or materials are
identified in this paper in order to facilitate understanding. Such
identification does not imply recommendation or endorsement
by the National Institute of Standards and Technology, nor does
it imply that the materials or equipment identified are
necessarily the best available for the purpose.



bounded either naturally (by discontinuities in the dimensions
of the space), or synthetically (by picking limits along
continuous dimensions). It is important to identify the regions
of interest because algorithms may, and almost always do,
perform qualitatively differently in different parts of the space.
In this paper, we use the term “sea change” to mean a
qualitative change in the functioning of an algorithm in
different parts of the domain space.

RULE OF THUMB 6: In the functional analysis,
consider all regions of interest in the domain space. A
functional analysis will not be complete unless it identifies (i)
what is qualitatively different in different parts of the domain
space where the algorithm is intended to work, and (ii) how
qualitative differences in the part of the domain space affect the
performance of the algorithm.

RULE OF THUMB 7: Get the source code. While natural
language and pseudocode versions of algorithms can be
analyzed, the analysis is likely to miss key points if it is not
done on the source code, the first key point being: does the
code implement the algorithm correctly. Without having the
code in hand, it cannot be debugged, modified, or recompiled.

2.2 Comparing Algorithms in Practice

Where theoretical analysis is not well-developed, only
experimentation is available to compare algorithms. Even
where a theoretical analysis of algorithm performance is
available, it cannot reveal how an implementation will perform.
An abstract algorithm does not run on an abstract machine. An
implementation of the algorithm in a specific computer
language, compiled by a specific compiler (or interpreted by a
specific interpreter) for a specific machine architecture is what
runs. And it runs on a specific piece of computer hardware,
under control of a specific operating system, possibly
depending on a specific file server connected by a specific
communications system. Each of these items can affect the
performance of an algorithm [6], [8].

RULE OF THUMB 8: Determine what is to be
optimized, and test that. This is obvious but ranges from easy
to nearly impossible in practice. Algorithms that return an
answer guaranteed to be optimal for a well-defined single
measure (least cost, for example) provide the easy cases. In
hard cases (computer vision has them), it is difficult even to
characterize what one is trying to optimize. There may be
trade-offs among optimizing several aspects of performance:
average performance vs. worst-case performance, minimizing
bad results vs. maximizing good ones, minimizing running
time vs. maximizing answer quality, falling off a cliff at
domain region boundaries vs. sliding down gradually, etc.

RULE OF THUMB 9: In experiments, keep the number
of variable factors to a minimum. This is a main tenet of
standard experimental procedure, which should be followed
insofar as possible. Keep all conditions but one the same
between tests, changing only one factor at a time. In particular,
when comparing two algorithms, to the extent possible:

1. Implement them in the same computer language.
2. Compile them on the same compiler, using the same

compiler settings.

3. Run them on the same computer.
4. Test them under similar conditions of computer usage.
If it is known what computer the algorithm will be running

on as part of the complete intelligent system, that is the
computer that should be used for testing. Otherwise, the same
tests should be repeated on each computer that might be used
in the full system.

RULE OF THUMB 10: Conduct one or more series of
tests that are ordered by size but have the same values in
other dimensions. If problem size is variable in an application,
it usually varies continuously. The range of sizes should match
the range presented by the regions of interest in the domain
space, if that is known. When such a series of tests is
conducted, if theory indicates there are no sea changes in
system behavior across the range of sizes, test results (such as
time) should lie on a smooth curve of some sort when the
results are plotted on a graph showing problem size on one axis
and results on the other axis. If there is a kink in the curve
where theory does not predict a sea change, double-check the
theoretical analysis and/or run the same tests on a different
computer. If the kink is not found on a second computer, the
cause of the kink lies somewhere in the first computer.

RULE OF THUMB 11: Conduct identical tests on
substantially different computers. If the same tests can be run
on substantially different computers, and the ratio of the times
taken by the two computers is nearly constant across tests, this
is (mushy) evidence that the system operating regimes are not
undergoing sea changes between tests. If one of the computers
behaves qualitatively differently between two tests, it is
unlikely that the second computer will have a sea change at the
same point.

RULE OF THUMB 12: Conduct tests with the computer
lightly loaded. The two most significant measures of load on
the computer are memory usage and CPU usage.

If RAM memory is not lightly loaded, the operating
system will use secondary memory with the effect, according
to [8], that “memory access times can vary by factors as large
as a million” in the worst case. The same paper observes that
because of memory effects, “[predicted] running times that are
off by three orders of magnitude are not unusual.”

Reduce the number of processes competing for time as far
as possible while testing. For example, do not run two tests
simultaneously. Ideally, while many processes will inevitably
be resident on the test computer, only the process being tested
should use any significant amount of CPU time. The Unix
“time” command, for example, shows the percentage of CPU
time used by the process that was timed. If this command is
used for timing, use results only for those runs for which CPU
usage is near 100%.

RULE OF THUMB 13: Monitor computer use during
testing. Memory usage per process on Sun computers1 and
other computers using unix-like operating systems may be
checked with top or ps. Top also shows total memory usage.

1. In this paper, “Sun computer” means a Sun computer running
the Solaris operating system (which is unix-like).



Memory usage per process and in total on PC’s1 may be
checked using the Windows Task Manager.

CPU usage for a process may be checked on computers
using unix-like operating systems with the top and time
commands. Top also shows total CPU usage. On PC’s, a
performance meter is available inside the Windows Task
Manager (and in a stand-alone process) that will show total
CPU usage. On PC’s the Windows Task Manager will show
CPU usage per process.

Monitoring processes are designed to use minimal
computer resources, so having them running while testing will
probably not interfere with testing. Some monitoring processes
(top, for example) show what resources they themselves are
using. If it is suspected that a monitoring process is using
significant resources, run a timing test with the monitor on,
then run the same test with the monitor off and compare results.

RULE OF THUMB 14: Conduct tests with the computer
realistically loaded. Conducting tests with the computer lightly
loaded should always be done, but a light load may not be
possible in the full system. If the load on a computer running
the full system is known, conduct tests under those load
conditions. Where performance changes dramatically between
lightly loaded and realistically loaded conditions, consider
reconfiguring the full system.

RULE OF THUMB 15: Understand the effects of the test
harness and compensate for them. The algorithm being tested
will have interfaces to the rest of the full system and may
require data structures to exist. To test without the full system,
a test harness is built, typically in the form of computer code
for a driver including a main routine and routines to set up data.
If the full system normally builds data structures while it runs,
as opposed to building them by reading a file, it may be
necessary to define a file format and have file-reading code in
the driver. When tests are run using the harness, some time will
be used by the driver code. If time to do the same functions is
not required by the full system, that time should be diluted or
subtracted in analyzing test results.

Typically, a test harness will consume a significant amount
of time primarily when it starts up (for file reading, for
example), and possibly when it shuts down.

RULE OF THUMB 16: Use representative test cases.
The test cases used should be typical of the region of domain
space for which an algorithm is being tested. If possible,
harvest test cases from data acquired during intelligent system
operation. It is very rare for a test case generator to exist that is
guaranteed to produce test cases that satisfy some metric for
representativeness. Producing representative test cases
typically requires both establishing criteria for
representativeness and conducting secondary experiments on
candidate test cases to see how well they meet the criteria.

RULE OF THUMB 17: Use standard test case sets, if
available and appropriate. In some domains, standard sets of
test cases may be available. Even where these are available, care
is needed in deciding if they are really in the proper domain
region and, if so, whether they are adequately representative.

A common pitfall with test cases is that an algorithm is
tuned for a specific set of test cases that are not adequately
representative of the domain region. When further testing is
done or the full system is built and run, performance is
significantly lower than expected. Where no good metric for
representativeness exists, the only solution for this problem
may be to use very large sets of test cases.

RULE OF THUMB 18: Collect secondary data showing
what the algorithm is doing internally. This is useful for:

1. verifying that data which should be the same between
two algorithms or implementations is the same.

2. verifying that an algorithm is doing in practice what
it should be doing in theory.

3. tuning the algorithm for better performance.
4. understanding where the algorithm is spending the

majority of its time.
This is at the border between testing and debugging. If an

algorithm is not doing what the tester thinks it should be doing,
either the tester is confused or there is a bug in the code or the
algorithm itself.

RULE OF THUMB 19: Deal with measurement error.
Another obvious rule. This is like “check the hull for leaks” in
that checking any one spot is easy, but there may be a lot to
check, and if you miss one spot, the boat sinks. Deciding
between algorithms does not usually require high precision or
high accuracy; getting measurements within 10% to 20%
overall is probably good enough. Where components of error
are additive, of course, the error in an individual component
needs to be lower.

Quick checks should be applied to measuring tools such as
the time or top command or a performance monitor. Things
that measure time can be double-checked against clocks or
watches. Where more than one tool is available, use both and
compare. For example, CPU usage on a Sun computer is given
both by time and top.

Much of the data taken by computer tools such as top and
performance monitors is an average over some time period,
and one should be aware of this when using those tools. For
example, performance monitor plots may show CPU usage
ramping up over a few seconds, staying level for a long time,
and then ramping down again. The ramps are almost certainly
not real. What is actually happening is a quick jump from low
to high when a process starts and a jump back to low when the
process ends. The ramps (which help the eye follow the curve)
are artifacts of using a rolling time average. The real life span
of the process is probably from the beginning of the ramp up to
the beginning of the ramp down.

Performing repeatability tests is very useful. The total
variation in a repeated test contains at least three components,
each of which has random and systematic parts:

1. variation caused by differences in the internal
computer environment between tests.

2. errors in the tools used to take the measurements.
3. errors in reading the measurements provided by the

tools.
Although equal and opposite random errors are possible in

theory, they are unlikely to occur repeatedly in practice. If the
variation between repeated measurements is small in every

1. In this paper, “PC” means a PC running an MS Windows
operating system.



case, it is nearly certain that all three components of random
error are small. If possible, adjust test procedures so that
variations in repeated tests are small compared with the
quantity being measured.

RULE OF THUMB 20: At widely separated times, repeat
tests performed earlier. Repeating old tests will help catch
systematic errors that vary slowly over time.

3. Example

Many systems may use a graph search algorithm. In building
planning systems for domains as diverse as autonomous
vehicles [3] and automated atom assembly, researchers at NIST
have been using Dijkstra graph search [5]. This finds a least
cost path (if there is any path) between any two nodes in a
directed graph. In previously reported work [4], we compared
three implementations of the Dijkstra algorithm. We were
aware that even the best of these three (which we will call List)
could be improved by implementing faster methods of using
the collection of open nodes that is at the heart of Dijkstra
graph search. List maintains the open nodes in a linked list
arranged in increasing cost order. List uses linear search for
removing and reinserting nodes whose cost changes. We
implemented two algorithms embodying more efficient
methods of dealing with the open nodes. The first of these also
keeps the open nodes in a list but is a form of jump search [10]
that overlays the list with more structure; the system that uses it
we call Tabs. The second uses a type of binary tree for the
open nodes [1], [2], [12], and the system using it we call AVL.
We ran a series of tests on List, Tabs, and AVL and compared
them. This paper uses that comparison as an example. Test data
and descriptions of the tests are given here. Details of the
algorithms are given in a separate, not yet published paper.

The three implementations all produce the same results in
theory, and the results are guaranteed to be optimal (measured
by least cost). Theoretical analyses of average time for removal
and insertion operations on the collection of open nodes are
straightforward. They show average times of O(M) for List,
O(sqrt(M)) for Tabs, and O(log(M)) for AVL, where M is the
size of the open nodes collection. As discussed in [9], however,
the theoretical average time of graph search is generally
computable (with difficulty if at all) only for well-characterized
graphs over which the average is to be taken. In order to apply
the average time equations just given, we need to know how M
varies during operation, on the average, for a given number of
nodes N, and this depends heavily on the characteristics of the
test graphs. The test graphs we used are well-characterized as
follows, but we do not have average time equations for node-
to-node searches in graphs with these characteristics.

The sets of test graphs have the following characteristics:
1. In each set, each graph has twice as many nodes as

the preceding graph.
2. In each set, the number of arcs leaving a node is

fixed; one set has 16 arcs from each node, the other 2
arcs from each node.

3. The cost of each arc is a randomly chosen positive
integer less than 50.

4. The node at the end of the each arc is randomly
chosen, except that the node at the end must differ
from the node at the beginning, and for a given
beginning node, the end nodes must all differ.

5. Each graph is not necessarily completely connected.
Although we do not have big O equations for expected

behavior, we knew from our functional analysis of the
algorithm that nearly all of the processing time is spent in
removing nodes from the open nodes collection and inserting
nodes back into this collection. It was also clear that the average
M gets bigger as N gets bigger. Thus, since M/sqrt(M) and M/
log(M) increase rapidly with M, we expected Tabs and AVL to
outperform List by increasing margins as N increases. Since
sqrt(M)/log(M) increases as M increases, we also expected
that for sufficiently large N, AVL would be faster than Tabs.

We ran tests first on a Sun Ultra 60 and then on a Pentium
4 class PC. Both computers have 512 megabytes of RAM
memory. The PC is at least 5 years newer, so we expected it
both to run faster and to do more active memory management.

The results for the Sun are shown for branching factor 16
in Figure 1, and for branching factor 2 in Figure 2. Rather than
showing times for the three algorithms, the graphs show the
ratio of the time taken by List to the time taken by AVL and
the ratio of the time taken by List to the time taken by Tabs.
The basic reason for using the ratio is because we are
comparing algorithms, and using the ratio washes out the
effects of using a specific problem, leaving only the effects of
the algorithms. Further discussion is given in Section 4.

As shown in the figures, our expectations were correct.
AVL and Tabs both outperform List by increasing margins as
N increases and AVL outperforms Tabs by an increasing
margin when N is more than 8000. Smooth curves fit the data
very closely, implying that for both sets of test cases, there was
no sea change in the behavior of the Sun over the range of
graph sizes we used.

Figure 3 shows a comparison of speed on the sun versus
speed on the PC. Since the same source code was used on the
Sun and the PC, we expected that, in the absence of a sea
change in behavior of the PC at some point, the speed ratios
would be roughly constant over the range of problem sizes and
that the ratio would be about the same for all three systems.
Figure 3 shows that this was the case for AVL and Tabs, but
not for List. Further discussion is given in Section 4.

From the functional analyses of the three systems, we
expected the search time taken by each implementation to be
almost proportional to the number of comparisons performed.
This is because, except for the main loop, most of the code
consists of loops or recursive function calls in which the
number of repetitions depends on a comparison, and the other
operations that execute during a repetition are always the same
for the code segment performing the repetition. List has the
fewest other operations per comparison, while AVL has the
most, so we expect comparisons per second to decrease from
List to Tabs to AVL. As shown in Table 1 below, the data for
branching factor 16 largely bear this out. For each of the three
systems and four test cases, the table shows the time taken on
the Sun computer to find the answer and the number of
comparisons made while finding the answer. The times taken
on the PC differed, but the numbers of comparisons did not.
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Table 1: Data for Branching Factor 16, Sun

type↓ nodes
→ 1000 4000 16000 64000

AVL seconds 0.0111 0.0605 0.268 1.64

comps 20,167 108,812 458,585 2,392,759

Tabs seconds 0.00836 0.0515 0.334 4.56

comps 34,841 247,648 1,899,736 22,214,824

List seconds 0.0694 1.31 22.7 693

comps 523,530 9,338,357 130,440,329 2,417,260,900
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Figure 3. Speed on PC Relative to
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4. How the Example Used the Rules

RULE OF THUMB 1: Compare algorithms both in theory
and in practice. This was done, as described in Section 3.

RULE OF THUMB 2: Do a big O analysis. This was
attempted as described in Section 3.

RULE OF THUMB 3: Do a functional analysis. We
studied the functioning of the algorithms for handling the
collection of open nodes. The functional analysis did not reveal
any characteristics of the algorithms that would be expected to
produce sea changes in the regions of graph space of interest.

RULE OF THUMB 4: Identify dimensions of the
domain space. We were not focused on a specific application
for this work, so we looked at the characteristics of abstract
directed graphs (what the Dijkstra algorithm deals with).
Following Rule of Thumb 10, we used problem size as one
dimension.

In our earlier paper, [4] on testing implementations of the
Dijkstra algorithm, the functional analysis indicated that
versions that keep the list of open nodes in cost order will
differ from versions that do not keep the list in order. This
difference appeared when the branching factor of the graph
(how many arcs leave each node) was used as a dimension of
the domain space. We continued to use the branching factor as
a dimension in the tests reported in this paper, even though we
did not expect to see significantly different behavior on this
dimension.

RULE OF THUMB 5: Identify regions of interest in the
domain space. In automated atom assembly, we have dealt
with graphs having 62 to 437,582 nodes using Dijkstra search.
Other applications have not had as large an upper bound. The
limits of our testing were within a somewhat narrower range:
500 to 128,000 nodes.

RULE OF THUMB 6: In the functional analysis,
consider all regions of interest in the domain space. As
already described, the region of interest was in graph space and
was all one piece. It did not have qualitatively different parts.

RULE OF THUMB 7: Get the source code. This was
easy, since we wrote the code.

RULE OF THUMB 8: Determine what is to be
optimized, and test that. The Dijkstra algorithm does not halt
until an optimum (least cost) answer is found. We accepted
optimizing cost, as provided by the algorithm in its usual form.
Since there is no way to predict the cost of the answer before
the search is conducted, it is not possible to stop the search
when a 120% optimum cost (or whatever fraction or margin)
solution is found. The Dijkstra algorithm could readily be
modified either to stop at some point between finding the first
answer and finding an optimal answer or to keep going after
finding the first optimal answer until all equally optimal
answers have been found, but we did not do this.

RULE OF THUMB 9: In experiments, keep the number
of variable factors to a minimum. Our tests included three
variable factors: the computer (Sun or PC), branching factor of
the graph (2 or 16), and problem size (500 to 128,000 nodes).
In the range 1000 to 64,000 nodes, the 3-dimensional test space
has all data points lying on lines for which two of the three
variables are constant. For example, as shown in Figure 1, the
computer and the branching factor were held constant while
problem size was varied.

To reduce variable factors in the source code, we
remodularized the code. We placed the code defining a graph, a
node, and a Dijkstra search node in the file dijk.hh and used
this file in building each of the three systems. We built the test
harnesses for AVL and Tabs by copying the harness for List
and changing a very few lines.

RULE OF THUMB 10: Conduct one or more series of
tests that are ordered by size but have the same values in
other dimensions. Two series of tests in increasing size order
are shown in Figure 1 and Figure 2 for the Sun Computer. The
same tests were run on a PC and used for building Figure 3.

RULE OF THUMB 11: Conduct identical tests on
substantially different computers. We ran the same test cases
on both a Sun and a PC. These are known to be substantially
different.

Figure 3 shows that for Tabs and AVL, the ratio of the
speed of the PC to the speed of the Sun is almost constant over
the range of sizes tested for branching factor 16. Tabs runs
about 6.6 times as fast on the PC. AVL runs about 6.0 times as
fast on the PC. For List, the ratio is not constant, decreasing by
a factor of about 2 over the same range. This appears to
indicate a sea change in the behavior of the PC over this range.
Since we expected more active manipulation of memory on the
PC, but we determined that secondary memory is not being
used, we hypothesize that the sea change is caused by a
difference in the use of cache memory between the smaller and
larger problems. We have not tried to verify this.

If figures similar to Figure 1 and Figure 2 were drawn for
the PC, they would not have the nice appearance of those
figures because the algorithm comparison would be
confounded by the sea change in computer behavior. If we had
tested only on the PC, we would have had a very hard time
determining whether the algorithm or the computer was
responsible.

RULE OF THUMB 12: Conduct tests with the computer
lightly loaded. For both Sun and PC, we made sure no
processes were running that would compete significantly for
system resources. While any test was in progress we did not
move the mouse or touch the keyboard. The following
observations establish that both computers were always lightly
loaded during tests.

RULE OF THUMB 13: Monitor computer use during
testing. On the Sun, we monitored with both time and top that
the test process was using almost all of the CPU. When testing
on the Sun, we recorded results only when CPU usage was at
least 98% according to the results provided by the time
command.



On the PC we used the Task Manager and/or the
performance monitor to monitor CPU usage. In all cases, CPU
usage was at zero both before and after each test. During tests
run on the PC, CPU usage reached a very flat plateau at 50%,
as opposed to just under 100% on the Sun. This may indicate
that the PC operating system’s CPU allocation policy does not
allow any process to have more than half the CPU, even if the
other half is available. We did not attempt to investigate this
further.

The Sun and the PC each had 512 megabytes of RAM
memory. On the Sun, the largest any search process became
was 13 megabytes. There were always over 100 megabytes of
free RAM and no CPU time was spent on swapping. On the
PC, the largest any search process became was 22 megabytes.
There were always over 200 megabytes of free RAM and no
CPU time was spent on swapping.

We checked that none of the monitors uses a significant
portion of the CPU.

RULE OF THUMB 14: Conduct tests with the computer
realistically loaded. Our tests were not conducted using a
complete intelligent system. We did not know what a realistic
load would be, so we did not do this.

RULE OF THUMB 15: Understand the effects of the test
harness and compensate for them. The test harness for
Dijkstra search was a main routine taking four arguments (i)
the name of a graph file, (ii) the node number of the start node,
(iii) the node number of the goal node, (iv) the number of times
to repeat the search. The number of times to repeat the search
was selected so as to satisfy the requirement that the total time
taken by the test be at least 30 seconds. Preliminary testing of
each test case was done to determine a number of repetitions
that would meet this requirement but not need more than a few
minutes for each test.

A file format for an abstract directed graph was devised,
and a file reader was built into the test harness that would read
the file and build a directed graph structure. Testing revealed
that the smaller files were read in a second or less, but the
larger ones required up to 7 seconds on the Sun and up to 18
seconds (for the same file) on the PC. We did not attempt to
determine why the PC was slower. The reading time was
calculated by running the same test with two different numbers
of repetitions and using the equation TotalTime = (ReadTime +
(RunTime x repetitions)). The reading time was also observed
on the PC performance meter. Where reading times were more
than a second, the run times were calculated using the equation
just given.

Reading times are out of the scope of comparing the
algorithms we were comparing. They are effects of the test
harness, and we compensated for them.

The other effect of the test harness we identified was the
time taken by the “for” loop that repeats the test. Each time
around that loop, each node in the graph is marked
UNOPENED, since Dijkstra search requires that marking
when it starts up. This is a very small amount of processing
compared with the processing done on nodes in Dijkstra
search, so we did not compensate for it.

RULE OF THUMB 16: Use representative test cases.
The graphs we used were constructed (by a graph-building
program we wrote) to produce graphs with the characteristics
described earlier. The user of the program specifies number of
nodes, the branching factor, and an upper bound on arc cost. In
real problems, a constant branching factor seems unlikely. We
doubt that the algorithms would have compared differently if
we had used variable branching factors, but we have neither an
analysis nor experimental data to substantiate that. Since our
graph construction methods were not selected to produce
graphs similar to those found in any specific application, we
cannot claim that the test graphs are representative.

An equally severe problem was picking the start and goal
nodes for each test case. Clearly, in each graph we constructed,
some pairs of nodes would be connected by a short cheap path
while other pairs would be connected only by more expensive
longer paths. Finding the least expensive path would be
relatively easy for the short cheap paths and relatively hard for
the long expensive paths. To get average results, in each graph,
we could have randomly selected a set of pairs, repeated the
tests for all pairs in the set, and averaged the results. This
would have required a much larger amount of testing than we
were prepared to do. Instead, for each graph we randomly
selected a set of 7 pairs, timed all 7 pairs using AVL and only a
few repetitions to identify the pair with median time, and used
that one pair as the representative for the graph in testing with
List and Tabs and retesting with AVL.

This selection procedure still left substantial differences in
the relative difficulty of the test cases. When run time was
plotted against problem size for the algorithms being tested,
the resulting lines were rather jagged. But the three curves
zigged and zagged together, implying the zigs and zags were
effects of problem difficulty, not the algorithms being tested.
This suggested factoring out the difficulty of the representative
problem by plotting the ratios of the times, not the actual times,
and that is what we did.

For a specific instance of a test case, the time taken can be
viewed as the relative difficulty of the test case (compared with
the average difficulty) multiplied by the average time taken. If
the average time taken is given by T = F(N), then letting DCase
be the relative difficulty, the equations for time taken for a
specific test case are:

TListCase = DCase x FList(N),
TTabsCase = DCase x FTabs(N), and
TAVLCase = DCase x FAVL(N).
When the ratio of any two times is taken, the Dcase in the

numerator cancels with the Dcase in the denominator, removing
the effect of the difficulty of the case.

RULE OF THUMB 17: Use standard test case sets, if
available and appropriate. We are not aware of any standard
test case sets for pure graph search using the range of sizes and
branching factors we have used.



RULE OF THUMB 18: Collect secondary data showing
what the algorithm is doing internally. We collected
secondary data for three purposes: (i) to be sure List, AVL, and
Tabs were behaving identically where they were supposed to
be doing so, (ii) to determine how the Dijkstra algorithm
behaves on problems with different sizes and branching
factors, (iii) to measure those things that analysis indicated the
three algorithms would do differently.

We collected secondary data by adding conditionally
compiled code to the source code files for the three systems.
Timing tests were conducted with versions of the executable
systems compiled without data collection. A subset of the same
tests were repeated with versions of the systems compiled with
data collection.

To be sure the systems were behaving identically where
they should be identical, two files were generated: one listing
the node numbers in the order in which they were opened and
giving the total number of nodes opened, and the other listing
the total number of nodes open each time around the node
processing loop of the Dijkstra algorithm. For each test case,
files generated on the Sun by the three systems were compared
and the data items just mentioned were found to be identical.
For a few test cases, similar files were also generated on the
PC. All data that should be identical were found to be identical,
even the maximum 2,417,260,900 comparisons.

RULE OF THUMB 19: Deal with measurement error.
When testing on the PC, a digital watch reading in seconds was
used to time the tests. Since this automatically introduces a
random error of one second, all tests on the PC were adjusted
to run for at least 30 seconds, so that the random error from
reading the watch would not be more than about 3% of the time
being measured. Timing for the PC was spot-checked using the
PC’s performance monitor. Timing on the Sun was done with
the time command; spot checks were done with a digital watch
and an analog clock.

RULE OF THUMB 20: At widely separated times,
repeat tests performed earlier. This rule was followed
throughout testing. No significant increases in variability
occurred.

5. Conclusion

This paper has presented 20 rules of thumb to follow in
comparing algorithms performing the same function that might
be used in an intelligent system. An example was provided of
how the rules were applied in comparing three algorithms for
maintaining the collection of open nodes in Dijkstra search.
For some rules, the example described a pitfall that was
avoided by having followed the rule. For other rules, the
example showed how difficult it can be to follow the rules.

The rules of thumb presented here can certainly be improved,
and surely there are other rules it would be helpful to add. The
intent of these rules is to help builders of intelligent systems
make better decisions among competing algorithms. We hope
they will be useful for that purpose.
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