Queen conch (Strombus gigas) standardized catch rates from the Puerto Rico and US Virgin Island commercial fisheries

Kevin McCarthy
National Marine Fisheries Service, Southeast Fisheries Science Center Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, FL, 33149-1099
Kevin.J.McCarthy@noaa.gov
Sustainable Fisheries Division Contribution SFD-2007-007

INTRODUCTION

Landings and fishing effort of commercial vessels operating in Puerto Rico are monitored by the Fisheries Research Laboratory of the Puerto Rico Department of Natural and Environmental Resources (DNER). The program collects landings and effort data from coastal municipalities and major fishing centers in Puerto Rico. In the US Virgin Islands, commercial fishers report catch and effort data on a monthly basis to the US Virgin Islands Division of Fish and Wildlife (DFW). A separate data set is maintained for St. Croix, but data from St. Thomas and St. John are contained in a single database. Both DNER and DFW have cooperative agreements with NOAA National Marine Fisheries Service.

The available catch per unit effort (CPUE) series, from 1983-2005 (Puerto Rico) and 1986-2005 (USVI), were used to develop several abundance indices for queen conch. An initial series of abundance indices were developed using the models of Valle-Esquivel (2002a) from a previous queen conch assessment. New models were also developed for Puerto Rico, southwest Puerto Rico, St. Croix, and for St. Thomas/St. John.

Methods

Replication of 2002 indices

The following indices were constructed using the models applied during the previous queen conch assessment (Valle-Esquivel, 2002a). They are intended to demonstrate the effect of updating the data without changing the standardization procedure.

Puerto Rico lognormal (positive trips) model

In Puerto Rico fishers may report multiple trips on a single sales record (report to DNER). Only single trip records were included in the dataset. Two approaches were used to define single record trips and an index was constructed for each approach. One approach defined single trip records if the sales record indicated that trips $=1$ or if trips was reported as 0 or if number of trips was missing (Valle-Esquivel, 2002b). Those data will be referred to as trips $=1,0$, or missing. A second approach included only those data that included trips $=1$ on the sales record. Those data will be referred to as trips=1. Following the methods a Valle-Esquivel (2002a), trips that reported landings beyond 99.5% of the combined multispecies cumulative distribution of landings (total weight $=1,037 \mathrm{lbs} /$ trip where trips $=1,0$, or missing; total weight $=765 \mathrm{lbs} /$ trip where trips $=1$) or less than 1% of the conch landings distribution (2.5 lbs conch/trip where trips $=1,0$, missing; 2.25 lbs conch/trip where trips $=1$) were excluded from the analyses. Trips were additionally limited to those that reported SCUBA, skin diving, or spear fishing as the fishing gear used. A factor, COAST, was included that divided the island into four regions: north (fishing centers

10-170), east (180-251), south (260-362), and west (370-423; see Valle-Esquivel, 2002b for a map of these locations). This definition of COAST differs from Valle-Esquivel (2002a) in that there are only four regions defined rather than seven. This was done to ensure larger sample size for the analyses. CPUE was defined as pounds of conch landed per trip.

A lognormal model was fit to catch rates on positive trips. The model fit to the data was:
LOG(lbs/trip) = YEAR + MONTH + COAST + GEAR + YEAR*MONTH + YEAR*COAST

Puerto Rico delta lognormal model

The dataset used to construct two indices including factors similar to those described for the lognormal (positive trips) indices above. Trips in the delta lognormal analyses included all trips with the reported gears SCUBA, skin diving, and spear fishing with the pounds landed limitations listed above. The assumption was that such trips had the potential to catch conch. The development of the delta lognormal indices included a binomial model of the proportion positive trips in addition to the lognormal model on positive trips. The two definitions of single trips (trips $=1,0$, or missing vs. trips $=1$), coast, month, and year were again included in the final model (Valle-Esquivel, 2002a).

A lognormal model was fit to catch rates on positive trips. The model fit to the data was:

> LOG(lbs/trip) = YEAR + MONTH + COAST + GEAR + YEAR*MONTH + YEAR*COAST

A binomial model was fit to catch rates on proportion positive trips. The model fit to the data was:
Proportion positive = YEAR + MONTH + COAST + YEAR*MONTH + YEAR*COAST

Southwest Puerto Rico lognormal (positive trips) model

The dataset used to construct these indices was limited to trips landing conch in southwestern Puerto Rico (fishing centers 370-384). Only positive trips were included in these analyses and the two definitions of single record trips (trips $=1,0$, or missing and trips $=1$) limited the dataset for the analyses. The factor COUNTY (Lajas, Cabo Rojo, and Mayaguez; see Valle-Esquivel, 2002a for a map of these locations)was included rather COAST (Valle-Esquivel, 2002a). Other factors were similar to the previous analyses.

A lognormal model constructed by Valle-Esquivel (2002a) was fit to catch rates on positive trips. The model fit to the data was:

> LOG(lbs/trip) = YEAR + MONTH + COUNTY + YEAR*MONTH + YEAR*COUNTY

St. Croix lognormal (positive trips) model

This index was constructed from a dataset that included all trips reporting conch landings, regardless of gear used. The dataset included conch landings and effort for the years 1989-2005. Area was defined as southwest, southeast, east, northeast, northwest, and west St. Croix.

A lognormal model constructed by Valle-Esquivel (2002a) was fit to catch rates on positive trips. The model fit to the data was:

LOG(lbs/trip) $=$ YEAR + MONTH + AREA + YEAR*MONTH + YEAR*AREA

Additional Indices

Additional indices were developed for Puerto Rico, southwest Puerto Rico, St. Croix, and St. Thomas/St. John. Lognormal indices on positive trips were developed for each of the above regions. Delta lognormal indices were also developed for Puerto Rico and southwest Puerto Rico. For the Puerto Rico indices, the two approaches to defining single record trips (i.e. trips $=1,0$, missing vs. trips $=1$ reported on the sales record) were used to develop separate indices. Data were further limited by including only trips that reported using SCUBA, skin diving, or spear fishing and that reported landings within the ranges defined above.

Index Development

Puerto Rico

For the Puerto Rico lognormal and delta lognormal indices, seven factors were considered as possible influences on the CPUE and the proportion of positive trips:

Factor	Levels	Value
YEAR	23	1983-2005
MONTH	12	January-December
WAVE	6	Two month periods; January-February, etc.
SEASON	4	Three month periods; January-March, etc.
GEAR	3	SCUBA, skin diving, spear fishing
COAST	4	North, east, south, west as defined above
TARGET*	2	$1=$ only conch landed, $0=$ other species landed, may also have landed conch

*TARGET was excluded from the binomial portion of delta lognormal analyses because all
TARGET $=1$ trips are positive
An initial lognormal model on positive trips was developed for Puerto Rico. CPUE was defined as pounds of conch landed/trip. This approach involved an iterative generalized linear model (GLM) analysis to identify those factors that had a significant effect on CPUE. For the analysis, a type-3 model assuming lognormal error distribution was examined. The linking function selected was "normal", and the response variable was \ln (CPUE).

The process began by developing a base model that included year. Each potential factor was added to the null model sequentially and the reduction in deviance per degree of freedom was examined. The factor that caused the greatest reduction in deviance per degree of freedom was added to the base model, provided the factor was significant (Chi-square test, $\mathrm{p}>0.05$) and the reduction per degree of freedom was $\geq 1 \%$. The model with the newly included factor became the base model and the process was repeated until no additional factors met the criteria for inclusion in the model. All two-way interactions of significant main effects were examined and those that met the inclusion criteria were added to the model. No higher order interactions were examined. Parameterization of each model was accomplished using a GLM procedure (GENMOD; Version 8.02 of the SAS System for Windows © 2000. SAS Institute Inc., Cary, NC, USA). The final lognormal model was fit using the procedure Proc Mixed in SAS and included a correction of log transform bias modified from an algorithm developed by Lo et al. (1992). A relative index and relative nominal CPUE series were calculated by dividing each value in the series by the mean value of the series.

The delta lognormal model approach (Lo et al. 1992) was also used to develop standardized indices of abundance for the conch data. This method combines separate GLM analyses of the proportion of successful trips (trips that landed conch) and the catch rates on successful trips to construct a single standardized CPUE index. Parameterization of each model was accomplished using a GLM procedure (GENMOD; Version 8.02 of the SAS System for Windows © 2000. SAS Institute Inc., Cary, NC, USA).

For each GLM procedure of proportion positive trips, a type-3 model was fit, a binomial error distribution was assumed, and the logit link was selected. The response variable was proportion successful trips. During the analysis of catch rates on successful trips, a type-3 model assuming lognormal error distribution was examined. The linking function selected was "normal", and the response variable was \ln (CPUE). The response variable was calculated as: $\ln (\mathrm{CPUE})=\ln$ (pounds of conch landed/trip). All 2way interactions among significant main effects were examined. A stepwise approach was again used to quantify the relative importance of the factors. Higher order interaction terms were not examined.

The final delta-lognormal model was fit using a SAS macro, GLIMMIX (Russ Wolfinger, SAS Institute). All factors were modeled as fixed effects except two-way interaction terms containing YEAR which were modeled as random effects. To facilitate visual comparison, a relative index and relative nominal CPUE series were again calculated by dividing each value in the series by the mean value of the series.

Southwest Puerto Rico

Indices developed from southwest Puerto Rico data followed the methods and data limitations listed above for the indices constructed for the whole island. For the southwest Puerto Rico lognormal and delta lognormal indices, five factors were considered as possible influences on the CPUE and the proportion of positive trips:

Factor	Levels	Value
YEAR	23	1983-2005
SEASON	4	Three month periods; January-March, etc.
GEAR	3	SCUBA, skin diving, spear fishing
COUNTY	3	Fishing centers of Lajas, Cabo Rojo, and Mayaguez
TARGET*	2	1=only conch landed, $0=$ other species landed, may also have landed conch

*TARGET was excluded from the binomial portion of delta lognormal analyses because all TARGET=1 trips are positive

St. Croix

Methods used to construct an additional index of abundance from St. Croix conch landings and effort information followed the methods previously described for developing lognormal models. All trips that reported conch landings were included in the analysis, regardless of the gear employed. Data for the years 1986,1988 , and 1999 were excluded from the analysis because data from those years were insufficient for the analysis. For the St. Croix lognormal index, three factors were considered as possible influences on the CPUE per trip:

Factor	Levels	Value
YEAR	17	1987, 1990-2005
SEASON	4	Three month periods; January-March, etc.
AREA	6	Northeast, east, southeast, southwest, west, and unknown

St. Thomas/St. John

Methods for constructing the lognormal index for St. Thomas and St. John were similar to those used to develop the St. Croix index. All positive conch trips were included in the dataset. Data for the year 1986 were insufficient for the analysis and the years 1988-1994 were excluded because the fishery was closed. For the St. Thomas/St. John lognormal indices, three factors were considered as possible influences on the CPUE and the proportion of positive trips:

Factor	Levels	Value
YEAR	12	1987, 1995-2005
SEASON	4	Three month periods; January-March, etc.
AREA	3	North of the islands, south of the islands, unknown

Results and Discussion

Replication of 2002 Puerto Rico indices

Puerto Rico Lognormal

The updated index (where trips included were reported as 1,0 , or missing) is very similar to the 2002 index, except for the 1984 CPUEs (Figures 1 and 3). Relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are provided in Table 1. The updated index developed from data where trips $=1$ was also similar to the 2002 index over much of the time series, however there were some differences in CPUE in several years (Figures 2 and 3). QQ plots of residuals for successful catch rates, frequency distributions of $\ln (\mathrm{CPUE})$ for positive catches, and plots of residuals for lognormal models on successful catch rates by each main effect are shown in Appendix 1 Figures A1A12. These data appear to have met the assumptions for the analysis.

Over much of the time series for both of these indices, there is no apparent trend in CPUE. Differences between the updated indices and the 2002 index may be due to updated data and edits of those data. Sample sizes are generally low during the first three years of the time series and any data edits may have a substantial effect on the analyses. Also, redefining COAST to ensure adequate sample size probably explains some of the observed differences.

Puerto Rico Delta-lognormal

The updated delta-lognormal indices (trips $=1,0$, or were missing and trips $=1$) are similar to the 2002 index (Figures 4-6), although there are differences in some years. Relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are provided in Table 2. Proportion positive trips, QQ plots of residuals for successful catch rates, and plots of chi-square residuals for the delta lognormal model on proportion successful trips by each main effect are provided in Appendix 1. Frequency distributions of $\ln (C P U E)$ for positive catches and plots of residuals for lognormal models on successful catch rates by each main effect are shown in Appendix 1 Figures A13-A32. These data appear to have met the assumptions for the analysis.

As with the lognormal indices, differences may be due to data updates and editing completed since 2002 and the redefined factor COAST. CPUEs varied considerably over time during the first six to seven years of each time series, however there was no clear trend in CPUE over the remainder of the series.

Southwest Puerto Rico Lognormal

The updated delta-lognormal indices (trips $=1,0$, or were missing) was more similar to the 2002 index than the updated index developed from data where only trips $=1$ were included (Figures 7-9). Relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are provided in Table 3. QQ plots of residuals for successful catch rates, frequency distributions of \ln (CPUE) for positive catches, and plots of residuals for lognormal models on successful catch rates by each main effect are shown in Appendix 1 Figures A33-A42. These data appear to have met the assumptions for the analysis.

The index that included data from trips reported as 1,0 , or missing was likely most similar to that used in developing the 2002 index. Minor differences in the 2002 index and the updated index (trips=1, 0 , or missing) may, again, be due to data editing since 2002.

Additional Puerto Rico Indices

Puerto Rico lognormal indices

The final models for the lognormal on CPUE of positive trips were identical for both trips $=1,0$, or missing data and for trips=1 data:
LN(CPUE) = YEAR + TARGET + COAST + GEAR + YEAR*COAST

The linear regression statistics of the final models are summarized in Table 4 a and Table 4 b . Relative nominal CPUE, relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are shown in Figures 10-11. Relative abundance indices, coefficients of variation, and upper and lower 95\% confidence intervals are provided in Table 5. Relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are provided in Table 3. QQ plots of residuals for successful catch rates, frequency distributions of \ln (CPUE) for positive catches, and plots of residuals for lognormal models on successful catch rates by each main effect are shown in Appendix 1 Figures A43-A54. These data appear to have met the assumptions for the analysis. These two indices are very similar, with large variability early in the time series and no apparent trend in CPUE since 1990.

Puerto Rico delta-lognormal indices

The final models for the binomial on proportion positive trips and the lognormal on CPUE of successful trips for trips $=1,0$, or missing were:

$$
\begin{gathered}
\text { PPT }=\text { YEAR + COAST + MONTH + YEAR*MONTH + YEAR*COAST } \\
\text { LN }(\text { CPUE })=\text { YEAR + TARGET + COAST + GEAR + YEAR*COAST }
\end{gathered}
$$

For trips $=1$ the final models were:

$$
\begin{gathered}
\text { PPT }=\text { YEAR + MONTH + COAST + YEAR*COAST } \\
\text { LN }(\mathrm{CPUE})=\text { YEAR + TARGET + COAST + GEAR + YEAR*COAST }
\end{gathered}
$$

The linear regression statistics of the final models are summarized in Tables 6 and 7. Relative abundance indices, CVs, and 95% confidence intervals are provided in Table 8. The delta-lognormal Puerto Rico standardized abundance indices with 95% confidence intervals and standardized nominal CPUE, are shown in Figures 12-13. Proportion positive trips, QQ plots of residuals for successful catch rates, plots of chi-square residuals for the delta lognormal model on proportion successful trips by each main effect, frequency distributions of \ln (CPUE) for positive catches, and plots of residuals for lognormal models on successful catch rates by each main effect are shown in Appendix 1 A55-A74. These data appear to have met the assumptions for the analysis. These two indices differed in a few of the initial years of the time series and diverged slightly in the final years of the series. CPUEs for trips=1 were slightly higher over the last six years of the series.

Southwest Puerto Rico lognormal indices

The final model for the lognormal on CPUE of positive trips for trips $=1,0$, or missing data was:

$$
\text { LN }(\text { CPUE })=\text { YEAR + TARGET + COUNTY + YEAR*COUNTY }
$$

The final model for the lognormal on CPUE of positive trips for trips=1 data was:

```
LN(CPUE) = YEAR + TARGET + COUNTY + GEAR + YEAR*COUNTY
```

The linear regression statistics of the final models are summarized in Tables 9 a and 9 b . Relative nominal CPUE, relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are shown in Figures 14-15. Relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are provided in Table 10. Relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are provided in Table 3. QQ plots of residuals for successful catch rates, frequency distributions of $\ln (\mathrm{CPUE})$ for positive catches, and plots of residuals for lognormal models on successful catch rates by each main effect are shown in Appendix 1 Figures A75A85. These data appear to have met the assumptions for the analysis. These two indices differ little, with some differences early in the time series and no apparent trend in CPUE since 1990.

Southwest Puerto Rico delta-lognormal indices

The final models for the binomial on proportion positive trips and the lognormal on CPUE of successful trips for trips $=1,0$, or missing were:

```
PPT = YEAR + SEASON + COUNTY + YEAR*SEASON + YEAR*COUNTY
LN(CPUE) = YEAR + TARGET + COUNTY + YEAR*COUNTY
```

For trips $=1$ the final models were:

```
    PPT = YEAR + SEASON + COUNTY + YEAR*SEASON
LN(CPUE) = YEAR + TARGET + COUNTY + GEAR + YEAR*COUNTY
```

The linear regression statistics of the final models are summarized in Tables 11 and 12. Relative abundance indices, CVs, and 95% confidence intervals are provided in Table 13. The delta-lognormal Puerto Rico standardized abundance indices with 95% confidence intervals and standardized nominal CPUE, are shown in Figure 16-17. Proportion positive trips, QQ plots of residuals for successful catch rates, plots of chi-square residuals for the delta lognormal model on proportion successful trips by each main effect, frequency distributions of \ln (CPUE) for positive catches and plots of residuals for lognormal models on successful catch rates by each main effect are shown in Appendix 1 Figures A86-A104. These data appear to have met the assumptions for the analysis.

These two indices differed greatly only in 1988, however they were both much lower in the first two years of the series than were the CPUEs of the lognormal indices for southwest Puerto Rico. In addition, the delta-lognormal indices had higher CPUEs in 1992 and 1993 than did the lognormal indices. Over the last 11 years, however, all the indices were in close agreement and showed little apparent trend in CPUE.

Replication of 2002 St. Croix lognormal

The updated index differs from the 2002 index, but most of those differences are minor and overall trends in each index are similar (Figures 19-20). Relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are provided in Table 15. Relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are provided in Table 3. QQ plots of residuals for successful catch rates, frequency distributions of $\ln (C P U E)$ for positive catches, and plots of residuals for lognormal models on successful catch rates by each main effect are shown in Appendix 1 Figures A105-A109. These data appear to have met the assumptions for the analysis.

Yearly differences in CPUE between indices, as with the Puerto Rico indices, may be due to data updates since 2002. For example, data was insufficient from 1998 to include data from that year in constructing the 2002 index, however additional data now included in the St. Croix dataset allowed for

1998 to be added to the time series. The updated index has a clear decreasing trend during 1989-1992, but no obvious trend after 1992. In the 2002 index, that initial decreasing trend is less clear and a slight increasing trend is apparent from 1998-2001. In the updated index, that trend is not apparent.

Additional USVI indices

St. Croix lognormal index

The final model for the lognormal on CPUE of positive conch trips developed from St. Croix data was:

LN $($ CPUE $)$ = YEAR + AREA + YEAR*AREA

The linear regression statistics of the final model are summarized in Table 14. Relative nominal CPUE, relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are shown in Figures 20-21. Relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are provided in Table 15. Relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are provided in Table 3. QQ plots of residuals for successful catch rates, frequency distributions of $\ln (C P U E)$ for positive catches, and plots of residuals for lognormal models on successful catch rates by each main effect are shown in Appendix 1 Figures A110113. These data appear to have met the assumptions for the analysis.

The index has a steady decline in CPUE over the first four years of the continuous series, however the CPUE calculated for these data from 1987 is lower than the 1990 and 1991 CPUEs. After 1993 there was, perhaps, a very slight increase in CPUE through 2005.

St. Thomas/St. John lognormal index

The final model for the lognormal on CPUE of positive conch trips developed from St . Thomas/St. John data was:

$$
\text { LN(CPUE) }=\text { YEAR + SEASON + YEAR* SEASON }
$$

The linear regression statistics of the final model are summarized in Table 16. Relative nominal CPUE, relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are shown in Figure 22. Relative abundance indices, coefficients of variation, and upper and lower 95\% confidence intervals are provided in Table 17. Relative abundance indices, coefficients of variation, and upper and lower 95% confidence intervals are provided in Table 3. QQ plots of residuals for successful catch rates, frequency distributions of \ln (CPUE) for positive catches, and plots of residuals for lognormal models on successful catch rates by each main effect are shown in Appendix 1 Figures A114-117. These data appear to have met the assumptions for the analysis.

The index had a much higher CPUE in 1987 than was observed in the continuous portion of the index (1995-2005). During that period, the index showed no trend, although CPUE in 2005 was somewhat lower than other years. No index was developed for the 2002 assessment due to insufficient data. The dataset used to generate this index included 756 positive conch trips over the entire time series.

LITERATURE CITED

Lo, N.C., L.D. Jackson, J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models.

Valle-Esquivel, M. 2002a. Standardized catch rates and preliminary assessment scenarios for queen conch (Strombus gigas) in the U.S. Caribbean. NOAA/NMFS Southeast Fisheries Science Center Sustainable Fisheries Division Contribution No. SFD-02/03-184. pp. 65.
Valle-Esquivel, M. 2002a. U.S. Caribbean queen conch (Strombus gigas) data update with emphasis on the commercial landings statistics. NOAA/NMFS Southeast Fisheries Science Center Sustainable Fisheries Division Contribution No. SFD-01/02-169. pp. 118.

Table 1. Standardized CPUE, coefficients of variation and 95% confidence intervals for Puerto Rico lognormal (positive trips) commercial conch fishery index where trips $=1,0$, or missing and the lognormal index where trips=1. Both based upon the Valle-Esquivel 2002 model.

Trips $=1,0$, or missing					Trips=1				
Year	Standardized Index	CV	Lower 95\% CI	$\begin{gathered} \text { Upper } \\ 95 \% \text { CI } \end{gathered}$	Year	Standardized Index	CV	Lower $95 \% \mathrm{CI}$	$\begin{aligned} & \text { Upper } \\ & 95 \% \text { CI } \end{aligned}$
1983	1.282722	0.161695	0.930232	1.76878	1983	1.099804	0.167158	0.789083	1.532879
1984	2.508396	0.153447	1.848794	3.403327	1984	2.434079	0.180734	1.700633	3.483845
1985	1.088235	0.170069	0.776344	1.525426	1985	1.050679	0.16931	0.750666	1.470595
1986	1.542049	0.15579	1.131334	2.101868	1986	1.697731	0.203917	1.133834	2.542072
1987	1.346603	0.157584	0.98447	1.841945	1987	1.03739	0.305655	0.570636	1.885928
1988	1.560645	0.1652	1.124031	2.166856	1988	1.640188	0.163937	1.184248	2.271665
1989	1.140635	0.161176	0.828033	1.571251	1989	1.223981	0.159457	0.891539	1.680386
1990	0.695147	0.157777	0.508013	0.951215	1990	0.63508	0.160638	0.461518	0.873915
1991	0.749652	0.157621	0.548012	1.025483	1991	0.716621	0.158009	0.523468	0.981045
1992	0.747949	0.162803	0.541236	1.03361	1992	0.75098	0.165327	0.540747	1.042948
1993	0.776497	0.157039	0.568286	1.060993	1993	0.807141	0.15606	0.591851	1.100745
1994	0.68958	0.155265	0.506438	0.938952	1994	0.706432	0.153856	0.520252	0.959241
1995	0.744887	0.155634	0.546659	1.014995	1995	0.768953	0.153894	0.566253	1.044212
1996	0.742986	0.162214	0.538267	1.025566	1996	0.775257	0.160511	0.563525	1.066543
1997	0.74287	0.155184	0.54566	1.011353	1997	0.77052	0.153497	0.567849	1.045525
1998	0.974463	0.155207	0.715741	1.326707	1998	0.964206	0.157481	0.70505	1.318619
1999	0.891705	0.155666	0.654365	1.215128	1999	0.908196	0.154115	0.668501	1.233834
2000	0.725493	0.15924	0.52867	0.995594	2000	0.762746	0.157963	0.557211	1.044095
2001	0.766742	0.155771	0.562546	1.045058	2001	0.802683	0.15397	0.591003	1.090179
2002	0.774117	0.155457	0.568308	1.054459	2002	0.80902	0.153664	0.596028	1.098125
2003	0.967044	0.159243	0.704684	1.327083	2003	1.020742	0.157355	0.746576	1.395588
2004	0.816224	0.163761	0.589534	1.130082	2004	0.854192	0.161989	0.619105	1.178547
2005	0.725359	0.156473	0.531451	0.990018	2005	0.76338	0.154633	0.561334	1.03815

Table 2. Standardized CPUE, coefficients of variation and 95% confidence intervals for Puerto Rico deltalognormal commercial conch fishery index where trips $=1,0$, or missing and the delta-lognormal index where trips $=1$. Both based upon the Valle-Esquivel 2002 model.

Trips $=1,0$, or missing					Trips $=1$				
Year	Standardized Index	CV	Lower $95 \% \mathrm{CI}$	$\begin{gathered} \text { Upper } \\ 95 \% \text { CI } \end{gathered}$	Year	Standardized Index	CV	Lower 95\% CI	$\begin{aligned} & \text { Upper } \\ & 95 \% \text { CI } \end{aligned}$
1983	0.472855	0.383906	0.22525	0.992638	1983	0.364786	0.416774	0.163843	0.812175
1984	1.801727	0.332789	0.942299	3.445002	1984	1.585428	0.417208	0.711542	3.532583
1985	1.440829	0.3164	0.776818	2.672424	1985	1.551966	0.323901	0.825149	2.918986
1986	2.563627	0.262299	1.530397	4.294431	1986	1.917167	0.456917	0.802498	4.580113
1987	1.809497	0.287755	1.02937	3.180858	1987	0.570267	0.727135	0.154955	2.098707
1988	2.151744	0.288612	1.222089	3.788596	1988	2.543118	0.2914	1.436807	4.501263
1989	1.120185	0.320149	0.599745	2.092246	1989	1.337631	0.324764	0.710053	2.51989
1990	0.721901	0.314215	0.390799	1.333529	1990	0.648881	0.338351	0.335895	1.253508
1991	0.929416	0.296753	0.519844	1.661678	1991	0.966622	0.307566	0.529811	1.763567
1992	1.028009	0.294148	0.57781	1.828982	1992	1.148681	0.304257	0.633508	2.082796
1993	1.03573	0.289302	0.587482	1.825991	1993	1.245904	0.290505	0.705097	2.201508
1994	0.747211	0.305859	0.41086	1.358914	1994	0.877519	0.308207	0.480398	1.60292
1995	0.833951	0.303571	0.460522	1.510185	1995	0.972865	0.306277	0.53452	1.770685
1996	0.779788	0.316577	0.420281	1.446816	1996	0.889434	0.322741	0.473914	1.669277
1997	0.733774	0.313473	0.397776	1.353587	1997	0.833421	0.319288	0.446928	1.554145
1998	0.708691	0.336545	0.36808	1.364493	1998	0.737794	0.351042	0.373111	1.458923
1999	0.642454	0.340678	0.331145	1.246425	1999	0.749846	0.344202	0.383999	1.464244
2000	0.516868	0.342576	0.265483	1.006288	2000	0.604965	0.348247	0.307511	1.190147
2001	0.486229	0.345585	0.248367	0.95189	2001	0.566074	0.350698	0.286451	1.118655
2002	0.533528	0.34091	0.274883	1.03554	2002	0.620155	0.345813	0.316645	1.214585
2003	0.624091	0.350515	0.315915	1.232891	2003	0.729741	0.355495	0.366041	1.454815
2004	0.595181	0.347971	0.302691	1.170304	2004	0.688838	0.353315	0.346906	1.367801
2005	0.722715	0.316686	0.389442	1.341194	2005	0.848897	0.320738	0.454001	1.587278

Table 3. Standardized CPUE, coefficients of variation and 95% confidence intervals for southwest Puerto Rico lognormal (positive trips) commercial conch fishery index where trips $=1,0$, or missing and the lognormal index where trips=1. Both based upon the Valle-Esquivel 2002 model.

Trips $=1,0$, or missing					Trips=1				
Year	Standardized Index	CV	Lower 95\% CI	$\begin{aligned} & \text { Upper } \\ & 95 \% \text { CI } \end{aligned}$	Year	Standardized Index	CV	Lower 95\% CI	Upper $95 \% \mathrm{CI}$
1983	1.493672	0.281423	0.859918	2.594498	1983	0.148417	0.820828	0.035327	0.623529
1984	3.070987	0.26103	1.837708	5.131918	1984	1.117671	0.838149	0.259851	4.807339
1985	1.444196	0.301989	0.799877	2.607526	1985	1.035409	0.535551	0.37926	2.82675
1986	1.910584	0.225756	1.223232	2.984169	1986	3.457101	0.529509	1.279071	9.34393
1987	1.301137	0.221555	0.839816	2.015869	1987	1.312088	0.722221	0.359096	4.794193
1988	1.5664	0.236788	0.981815	2.499053	1988	3.732525	0.330373	1.960845	7.10497
1989	0.593139	0.220396	0.383696	0.916906	1989	0.661113	0.372761	0.321345	1.360127
1990	0.561266	0.225545	0.35949	0.876294	1990	0.518179	0.381178	0.24806	1.082437
1991	0.524998	0.221647	0.338798	0.813532	1991	0.567481	0.36505	0.279729	1.151241
1992	0.702287	0.221927	0.452963	1.088844	1992	1.495859	0.309913	0.816303	2.741131
1993	0.873223	0.211985	0.574139	1.328107	1993	1.587273	0.287259	0.903797	2.787611
1994	0.737437	0.209947	0.486777	1.117171	1994	0.758617	0.307652	0.415736	1.384292
1995	0.730817	0.213712	0.478905	1.115239	1995	0.644198	0.368977	0.315283	1.316249
1996	0.599489	0.210391	0.395378	0.908969	1996	0.577961	0.364613	0.285121	1.171571
1997	0.662222	0.213197	0.434387	1.009555	1997	0.516619	0.3973	0.240239	1.110954
1998	0.772075	0.214123	0.50554	1.179136	1998	0.298528	0.506501	0.114791	0.776359
1999	0.965166	0.214043	0.632069	1.473802	1999	0.607881	0.450638	0.257244	1.436456
2000	0.764296	0.211794	0.502706	1.162008	2000	0.558955	0.423137	0.248239	1.258587
2001	0.731213	0.21163	0.481098	1.111357	2001	0.552436	0.413629	0.249515	1.223113
2002	0.743309	0.211374	0.489299	1.129183	2002	0.533645	0.426123	0.235752	1.207955
2003	0.768018	0.210585	0.506338	1.164936	2003	0.760493	0.372452	0.369858	1.563708
2004	0.708761	0.211261	0.46666	1.076462	2004	0.630879	0.393653	0.295299	1.347816
2005	0.775311	0.211632	0.510111	1.178384	2005	0.926669	0.368234	0.454143	1.890848

Table 4. Linear regression statistics for the final GLM models on catch rates on positive trips for Puerto Rico commercial conch fishery index where trips $=1,0$, or missing (a) and where trips $=1$ (b).
a.

source	df	\% reduction dev/df	chi square	p>chi square
Year	22		1013.28	<0.0001
Target	1	7.01	3102.35	<0.0001
Coast	3	6.60	106.61	<0.0001
Gear	2	1.04	38.81	<0.0001
Year*coast	66	2.85	1298.59	<0.0001

b.

source	df	\% reduction dev/df	chi square	p>chi square
Year	22		193.43	<0.0001
Target	1	8.64	3277.01	<0.0001
Coast	3	7.77	75.47	<0.0001
Gear	2	1.15	37.05	<0.0001
Year*coast	65	2.22	890.14	<0.0001

Table 5. Standardized CPUE, coefficients of variation and 95% confidence intervals for Puerto Rico lognormal (positive trips) commercial conch fishery index where trips $=1,0$, or missing and the lognormal index where trips $=1$.

Trips $=1,0$, or missing					Trips=1				
Year	Standardized Index	CV	Lower 95\% CI	$\begin{aligned} & \text { Upper } \\ & 95 \% \text { CI } \end{aligned}$	Year	Standardized Index	CV	Lower 95% CI	$\begin{aligned} & \text { Upper } \\ & 95 \% \text { CI } \end{aligned}$
1983	1.212704	0.149167	0.901368	1.631577	1983	0.985188	0.156955	0.721139	1.345921
1984	2.534744	0.141872	1.911257	3.361623	1984	2.834725	0.170564	2.020327	3.977409
1985	0.984127	0.158441	0.718262	1.348401	1985	0.931166	0.159485	0.678218	1.278453
1986	1.589742	0.144034	1.19361	2.117343	1986	1.637202	0.190178	1.123003	2.386841
1987	1.320054	0.145915	0.987457	1.764678	1987	1.098653	0.290027	0.622322	1.939573
1988	1.422814	0.153011	1.049572	1.928785	1988	1.43932	0.15399	1.059707	1.95492
1989	1.049614	0.149532	0.779588	1.413168	1989	1.089552	0.150022	0.808471	1.468356
1990	0.733982	0.146035	0.54892	0.981435	1990	0.650816	0.151025	0.481969	0.878816
1991	0.768586	0.146001	0.574838	1.027635	1991	0.728229	0.148578	0.541899	0.978628
1992	0.789181	0.150974	0.584494	1.065547	1992	0.795708	0.15591	0.58364	1.084833
1993	0.797377	0.145444	0.597026	1.064963	1993	0.814184	0.146701	0.608104	1.090102
1994	0.706862	0.143698	0.531077	0.940831	1994	0.710811	0.144518	0.533183	0.947616
1995	0.762867	0.144055	0.572751	1.016088	1995	0.776596	0.14461	0.582421	1.035506
1996	0.75838	0.150375	0.562345	1.022755	1996	0.784931	0.151218	0.581068	1.060318
1997	0.760426	0.143485	0.57156	1.011701	1997	0.775	0.144083	0.581829	1.032305
1998	0.9728	0.143109	0.731729	1.293293	1998	0.93897	0.147626	0.700028	1.25947
1999	0.971964	0.143349	0.730755	1.292792	1999	0.97937	0.144121	0.735205	1.304625
2000	0.773146	0.146984	0.577131	1.035736	2000	0.802364	0.148117	0.597608	1.077275
2001	0.784109	0.143608	0.589219	1.043462	2001	0.810937	0.144142	0.608738	1.080299
2002	0.798568	0.143164	0.600608	1.061775	2002	0.821623	0.143714	0.617279	1.093612
2003	0.980454	0.146794	0.732155	1.312961	2003	1.020672	0.14734	0.761368	1.368288
2004	0.802393	0.151035	0.594209	1.083516	2004	0.824453	0.151959	0.609437	1.115329
2005	0.725105	0.144163	0.544284	0.965997	2005	0.749529	0.144671	0.562054	0.999535

Table 6. Linear regression statistics for the final GLM models on proportion positive trips (a) and catch rates on positive trips (b) for Puerto Rico commercial conch fishery index where trips $=1,0$, or missing.
a.

source	df	\% reduction dev/df	chi square	p>chi square
Year	22		731.81	<0.0001
Coast	3	4.21	2333.20	<0.0001
Month	11	3.95	1394.45	<0.0001
Year*month	242	6.57	9049.34	<0.0001
Year*coast	66	1.81	2355.58	<0.0001

b.

source	df	\% reduction dev/df	chi square	p>chi square
Year	22		1013.28	<0.0001
Target	1	7.01	3102.35	<0.0001
Coast	3	6.60	106.61	<0.0001
Gear	2	1.04	38.81	<0.0001
Year*coast	66	2.85	1298.59	<0.0001

Table 7. Linear regression statistics for the final GLM models on proportion positive trips (a) and catch rates on positive trips (b) for Puerto Rico commercial conch fishery index where trips=1.
a.

source	df	\% reduction dev/df	chi square	p>chi square
Year	22		377.33	<0.0001
Month	11	4.84	1089.68	<0.0001
Coast	3	4.79	552.37	<0.0001
Year* coast	66	1.51	1833.78	<0.0001

b.

source	df	\% reduction dev/df	chi square	p>chi square
Year	22		193.43	<0.0001
Target	1	8.64	3277.01	<0.0001
Coast	3	7.77	75.47	<0.0001
Gear	2	1.15	37.05	<0.0001
Year*coast	65	2.22	890.14	<0.0001

Table 8. Standardized CPUE, coefficients of variation and 95% confidence intervals for Puerto Rico delta lognormal commercial conch fishery index where trips $=1,0$, or missing and the delta lognormal index where trips $=1$.

Trips $=1,0$, or missing					Trips=1				
Year	Standardized Index	CV	Lower 95\% CI	$\begin{aligned} & \text { Upper } \\ & 95 \% \text { CI } \end{aligned}$	Year	Standardized Index	CV	Lower 95% CI	$\begin{aligned} & \text { Upper } \\ & 95 \% \text { CI } \end{aligned}$
1983	0.447889	0.378449	0.215472	0.931002	1983	0.239321	0.337349	0.124115	0.461467
1984	1.824073	0.327509	0.963355	3.453809	1984	1.522793	0.431169	0.666773	3.477794
1985	1.305432	0.310199	0.712005	2.393458	1985	1.183355	0.340747	0.609868	2.296117
1986	2.647886	0.255409	1.601583	4.37773	1986	1.820928	0.440123	0.784872	4.22461
1987	1.777172	0.281404	1.023168	3.086825	1987	0.552695	1.023056	0.101721	3.003036
1988	1.965195	0.28205	1.130038	3.417578	1988	2.373774	0.209313	1.568836	3.59171
1989	1.032705	0.314385	0.558874	1.908267	1989	1.05626	0.239494	0.658632	1.693942
1990	0.763664	0.30825	0.418035	1.395059	1990	0.663796	0.252593	0.403663	1.091566
1991	0.954689	0.290553	0.54024	1.687086	1991	0.908222	0.229759	0.577014	1.429543
1992	1.086739	0.287542	0.618462	1.90958	1992	1.054247	0.244392	0.651234	1.706662
1993	1.065586	0.282994	0.611648	1.856417	1993	1.141153	0.219404	0.739618	1.760679
1994	0.767378	0.299933	0.426659	1.380187	1994	0.777478	0.225717	0.49781	1.214262
1995	0.855689	0.297597	0.477849	1.532289	1995	0.896294	0.218202	0.582267	1.379682
1996	0.79746	0.310404	0.434781	1.462671	1996	0.863286	0.226537	0.551879	1.35041
1997	0.752533	0.30761	0.412435	1.373081	1997	0.79638	0.221928	0.513651	1.23473
1998	0.708822	0.330875	0.372027	1.350519	1998	0.812451	0.238211	0.507853	1.299739
1999	0.701607	0.334925	0.365493	1.346819	1999	0.862937	0.233343	0.544478	1.367661
2000	0.551863	0.336676	0.286558	1.062798	2000	0.819318	0.224717	0.525611	1.277146
2001	0.498184	0.339917	0.257143	0.965172	2001	0.750141	0.221688	0.484052	1.162501
2002	0.551424	0.335139	0.287143	1.058941	2002	0.76715	0.222152	0.494585	1.189925
2003	0.633954	0.344703	0.324352	1.23908	2003	1.053428	0.22152	0.679977	1.631982
2004	0.58622	0.341781	0.301546	1.139639	2004	1.022651	0.217366	0.665427	1.571646
2005	0.723834	0.310505	0.394566	1.327878	2005	1.061944	0.206665	0.705453	1.598582

Table 9. Linear regression statistics for the final GLM models on catch rates on positive trips for southwest Puerto Rico commercial conch fishery index where trips $=1,0$, or missing (a) and where trips $=1$ (b).
a.

source	df	\% reduction dev/df	chi square	p>chi square
Year	22		422.39	<0.0001
Target	1	3.86	405.13	<0.0001
County	3	4.29	252.82	<0.0001
Year*county	65	1.65	374.63	<0.0001

b.

source	df	\% reduction dev/df	chi square	p>chi square
Year	22		411.61	<0.0001
Target	1	5.07	1087.78	<0.0001
County	2	4.02	13.27	0.0013
Gear	2	1.12	140.50	<0.0001
Year*county	39	1.57	309.97	<0.0001

Table 10. Standardized CPUE, coefficients of variation and 95\% confidence intervals for southwest Puerto Rico lognormal (positive trip) commercial conch fishery index where trips $=1,0$, or missing and the lognormal index where trips $=1$.

Trips $=1,0$, or missing					Trips $=1$				
Year	Standardized Index	CV	Lower 95\% CI	Upper 95\% CI	Year	Standardized Index	CV	Lower 95% CI	$\begin{gathered} \text { Upper } \\ 95 \% \mathrm{CI} \end{gathered}$
1983	1.385494	0.272632	0.811019	2.366893	1983	1.239216	0.316398	0.668121	2.29847
1984	2.883343	0.254585	1.746743	4.759525	1984	4.143085	0.34211	2.129874	8.059235
1985	1.341667	0.294138	0.754121	2.386978	1985	1.024057	0.310511	0.558213	1.878663
1986	2.048733	0.217009	1.334006	3.146392	1986	2.205534	0.30898	1.205677	4.034562
1987	1.281536	0.213953	0.8394	1.956557	1987	0.718493	0.41265	0.325083	1.588004
1988	1.648921	0.229789	1.047538	2.595554	1988	2.57767	0.275935	1.499466	4.431164
1989	0.583586	0.212208	0.383539	0.887975	1989	0.67097	0.211799	0.441318	1.020128
1990	0.58085	0.218255	0.377303	0.894205	1990	0.473091	0.233902	0.29818	0.750603
1991	0.533879	0.214203	0.349519	0.815483	1991	0.444225	0.254127	0.269349	0.732641
1992	0.724648	0.214219	0.474396	1.10691	1992	0.817199	0.261615	0.488475	1.36714
1993	0.892167	0.204193	0.595517	1.33659	1993	0.866256	0.244737	0.534754	1.40326
1994	0.773839	0.202313	0.518421	1.155096	1994	0.511062	0.2191	0.33143	0.788053
1995	0.696536	0.205899	0.463399	1.046963	1995	0.571294	0.22343	0.367409	0.888321
1996	0.627168	0.20282	0.419748	0.937085	1996	0.522196	0.220015	0.338053	0.806644
1997	0.692875	0.2052	0.461589	1.040051	1997	0.544536	0.222703	0.350692	0.845528
1998	0.818966	0.204701	0.546117	1.228133	1998	0.608645	0.226152	0.389381	0.951378
1999	1.035642	0.204792	0.690483	1.553339	1999	0.879431	0.223368	0.565644	1.367288
2000	0.804153	0.202769	0.538253	1.201409	2000	0.69944	0.215946	0.456368	1.071978
2001	0.696244	0.202389	0.466369	1.039425	2001	0.643116	0.216873	0.418866	0.987421
2002	0.718684	0.202098	0.481672	1.072321	2002	0.674885	0.217455	0.439064	1.037363
2003	0.759812	0.201434	0.509893	1.132226	2003	0.711587	0.218614	0.461907	1.09623
2004	0.688098	0.202147	0.461129	1.026783	2004	0.625713	0.235913	0.392855	0.996593
2005	0.783158	0.203031	0.523934	1.170636	2005	0.828301	0.230882	0.525103	1.306567

Table 11. Linear regression statistics for the final GLM models on proportion positive trips (a) and catch rates on positive trips (b) for southwest Puerto Rico commercial conch fishery index where trips $=1,0$, or missing.
a.

source	df	\% reduction dev/df	chi square	p>chi square
Year	22		1187.83	<0.0001
Season	3	7.54	401.03	<0.0001
County	2	1.99	406.70	<0.0001
Year*season	66	9.36	4339.14	<0.0001
Year* county	43	1.35	595.83	<0.0001

b.

source	df	\% reduction dev/df	chi square	p>chi square
Year	22		422.39	<0.0001
Target	1	3.86	405.13	<0.0001
County	3	4.29	252.82	<0.0001
Year*county	65	1.65	374.63	<0.0001

Table 12. Linear regression statistics for the final GLM models on proportion positive trips (a) and catch rates on positive trips (b) for southwest Puerto Rico commercial conch fishery index where trips=1.
a.

source	df	\% reduction dev/df	chi square	p>chi square
Year	22		1356.30	<0.0001
Season	3	10.13	169.09	<0.0001
County	2	2.44	791.43	<0.0001
Year*season	62	9.59	3602.19	<0.0001

b.

source	df	\% reduction dev/df	chi square	p>chi square
Year	22		411.61	<0.0001
Target	1	5.07	1087.78	<0.0001
County	2	4.02	13.27	0.0013
Gear	2	1.12	140.50	<0.0001
Year*county	39	1.57	309.97	<0.0001

Table 13. Standardized CPUE, coefficients of variation and 95% confidence intervals for southwest Puerto Rico delta-lognormal commercial conch fishery index where trips $=1,0$, or missing and the delta-lognormal index where trips=1.

Trips $=1,0$, or missing					Trips=1				
Year	Standardized Index	CV	Lower 95\% CI	$\begin{gathered} \text { Upper } \\ 95 \% \mathrm{CI} \end{gathered}$	Year	Standardized Index	CV	Lower 95\% CI	$\begin{aligned} & \text { Upper } \\ & 95 \% \mathrm{CI} \end{aligned}$
1983	0.212139	0.745186	0.056153	0.801436	1983	0.148417	0.820828	0.035327	0.623529
1984	1.027988	0.599848	0.339195	3.115493	1984	1.117671	0.838149	0.259851	4.807339
1985	1.330679	0.538979	0.484656	3.653537	1985	1.035409	0.535551	0.37926	2.82675
1986	3.190641	0.310297	1.739912	5.850979	1986	3.457101	0.529509	1.279071	9.34393
1987	1.756551	0.34313	0.901313	3.423308	1987	1.312088	0.722221	0.359096	4.794193
1988	1.950217	0.39206	0.915466	4.154548	1988	3.732525	0.330373	1.960845	7.10497
1989	0.685911	0.377829	0.33035	1.424165	1989	0.661113	0.372761	0.321345	1.360127
1990	0.763696	0.356702	0.382227	1.525874	1990	0.518179	0.381178	0.24806	1.082437
1991	0.690214	0.355017	0.346517	1.37481	1991	0.567481	0.36505	0.279729	1.151241
1992	1.298867	0.266932	0.768579	2.195031	1992	1.495859	0.309913	0.816303	2.741131
1993	1.61294	0.250609	0.984574	2.642335	1993	1.587273	0.287259	0.903797	2.787611
1994	1.247194	0.277841	0.722898	2.151747	1994	0.758617	0.307652	0.415736	1.384292
1995	0.737189	0.390322	0.347133	1.565534	1995	0.644198	0.368977	0.315283	1.316249
1996	0.672587	0.380058	0.32263	1.402145	1996	0.577961	0.364613	0.285121	1.171571
1997	0.672912	0.406482	0.307823	1.47101	1997	0.516619	0.3973	0.240239	1.110954
1998	0.468793	0.500542	0.182086	1.206937	1998	0.298528	0.506501	0.114791	0.776359
1999	0.698943	0.475645	0.283256	1.724664	1999	0.607881	0.450638	0.257244	1.436456
2000	0.740849	0.419613	0.331079	1.657781	2000	0.558955	0.423137	0.248239	1.258587
2001	0.607935	0.429313	0.267063	1.383883	2001	0.552436	0.413629	0.249515	1.223113
2002	0.612452	0.433575	0.267037	1.404668	2002	0.533645	0.426123	0.235752	1.207955
2003	0.76566	0.396999	0.356241	1.645614	2003	0.760493	0.372452	0.369858	1.563708
2004	0.582909	0.432944	0.254438	1.335426	2004	0.630879	0.393653	0.295299	1.347816
2005	0.672736	0.427904	0.296265	1.527594	2005	0.926669	0.368234	0.454143	1.890848

Table 14. Linear regression statistics for the final GLM models on catch rates on positive trips for the St. Croix commercial conch fishery index.

source	df	\% reduction dev/df	chi square	p>chi square
Year	16		116.24	<0.0001
Area	6	2.56	124.39	<0.0001
Year*area	85	3.33	720.72	<0.0001

Table 15. Standardized CPUE, coefficients of variation and 95% confidence intervals for St. Croix lognormal commercial conch fishery indices: Valle-Esquivel (2002) model and 2007 model.

Valle-Esquivel (2002) model					2007 model				
Year	Standardized Index	CV	Lower 95% CI	$\begin{gathered} \text { Upper } \\ 95 \% \mathrm{CI} \end{gathered}$	Year	Standardized Index	CV	Lower 95% CI	Upper 95% CI
1987					1987	1.048149	0.092857	0.870847	1.26155
1988					1988				
1989	1.898464	0.169204	1.356655	2.656657	1989				
1990	1.323547	0.104035	1.07552	1.62877	1990	1.351498	0.094254	1.119769	1.631182
1991	1.186801	0.09427	0.98328	1.432446	1991	1.266331	0.088657	1.060941	1.511483
1992	0.896275	0.11149	0.717631	1.11939	1992	0.939493	0.108302	0.757004	1.165975
1993	0.829043	0.101493	0.677092	1.015095	1993	0.938642	0.096256	0.774615	1.137403
1994	0.808983	0.091266	0.674265	0.970617	1994	0.836016	0.08448	0.706263	0.989607
1995	0.850487	0.087207	0.714602	1.012213	1995	0.872414	0.080787	0.742449	1.025131
1996	0.897622	0.089972	0.750071	1.074198	1996	0.951415	0.08305	0.806042	1.123008
1997	0.858614	0.092535	0.71383	1.032765	1997	0.96174	0.086507	0.809205	1.143027
1998	0.81742	0.093922	0.677711	0.985929	1998	0.891322	0.088144	0.747518	1.06279
1999	0.894163	0.090851	0.745875	1.071931	1999	0.974385	0.084589	0.822978	1.153648
2000	0.887948	0.088211	0.74459	1.058907	2000	0.916369	0.083484	0.775681	1.082574
2001	1.102336	0.08885	0.92319	1.316245	2001	1.118235	0.08398	0.945622	1.322357
2002	0.924561	0.087845	0.775856	1.101769	2002	0.98061	0.082632	0.831467	1.156505
2003	0.860567	0.089555	0.719703	1.029001	2003	0.919877	0.084801	0.776613	1.089571
2004	0.929532	0.089489	0.777481	1.11132	2004	0.968062	0.083698	0.819089	1.14413
2005	1.033637	0.088973	0.865445	1.234515	2005	1.065439	0.08424	0.900509	1.260578

Table 16. Linear regression statistics for the final GLM models on catch rates on positive trips for the St. Thomas and St. John commercial conch fishery index.

source	df	\% reduction dev/df	chi square	p>chi square
Year	11		116.11	<0.0001
Season	3	1.25	11.38	0.0098
Year*Season	23	7.24	80.62	<0.0001

Table 17. Standardized CPUE, coefficients of variation and 95% confidence intervals for St. Thomas/St. John lognormal commercial conch fishery index.

Trips=1, 0, or missing				
Year	Standardized Index	CV	Lower 95% CI	Upper 95% CI
1987	2.392383	0.149968	1.775391	3.223794
1988				
1989				
1990				
1991				
1992				
1993				
1994		0.17084	0.690469	1.360793
1995	0.969322		0.148489	0.736753
1996	0.989909	0.330051		
1997	0.896049	0.152357	0.661842	1.213135
1998	0.896181	0.1698	0.63967	1.255555
1999	0.884017	0.154583	0.650105	1.202093
2000	0.897828	0.162443	0.650152	1.239857
2001	0.78297	0.152125	0.578583	1.059557
2002	0.912055	0.150476	0.676161	1.230247
2003	0.970568	0.148414	0.722465	1.303872
2004	0.878436	0.164623	0.633395	1.218274
2005	0.530282	0.174166	0.375281	0.749303

Figure 1. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the lognormal model developed by Valle-Esquivel (2002) from Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005, Continuity Lognormal Analysis
Observed and Standardized CPUE (95% C)

Figure 2. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the lognormal model developed by Valle-Esquivel (2002) from Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1$.

QUEEN CONCH PUERTO RKO DATA 1983-2005, Continuity Lognomal Analysis, Trips $=1$
Observed and Standardized CPUE (95% C)

Figure 3. Standardized CPUE of the lognormal model developed by Valle-Esquivel (2002) from the Puerto Rico queen conch commercial fishery data; 2002 index, 2007 index where trips=1, and 2007 index where trips $=1,0$, or missing.

Figure 4. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the delta-lognormal model developed by Valle-Esquivel (2002) from Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005, Continuity
Observed and Standardized CPUE (95\% C)

Figure 5. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the delta-lognormal model developed by Valle-Esquivel (2002) from Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1$.

QUEEN CONCH PUERTO RICO DATA 1983-2005, Continuit, Trips=1 Observed and Standardized CPUE (95\% CI)

Figure 6. Standardized CPUE of the delta-lognormal model developed by Valle-Esquivel (2002) from the Puerto Rico queen conch commercial fishery data; 2002 index, 2007 index where trips $=1$, and 2007 index where trips $=1,0$, or missing.

Figure 7. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the lognormal model developed by Valle-Esquivel (2002) from southwestern Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1,0$, or missing.

QUEEN CONCH SW PUERTO RKO DATA 1983-2005, Continuity Lognomal Analysis
Observed and Standardized CPUE (95% C)

Figure 8. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the lognormal model developed by Valle-Esquivel (2002) from southwestern Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1$.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005, Continuity Lognomal Analysis, Trips=1 Observed and Standardized CPUE (95\% CI)

Figure 9. Standardized CPUE of the lognormal model developed by Valle-Esquivel (2002) from the southwest Puerto Rico queen conch commercial fishery data; 2002 index, 2007 index where trips $=1$, and 2007 index where trips $=1,0$, or missing.

Figure 10. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the lognormal model developed from Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1,0$, or missing.
QUEEN CONCH PUERTO RKCO DATA 1983-2005, Lognormal Analysis Observed and Standardized CPUE (95\% CI)

Figure 11. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the lognormal model developed from Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1$.

QUEEN CONCH PUERTO RICO DATA 1983-2005, Lognomal Analysis, Thips $=1$ Observed and Standardized CPUE (95\% Cl)

Figure 12. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the delta-lognormal model of Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1,0$ or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005
Observed and Standardized CPUE (95\% CI)

Figure 13. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the delta-lognormal model of Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1$.

QUEEN CONCH PUERTO RKCO DATA 1983-2005, Trips $=1$ Observed and Standardized CPUE (95\% CI)

Figure 14. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the lognormal model of southwestern Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1,0$ or missing.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005, Lognomal Analysis Observed and Standardized CPUE (95% C)

Figure 15. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the lognormal model of southwestern Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1$.

QUEEN CONCH SW PUERTO RKCO DATA 1983-2005, Lognormal Analysis, Trips $=1$
Observed and Standardized CPUE (95\% CI)

Figure 16. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the delta-lognormal model of southwestern Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1,0$ or missing.

QUEEN CONCH SW PUERTO RKCO DATA 1983-2005
Observed and Standardized CPUE (95\% C)

Figure 17. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the delta-lognormal model of southwestern Puerto Rico queen conch commercial fishery data. Analyses restricted to trips reporting conch landings where trips $=1$.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005, Thips $=1$
Observed and Standardized CPUE (95\% CI)

Figure 19. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the lognormal model developed by Valle-Esquivel (2002) from St. Croix queen conch commercial fishery data.

QUEEN CONCH ST. CROX DATA 1989-2005, Continuity Lognormal Analysis
Observed and Standardized CPUE (95\% Ci)

Figure 20. Standardized CPUE of the lognormal model developed by Valle-Esquivel (2002) from the St. Croix queen conch commercial fishery data; 2002 index, 2007 index, and 2007 index where trips $=1,0$, or missing.

Figure 21. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the lognormal model developed from St. Croix queen conch commercial fishery data.

QUEEN CONCH ST CROX DATA 1987, 1990-2005, Lognormal Analysis
Observed and Standardized CPUE (95\% CI)

Figure 22. Nominal CPUE (solid circles), standardized CPUE (open diamonds) and upper and lower 95\% confidence limits of the standardized CPUE estimates (dashed lines) for the lognormal model developed from St. Thomas/St. John queen conch commercial fishery data.

QUEEN CONCH ST THOMAS/ST JOHN DATA 1987, 1995-2005, Lognomal Analysis
Observed and Standardized CPUE (95\% CI)

Appendix A

Figure A1. Error distribution $\ln ($ CPUE) of the final lognormal 2002 model of Puerto Rico conch landings data, included data from trips $=1,0$, or missing. The solid line in each graph is the expected normal distribution.

Figure A2. QQ plots of residuals of the final lognormal 2002 model of successful catch rates for vessels landing queen conch in Puerto Rico where trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005. Continuily Lognomal Analysis
QQ-plot resicials GLM Iognomal CPUE Distribution

Figure A3. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

Figure A4. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

Figure A5. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005. COntinuily Lognomal Analysis Residuals positive CPUEs * Coas

Figure A6. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

Figure A7. Error distribution $\ln (C P U E)$ of the final lognormal 2002 model of Puerto Rico conch landings data, included data from trips $=1$. The solid line in each graph is the expected normal distribution.

QUEEN CONCH PUERTO RICO DATA 1983-2005. COntinusty Lognomal Analysis. Thips $=1$
Frequency alistribution log(CPUE

Figure A8. QQ plots of residuals of the final lognormal 2002 model of successful catch rates for vessels landing queen conch in Puerto Rico where trips=1.

Figure A9. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1$.

QUEEN CONCH PUERTO RICO DATA 1983-2005. ConSinuily Lognomal Analysis, Trips = 1

Figure A10. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1$.

Figure A11. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1$.

Figure A12. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1$.

Figure A13. Error distribution $\ln ($ CPUE $)$ of the final delta-lognormal 2002 model of Puerto Rico conch landings data, included data from trips $=1,0$, or missing. The solid line in each graph is the expected normal distribution.

Figure A14. QQ plots of residuals of the final delta-lognormal 2002 model of successful catch rates for vessels landing queen conch in Puerto Rico where trips $=1,0$, or missing. QUEEN CONCH PUERTO RICO DATA 1983-2005. COntinuily

QQpofot residials Positive CPUE rates

Figure A15. Proportion positive trips by year included in the delta-lognormal 2002 model of Puerto Rico conch data where trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005. COntinuily
Observed proportion pos/total by year

If prop pos= If or Of Binomial moded will not estimate a value for that yeari

Figure A16. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

Figure A17. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005. COntinuily
Resicurals positive CPUEs * Month

Figure A18. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

Figure A19. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005. COntinuily
Resickals positive CPUEs * Gear

Figure A20. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips $=1,0$, or missing.

Figure A21. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005. COntinuily Chisq Resichals proportion positive

Figure A22. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips $=1,0$, or missing.

Figure A23. Error distribution $\ln (\mathrm{CPUE})$ of the final delta-lognormal 2002 model of Puerto Rico conch landings data, included data from trips $=1$. The solid line in each graph is the expected normal distribution.

QUEEN CONCH PUERTO RICO DATA 1983-2005. COntinuily. Tips $=1$
Frequency distribution fog CPUE posifive catches

Figure A24. QQ plots of residuals of the final delta-lognormal 2002 model of successful catch rates for vessels landing queen conch in Puerto Rico where trips $=1$.

QUEEN CONCH PUERTO RICO DATA 1983-2005, COnsinusily. Tiips $=1$
QQpyot residuals Posifive CPUE rates

Figure A25. Proportion positive trips by year included in the delta-lognormal 2002 model of Puerto Rico conch data where trips $=1$.

QUEEN CONCH PUERTO RICO DATA 1983-2005. COntinuily. Tips = 1
Observed proportion pos/lotal by year

Figure A26. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1$.

Figure A27. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1$.

Figure A28. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1$.

$$
\text { QUEEN CONCH PUERTO RICO DATA 1983-2005, COntinusily. Tips = } 1
$$

Resicuals positive CPUEs * Coast

Figure A29. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1$.

Figure A30. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips=1.

QUEEN CONCH PUERTO RICO DATA 1983-2005. Consinusly. Tiips $=1$ Chisq Resichals proportion positive

Figure A31. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips=1.

Figure A32. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips $=1$.

Figure A33. Error distribution \ln (CPUE) of the final lognormal 2002 model of southwest Puerto Rico conch landings data, included data from trips $=1,0$, or missing. The solid line in each graph is the expected normal distribution.

Figure A34. QQ plots of residuals of the final lognormal 2002 model of successful catch rates for vessels landing queen conch in southwest Puerto Rico where trips $=1,0$, or missing.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005, COnSinuily Lognomal Analysis
QQ-plot resiciuals GLM lognomal CPUE Distribution

Figure A35. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips $=1,0$, or missing.

Figure A36. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips $=1,0$, or missing.

Figure A37. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips $=1,0$, or missing.

Figure A38. Error distribution \ln (CPUE) of the final lognormal 2002 model of southwest Puerto Rico conch landings data, included data from trips $=1$. The solid line in each graph is the expected normal distribution.

Figure A39. QQ plots of residuals of the final lognormal 2002 model of successful catch rates for vessels landing queen conch in southwest Puerto Rico where trips $=1$.

Figure A40. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips=1.

Figure A41. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips=1.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005. Continily Lognomal Analysis, Trips=1 Residuals positive CPUEs * Month

Figure A42. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips=1.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005. Continity Lognomal Analysis, Trips $=1$ Resicuals pasitive CPUEs * County

Figure A43. Error distribution $\ln (C P U E)$ of the final lognormal model of Puerto Rico conch landings data, included trips $=1,0$, and missing. The solid line in each graph is the expected normal distribution.

QUEEN CONCH PUERTO RICO DATA 1983-2005, Lognomal Analysis
Frequency disstibution log(CPU日)

Figure A44. QQ plots of residuals of the final lognormal model of successful catch rates for vessels landing queen conch in southwest Puerto Rico where trips $=1,0$, and missing.
QUEEN CONCH PUERTO RICO DATA 1983-2005, Lognormal Analysis

QQ-plot residuals GLM lognomal CPUE Distribution

Figure A45. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005. Lognomal Analysis
Resichals positive CPUEs * Year

Figure A46. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005. Lognormal Analysis Residuals positive CPUEs * Target

Figure A47. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

Figure A48. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005. Lognormal Analysis Residuals positive CPUEs * Coast

Figure A49. Error distribution $\ln (\mathrm{CPUE})$ of the final lognormal model of Puerto Rico conch landings data, included trips=1. The solid line in each graph is the expected normal distribution.

QUEEN CONCH PUERTO RICO DATA 1983-2005, Lognomal Analysis. Thips $=1$ Frequency aistribution log(CPU日

Figure A50. QQ plots of residuals of the final lognormal model of successful catch rates for vessels landing queen conch in southwest Puerto Rico where trips=1. QUEEN CONCH PUERTO RICO DATA 1983-2005. LOgnomal Analysis Thips $=1$ QQ-plot resicuals GLM Iognomal CPUE Distribution

Figure A51. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips=1.

Figure A52. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips=1.

Figure A53. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips=1.

Figure A54. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips=1.

QUEEN CONCH PUERTO RICO DATA 1983-2005. LOgnomal Analysis Thips $=1$ Residuals positive CPUEs * Gear

Figure A55. Error distribution $\ln (\mathrm{CPUE})$ of the final delta-lognormal model of Puerto Rico conch landings data, included trips=1, 0 , or missing. The solid line in each graph is the expected normal distribution. QUEEN CONCH PUERTO RICO DATA 1983-2005
Frequency distribution log CPUE posifive catches

Figure A56. QQ plots of residuals of the final delta-lognormal model of successful catch rates for vessels landing queen conch in Puerto Rico where trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005
QQplot resickuals Positive CPUE rates

Figure A57. Proportion positive trips by year included in the delta-lognormal model of Puerto Rico conch data where trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005
Observed proportion positotal by year

H prop pos= 11 or OI Binomial model will not estimate a value for that yeari

Figure A58. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

Figure A59. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

Figure A60. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005
Resichuals positive CPUEs * Coast

Figure A61. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips $=1,0$, or missing.

Figure A62. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips $=1,0$, or missing.

Figure A63. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips $=1,0$, or missing.

Figure A64. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips $=1,0$, or missing.

QUEEN CONCH PUERTO RICO DATA 1983-2005
Resiciuals positive CPUEs * Gear

Figure A65. Error distribution $\ln (\mathrm{CPUE})$ of the final delta-lognormal model of Puerto Rico conch landings data, included trips $=1$. The solid line in each graph is the expected normal distribution.

Frequency distribution log CPUE posifive catches

Figure A66. QQ plots of residuals of the final delta-lognormal model of successful catch rates for vessels landing queen conch in Puerto Rico where trips=1.

QUEEN CONCH PUERTO RICO DATA 1983-2005, Trips=1
QOplot residuals Posifive CPUE rates

Figure A67. Proportion positive trips by year included in the delta-lognormal model of Puerto Rico conch data where trips $=1$.

Figure A68. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1$.

Figure A69. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1$.

Figure A70. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1$.

Figure A71. Residuals for the lognormal model on successful catch rates for Puerto Rico lognormal analysis on trips $=1$.

Figure A72. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips $=1$.

QUEEN CONCH PUERTO RICO DATA 1983-2005, Trips $=1$
Chisq Resicuals proportion positive

Figure A73. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips=1.

Figure A74. Residuals for the delta-lognormal model on successful catch rates for Puerto Rico binomial analysis on proportion positive trips where trips=1.

QUEEN CONCH PUERTO RICO DATA 1983-2005, Thips $=1$
Chisq Resichals proportion positive

Figure A75. Error distribution $\ln (C P U E)$ of the final lognormal model of southwest Puerto Rico conch landings data, included trips $=1,0$, and missing. The solid line in each graph is the expected normal distribution.

Figure A76. QQ plots of residuals of the final lognormal model of successful catch rates for vessels landing queen conch in southwest Puerto Rico where trips $=1,0$, and missing.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005. Lognomal Analysis
$Q Q$-plot resicuals GLM lognomal CPUE Distribution

Figure A77. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips $=1,0$, and missing.

Figure A78. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips $=1,0$, and missing.

Figure A79. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips $=1,0$, and missing.

Figure A80. Error distribution $\ln (C P U E)$ of the final lognormal model of southwest Puerto Rico conch landings data, included trips $=1$. The solid line in each graph is the expected normal distribution.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005, Lognormal Analysis. Trips = 1
Frequency aistribution log(CPU日)

Figure A81. QQ plots of residuals of the final lognormal model of successful catch rates for vessels landing queen conch in southwest Puerto Rico where trips $=1$.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005, Lognomal Anadysis, Trips=1 QQ-piot resictals GLM lognormal CPUE Distribution

Figure A82. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips=1.

Figure A83. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips=1.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005. Lognormal Anadysis Tips=
Residuals positive CPUEs * Target

Figure A84. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips=1.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005. Lognormal Analysis, Trips= 1 Resicuals positive CPPUEs * County

Figure A85. Residuals for the lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips=1.

Figure A86. Error distribution $\ln (\mathrm{CPUE})$ of the final delta-lognormal model of southwest Puerto Rico conch landings data, included trips $=1,0$, or missing. The solid line in each graph is the expected normal distribution.

Figure A87. QQ plots of residuals of the final delta-lognormal model of successful catch rates for vessels landing queen conch in southwest Puerto Rico where trips $=1,0$, or missing. QUEEN CONCH SW PUERTO RICO DATA 1983-2005

Quplot resicunals Posifive CPUE rates

Figure A88. Proportion positive trips by year included in the delta-lognormal model of southwest Puerto Rico conch data where trips $=1,0$, or missing.

Figure A89. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips $=1,0$, and missing.

Figure A90. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips $=1,0$, and missing.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005
Resichals positive CPUEs * Target

Figure A91. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips $=1,0$, and missing.

Figure A92. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico binomial analysis on proportion positive trips where trips $=1,0$, and missing.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005 Chisq Resickals proportion positive

Figure A93. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico binomial analysis on proportion positive trips where trips $=1,0$, and missing.

> QUEEN CONCH SW PUERTO RKCO DATA 1983-2005

Chisq Resickals proportion positive

Figure A94. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico binomial analysis on proportion positive trips where trips $=1,0$, and missing.

Figure A95. Error distribution \ln (CPUE) of the final delta-lognormal model of southwest Puerto Rico conch landings data, included trips=1. The solid line in each graph is the expected normal distribution. QUEEN CONCH SW PUERTO RICO DATA 1983-2005. TTips $=1$

Frequency cistribution log CPUE positive catches

Figure A96. QQ plots of residuals of the final delta-lognormal model of successful catch rates for vessels landing queen conch in southwest Puerto Rico where trips $=1$.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005. Tips $=1$ QOplot resickials Posifive CPUE rates

Figure A97. Proportion positive trips by year included in the delta-lognormal model of southwest Puerto Rico conch data where trips $=1$.

Figure A98. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips=1.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005. Thips = 1
Resichals positive CPUEs * Year

Figure A99. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips=1.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005 Trips=1
Resicuals positive CPUEs * Targer

Figure A100. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips=1.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005. Thips $=1$
Residuals positive CPUEs * County

Figure A101. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico lognormal analysis on trips=1.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005. Thips=1
Residuals positive CPUEs * Gear

Figure A102. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico binomial analysis on proportion positive trips where trips $=1$.

Chisq Resickals proportion positive

Figure A103. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico binomial analysis on proportion positive trips where trips $=1$.

Figure A104. Residuals for the delta-lognormal model on successful catch rates for southwest Puerto Rico binomial analysis on proportion positive trips where trips $=1$.

QUEEN CONCH SW PUERTO RICO DATA 1983-2005. Titips=1 Chisq Resicuals proportion positive

Figure A105. Error distribution $\ln ($ CPUE) of the final lognormal 2002 model of St. Croix conch landings data. The solid line in each graph is the expected normal distribution.

Figure A106. QQ plots of residuals of the final 2002 lognormal model of successful catch rates for vessels landing queen conch in St. Croix.

Figure A107. Residuals for the 2002 lognormal model on successful catch rates for St. Croix.
QUEEN CONCH ST. CROX DATA 1989-2005, Continuily Lognomed Analysis
Resickals positive CPUEs * Yeer

Figure A108. Residuals for the 2002 lognormal model on successful catch rates for St. Croix. QUEEN CONCH ST. CROX DATA 1989-2005, Continuily Lognomed Analysis Resicuals positive CPUEs * Month

Figure A109. Residuals for the 2002 lognormal model on successful catch rates for St. Croix.
QUEEN CONCH ST. CROX DATA 1989-2005, Continuily Lognomed Analysis

Figure A110. Error distribution $\ln (C P U E)$ of the final lognormal model of St. Croix conch landings data. The solid line in each graph is the expected normal distribution.

Figure A111. QQ plots of residuals of the final lognormal model of successful catch rates for vessels landing queen conch in St. Croix.

QUEEN CONCH ST CROX DATA 1987. 1990-2005. Lognomal Analysis
QQ-plot resicuals GLM Iognomal CPUE Distribution

Figure A112. Residuals for the lognormal model on successful catch rates for St. Croix.
QUEEN CONCH ST CROX DATA 1987. 1990-2005. Lognormal Analysis
Resickeals posibive CPUEs * Year

Figure A113. Residuals for the lognormal model on successful catch rates for St. Croix.
QUEEN CONCH ST CROX DATA 1987. 1990-2005. Lognomal Analysis Resicuals positive CPUEs * Area

Figure A114. Error distribution $\ln ($ CPUE) of the final lognormal model of St. Thomas/St. John conch landings data. The solid line in each graph is the expected normal distribution.

Figure A115. QQ plots of residuals of the final lognormal model of successful catch rates for vessels landing queen conch in St. Thomas/St. John.

Figure A116. Residuals for the lognormal model on successful catch rates for St. Thomas/St. John. QUEEN CONCH ST THOMAS/ST JOHN DATA 1987. 1995-2005. Lognomal Analysis Resichals positive CPUEs * Year

Figure A117. Residuals for the lognormal model on successful catch rates for St. Thomas/St. John. QUEEN CONCH ST THOMAS/ST JOHN DATA 1987. 1995-2005. Lognomal Analysis Residials positive CPUEs * Season

