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Abstract
The CRAFT control design methodology is presented.

CRAFT stands for the design objectives addressed, namely,
Control power, Robustness, Agility, and Flying Qualities
Tradeoffs.  The approach combines eigenspace assignment,
which allows for direct specification of eigenvalues and
eigenvectors, and a graphical approach for representing
control design metrics that captures numerous design goals
in one composite illustration.  The  methodology makes use
of control design metrics from four design objective areas,
namely, control power, robustness, agility, and flying
qualities.  An example of the CRAFT methodology as well
as associated design issues are presented.  Control design
metrics are evaluated for systematic eigenvalue placements
over the complex plane.  Metric surfaces are formed by
plotting metric values for each of the frequency and
damping points specified.  Graphical overlays of the metric
surfaces are then used to show the best design compromise
for a variety of design criteria.  Since the sensitivity of the
metrics to pole placement is clearly displayed, the designer
can assess the cost of tradeoffs.  This approach enhances the
designer's ability to make informed design tradeoffs and to
reach effective final designs.

Symbols     
A plant matrix
B control distribution matrix for states
C state distribution matrix for outputs
D control distribution matrix for outputs
E uncertainty model
g feedback gain
G feedback gain matrix
GM gain metric based on sum of squares of gains
I identity matrix
K plant compensation
KG loop transfer matrix
L matrix defining achievable subspace for ν
M state distribution matrix for measurements
m number of controls
N control distribution matrix for measurements
n number of states
p number of outputs
q pitch rate, rad/sec.
r number of measurements
s Laplace variable, s=jω
T scale matrix
U control vector (mx1)

                                                          
* Aerospace Engineer, Member AIAA

V matrix of eigenvectors
Vo trim velocity, fps.
w desired eigenvector projection vector
W matrix of wi columns
X state vector (nx1)
Y output vector (px1)
Z measurement vector (rx1)
α angle of attack, rad.
λ eigenvalue
θ pitch angle, rad.
ν eigenvector
s singular value
ω frequency, rad/sec
ζ damping ratio

subscripts
a achievable values
c associated with controller
d desired values
i index over n modes
p associated with pilot
s scaled vector or matrix
ss steady state

Introduction
Advances in weapons and aircraft technology are

significantly changing air combat.  In the past, air combat
engagements often resulted in tail chase fights measured in
minutes, now they are measured in seconds with combatants
using all-aspect weapons.  New control effectors, such as
thrust vectoring and retractable nose strakes, offer the
capability to expand the flight envelope with greater control
than previously obtainable.  Success in the fighter combat
arena of the future will demand increased capability from
aircraft technology.  Future fighters may have to operate in
environments where having enhanced maneuverability and
controllability, throughout a greatly expanded flight
envelope, including high angle of attack, is a requirement.
Studies involving piloted and numerical air combat
simulations [refs.1-6] have shown that fighters with this
capability are able to perform combat maneuvers in shorter
time and in less space and thus achieve a tactical advantage.

To achieve high levels of enhanced maneuverability and
controllability or agility, as well as post-stall maneuvering
capability, requires successful development and integration
of several emerging technologies (ref.7).  This study focuses
on the problem of designing control laws for enhanced
agility and supermaneuverability.  This research has been
conducted in two phases.  The first phase efforts focused on
characterizing an aircraft's agility.  Although many agility
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metrics have been proposed [8-15], in general their primary
purpose is for assessing combat capability and do not
readily lend themselves to be used in the control design
process. The first phase efforts have been reported in
reference 16 and have resulted in a candidate set of control
design agility metrics that may prove useful to a flight
control law designer.  In general, control design metrics are
quantitative measures of specific system capabilities that
translate desired operational characteristics into useful
engineering terms for the control designer.  The second and
current phase of research is concentrating on the
development of a design methodology for enhanced agility
utilizing the control design agility metrics.  Designing for
enhanced agility represents a serious challenge to the flight
controls engineer, since the final design is always a
compromise among many opposing tradeoffs.  Besides
agility, other areas also require demanding design tradeoffs
that cannot be ignored in the design.  Other key areas are
flying qualities (characterizing pilot-in-the-loop demands),
robustness (characterizing system tolerance to model error),
and control power (characterizing control effector
requirements or limits).  Each of the four areas contain
many design metrics; some  represent hard design
constraints that must be met and many vary with flight
condition.  This paper reports on the initial development
work that has been done to develop a flight control design
methodology and design criteria that allow a designer to
make informed tradeoffs among many different and often
competing requirements.

Design Approach
The design approach is referred to as CRAFT which

stands for the design objectives addressed, namely, Control
power, Robustness, Agility, and Flying Qualities Tradeoffs.
This approach provides the designer with a graphical tool to
simultaneously assess metrics from the four design
objective areas.  The strength of this approach comes from
the use of eigenspace assignment, which allows direct
specification of eigenvalues and eigenvectors in the design,
in combination with graphical overlays of metric surfaces
which capture the design goals in a composite illustration.
In this approach, design tradeoffs are made by interpreting
graphical overlays of metric surfaces that quantitatively
characterize each design goal.  Numerous metrics can be
applied simultaneously from each of the four design
objective areas or any area for which metrics can be
expressed in engineering terms.  Graphical overlays of the
metric surfaces show the best design compromise for all the
design criteria and display the "cost" of changing from that
design point.  This can greatly enhance the designer's ability
to make informed design tradeoffs.

CRAFT is summarized in block diagram form in figure
1.  The design process begins by selecting a reasonable
range of frequency and damping for the closed-loop
dynamics of interest.  For example, if a longitudinal design
was desired, a range of frequency and damping for the
short-period mode would be selected with the phugoid
mode specified to meet Level 1 flying qualities.  Within this

range, a grid of design points is chosen to systematically
cover the space.  Some metrics may be known before the
closed-loop design, such as flying qualities specifications.
However, the control power, robustness, and agility metrics
require determination of the closed-loop system.  Using
eigenspace assignment as the control design algorithm,
feedback gains are computed to achieve the desired
placement of the eigenvalues for the closed-loop system at
each design point.  With eigenspace assignment, the
designer also must define eigenvectors; specifying the
eigenvectors is discussed in Design Issues.  Once the
desired closed-loop systems are determined for a desired set
of frequency (ω) and damping (ζ) pairs, each control design
metric can be evaluated and plotted producing a surface
over the ζ−ω space.  Viewing the metric surface in a 2-D
contour plot highlights the most desirable region to locate
the short period pole with respect to the particular metric
studied.  The individual metric surfaces are an indication of
the sensitivity of that metric to closed-loop pole location.  A
final overlay plot of desirable regions from each metric
surface can then be obtained.  This is represented by the
bottom-center block of figure 1.  The intersection of
desirable regions provide the best design compromise for all
the design criteria considered.  Often desirable regions may
not overlap and some compromise will be required.  For
example, the designer may feel it necessary to give up Level
1 flying qualities to achieve acceptable robustness margins.
With graphical overlays of metric surfaces the designer is
given a method to make design tradeoffs in light of the
relative "cost" of the tradeoffs being made.  The designer
can assess the cost of tradeoffs, since the sensitivity of the
metrics to pole placement is clearly displayed.  Although
many metrics can be used, the designer has the opportunity
to select or emphasize certain design metrics, such as
agility, to achieve a desired final effect.

Control Design Metrics
Control design metrics are an integral part of CRAFT.

Many control design metrics exist for aircraft and most fit
into one of the four design objective areas discussed above.
In this paper a representative metric is proposed for each
design objective area.  As experience is gained with the
methodology, these metrics and other metrics will be tuned
to provide greater sensitivity to design goals and designer
needs.

Control Power Metrics
Metrics in the first design objective area characterize

control power or control power required.  Control power
metrics provide measures of the forces and moments acting
on an aircraft.  The metric chosen for this paper is based on
a Euclidean norm of gains and indirectly represents a
measure of control power required to achieve each desired
pole location.  In addition, the specification made for the
other eigenvalues and eigenvectors is also reflected.  The
assumption is made that larger gains generally correspond
to a demand for greater control deflection or deflection rate
and this, in turn, reflects a demand for greater control
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power.  For this metric smaller values are more desirable
since small gains reflect reduced control power demands.
The expression for the gain metric is given as

GM(ζ,ω) =  
gm(ζ,ω)

 max
(ζ,ω)

 gm(ζ,ω) (1) 

where

gm(ζ,ω) =  ∑
i=1

m

∑
j=1

n
g2ij(ζ,ω) 

which is the square root of the sum of squares of gains
normalized by the maximum gain over all design points.  If
desired, a weighting matrix to selectively emphasize or
eliminate certain gains from the analysis could be included.

Robustness Metrics
The next design objective area of interest is

multivariable stability robustness.  An important concern to
control designers is that the control system can tolerate the
inevitable model error associated with mathematical
descriptions of physical systems.  Model error has several
sources but certainly one source of concern is the limited
ability of linear math models to represent the real aircraft.
Strong nonlinearities exist in the aerodynamic model at high
angles of attack and for fighter aircraft inertial roll coupling
is an additional issue.  Therefore, robustness is an especially
important design consideration for high angle of attack and
high agility aircraft.

A variety of metrics can be used to indicate the regions
in ζ−ω space with the greatest tolerance to model error.  For
initial designs, unstructured uncertainties, in the form of
multiplicative error models at the input and output, are
suggested.  For a given error model, singular values of the
inverse return difference matrix provide an easily computed
and general robustness metric.  Structured uncertainties
would provide less conservative measures for configuration
specific cases, however much more computation and user
knowledge of uncertainities are involved.  Although more
conservatism than probably desired is obtained with
unstructured uncertainty models, some benefit is obtained
by erring on the conservative side for initial designs.  The
more conservative metric yields a smaller desirable region
in the ζ-ω space, therefore the designer has some
confidence that being on or near the edge of that region is
not prohibitive.

This candidate metric is determined from the minimum
singular value given as  σ[I + (KG)-1], where KG is the
loop transfer matrix.  An important consideration in using
these metrics is that the peaks do not represent regions of
guaranteed stability.  They are regions with the most
promise for robustness over the ζ−ω space considered.  If
an uncertainty model, E(s), were available, it could be
applied to determine the regions of guaranteed stability.  A
sufficient condition for stability is (ref. 17)

σ[I + (K(s)G(s))-1] >  −σ[E(s)]        for s=jω (2) 

Since an uncertainty model is not always conveniently
available, this metric was chosen to highlight the regions
with the most promise.  It is possible to show that metric
values of 0.5 correspond to a multivariable equivalent of
6 db gain margin and 30o phase margin (see ref. 17).
Therefore, it is reasonable to view regions of the robustness
metric with values greater than 0.5 to be desirable regions.

Agility Metrics
A third design objective area of interest is agility.

Agility in this study is restricted to airframe agility; the
agility metrics, unlike many in the literature, do not reflect
pilot compensation effects.  This was done intentionally to
allow separation of flying qualities and agility metrics.  This
approach enhances a "building block" design philosophy
where the designer can choose to add or delete varying
degrees of any characteristic by selecting the appropriate
metrics.  Thus, design freedom exists within regions of
Level 1 flying qualities (or Level 2 if Level 1 cannot be
achieved) to select the desired level of airframe agility.  The
agility metrics in combination with the flying qualities
metrics aid the designer in selecting the most agile aircraft
within the capabilities of a pilot.

Some controversy exists on the exact definition of agility
and which parameters best describe it (ref. 18).  This
reflects the limited experience of both the operational and
research community with advanced agile fighters.  A
significant experience base is needed with advanced
concepts involving air combat with high-α flight, thrust
vectoring, all aspect weapons, etc. before precise definitions
will finally be agreed upon.  Even without the precise
definition, many agree that accelerations characterize an
important aspect of transient agility.  For this reason an
acceleration metric is suggested as one of the agility metrics
that should be considered in a design.  Of course other
metrics, such as the derivative of acceleration (jerk) or
functional agility metrics representing rates or
displacements, can easily be accommodated in CRAFT.

Pitch acceleration, in the longitudinal axis, and stability
axis roll acceleration in the lateral axis should be part of an
agility metric set.  For brevity, only the pitch acceleration
metric is described in this paper.  This pitch agility metric is
an average pitch acceleration; it represents a blend of
transient and functional agility characteristics.  It is
computed as peak pitch rate divided by the corresponding
time to peak.  At each design point the peak pitch rate is
determined for a step input to the stabilator.  To make the
comparison correspond to the same motion at each design
point, the steady-state pitch angle was adjusted to be the
same.  This required, in effect, a "gearing change" to be
reflected in the closed-loop control distribution matrix.  A
gearing change was necessary because larger peak pitch
rates occurred with low frequency placement of the short
period pole.  One reason for this is the superposition of
short period and phugoid modes as the frequency of the
short period pole is placed near the phugoid.  Another
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reason is from the increased gain required to achieve
placement at higher frequencies.  The higher gains reduced
output magnitudes relative to the output magnitudes at
lower gains.  The overall result is that larger values of peak
pitch rate, at lower frequency, dominate the metric plot.
This can be seen by considering the state equation (3), with
a simplified output equation given as

.
X = A X + Bc Uc + Bp Up         X  Rn (3) 

Y = C X                                  Y  Rp (4)

Uc = GY                                  Uc  Rm (5)

The resulting closed-loop system produces a steady-state
response, to a step pilot input Up, given as

Yss = -C[A + BcGC]-1BpUp (6)

which shows reduced response levels as gain magnitude is
increased.  Thus, if maximum pitch rate were the only
criteria, the contour plot would lead one to pick a low
damping and a very low frequency for the short-period pole.
However, this is clearly not the best design region since the
time-to-peak is also very large and undesirable.  To
compensate for this, the average pitch acceleration metric is
used, which becomes small if the peak time is large.

Flying Qualities Metrics
The fourth design objective area addresses pilot-in-the-

loop issues.  Flying qualities metrics are intended to help
the designer assess the best tradeoff of pilot workload and
performance.  Figure 2 shows flying qualities specifications
taken from Moorhouse-Moran, Mil-Std 1797A, and
McDonnell Aircraft (ref. 19).  These provide Level 1
regions for the short-period pole.  The regions are
presented, for this paper, in terms of short period frequency
instead of the customary CAP parameter.  The Level 2
region is not shown for clarity.  The desirable regions for
the short-period pole are much smaller in Moorhouse-
Moran than the Mil-Std due to the restricted nature of the
tasks considered by Moorhouse-Moran.  These tasks were
specifically tailored to fighter missions.  This demonstrates
the fluid nature of metrics as design requirements change
and our knowledge base expands.  Both the Moorhouse-
Moran and the Mil-Std values are for the low angle of
attack case.  The McDonnell Aircraft work proposes
desirable regions for fighters operating about 30� angle of
attack.

Control Synthesis Algorithm
In this study the control synthesis algorithm is Direct

Eigenspace Assignment (DEA) taken from reference 20.
This control synthesis technique provides a mechanism to
determine measurement feedback control gains that produce
an achievable eigenspace for the closed-loop system.  It has
been shown (ref. 21) that for a system that is observable and
controllable with n states, m controls, and r measurements,
one can exactly place r eigenvalues and m elements of their

associated eigenvectors in the closed-loop system.  DEA
provides a mechanism to place q elements (m<q<n) of r
eigenvectors associated with r eigenvalues through a least
squares fit to the desired eigenvectors (see fig. 3).

System equations can be expressed as

  
.
X = A X + Bc Uc + Bp Up        X  Rn (7) 
Y = C X + Dc Uc + Dp Up        Y  Rp (8)
Z = M X + Nc Uc + Np Up        Z  Rr (9)
Uc = G Z                                  U  Rm (10)

Substituting the measurement equation for Z into the
expression for Uc, the controller input can then be written
as

Uc = Gx X + Gp Up (11)
where

Gx = [Im - G Nc]-1 G M
Gp = [Im - G Nc]-1 G Np

Thus the closed-loop system becomes
.
X = [A + Bc Gx] X + [Bp + Bc Gp] Up (12) 
Y = [C + Dc Gx] X + [Dp + Dc Gp] Up (13)
Z = [M + Nc Gx] X + [Np + Nc Gp] Up (14)

Spectral decomposition of the closed-loop system is
given as

(A + Bc Gx) νi = λi νi        i = 1,2,..., n (15)

This expression can be rearranged as

Bc Gx νi = [In λi - A] νi      i = 1,2,..., n (16)

and defining
 wi = Gx νi (17)

allows the closed-loop eigenvector from (16), in terms of
wi, to be written as

νi = Li wi (18)
where

Li = [In λi - A]-1 Bc.

The achievable eigenvector for the closed-loop system
that reflects the desired eigenvalue and eigenvector
specification can be written as

νai = Ldi wai (19)
where

Ldi = [In λdi - A]-1 Bc.

If νdi is substituted for νai in equation (19), the result is a
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weighted least squares problem for the unknown wai, for
which the solution is

wai = [LdiT Qd Ldi]-1 LdiT Qd νdi (20)

where Qd is a weighting matrix to select q elements of the
eigenvector to be specified.  With wai determined, the
feedback gains producing the achievable dynamics can be
obtained from equation (17).  After combining the column
vectors for wai and νai into matrices W and V, respectively,
the gains are given by

G = W [M V + Nc W]-1 (21)

Further details of the derivation can be found in
reference 20.

Design Example
To demonstrate the method, a single-point design

example applying CRAFT to a 4th order linear, longitudinal
model of a thrust-vectored F-18, trimmed at 30� angle of
attack, is presented.  The design goal is to obtain desired
longitudinal characteristics.  The system states are velocity,
angle of attack, pitch rate, and pitch attitude.  Inputs are
stabilator, thrust vectoring, and throttle.  Full state feedback
is assumed for convenience in the example, but this
assumption is not required and does not reduce the
effectiveness of CRAFT.  For this example, only one metric
from each of the four design objective areas is considered.
In a more complete design many metrics from each design
objective area would need to be considered.  The design
metrics for each of the four design areas are candidate
metrics currently being studied and may be improved upon
as experience is gained using the method.   To completely
cover the recommended range of possible pole locations,
the desired short-period pole's frequency is varied from .1
rad/sec to 4.1 rad/sec and the damping ratio is varied from
.2 to 1.8.  This range is based on results from the
McDonnell Aircraft simulation study at 30o angle of attack
(ref. 22).

In this example, the phugoid mode is specified to be
Level 1 as given in MIl-Std 1797A, which requires a
phugoid damping ratio of at least 0.04.  A phugoid
specification corresponding to a low α condition (α=5o)
should provide classical airplane response but to reach
Level 1 this requires a slight increase in damping over the
open-loop value of (ζ,ω)ph = (0.032, 0.068) to a closed-
loop value of (0.04, 0.068).  The phugoid and short-period
eigenvectors are chosen from state-space models built up
from transfer function descriptions that have the desired
pole locations for both the short period and phugoid.
Transfer function zeroes were chosen to be the same as the
open-loop system.  This procedure for defining eigenvectors
and an optional procedure where the eigenvectors are
required to maintain the same shape as the open-loop
system at 5o and 30o angle of attack are discussed in Design

Issues.  These requirements are maintained over the ζ−ω
space for each new short-period pole location.  With the
eigenspace specified, the feedback gains to achieve each
short-period pole location were determined over the ζ−ω
space of interest.

Once closed-loop systems are determined, metrics can
be evaluated at each point over the ζ−ω space and a
corresponding surface plotted to determine the metric
sensitivity to pole location as well as the desirable regions
to place the short period pole.  Figures 4-7 each present one
metric surface corresponding to each design objective area.
Each figure shows a 3-D plot of the metric surfaces to
enable easy visualization of the surface and a 2-D contour
plot to highlight the desirable regions and enable the
"overlaying" analysis.  In these figures a gray scale is used
to denote the gradient of desirability; dark shades
correspond to undesirable values and progressively lighter
shades correspond to increasing desirability.  For example,
lower values of GM (control power required) are the
desirable regions and are shaded light.

Figure 4 presents a metric from the first design objective
area  (Control power) for this example.  Figure 4b includes
three contour lines superimposed at the .25, .5, and .75
levels, to highlight magnitude variation of the control power
required metric.  For this example, equation (1) is used in
which all feedback gains are equally weighted.  Plotted in
this fashion the metric is a sensitivity measure indicating
desirable regions and preferred directions to move the pole.
The small gain metric values, in the region of low frequency
and damping values, correspond to reduced gains (desirable
values) and the higher values, in the high frequency and
damping region, correspond to high gains and  maximum
required control power (undesirable values).  This surface
gives an indication of where, in terms of pole placement, the
greatest control power demands will be placed on the
control system.  The most desirable region naturally tends
to an area near the open-loop pole where no feedback is
required.  For this example, however, the gain metric does
not go exactly to zero at the open-loop pole location since
some feedback is still required to achieve the desired
phugoid and eigenvector specification that does not
correspond to the open-loop case.

Figure 5 shows a robustness measure based on an
unstructured uncertainty model discussed in Design
Approach.  For this example the singular values were
determined assuming the uncertainty was at the input.
Figure 5a shows these singular values as a robustness metric
over a range of frequency and damping.  Figure 5b, giving
the 2-D contours, shows an additional contour (shown as
white lines) at the 0.5 level.  As discussed before, for values
of 0.5 or greater good robustness can be expected.  This
results in two fairly large desirable regions for frequencies
below 2.0 rad/sec.  The lighter regions of the plot
correspond to  the larger metric values and indicate the most
desirable regions for short-period pole placement.

 Figure 6 presents the airframe pitch agility metric as
defined previously.  Progressively lighter regions show the
more desirable values of agility, i.e., greater pitch
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acceleration.  The 2-D contour plot has additional lines
showing the 15, 25, 50, and 75 percent of peak value; for
example, the contour line valued at 0.4 corresponds to 15%
of the peak value that occurred over the ζ-ω space
considered.  Care must be used when comparing these
metric values with measured instantaneous values of pitch
acceleration.  This is an average acceleration produced from
a step input.  In addition, the input was adjusted to provide
the same steady-state pitch angle.   Consequently, incorrect
conclusions could result from a direct comparison with
instantaneous values.  Design experience will indicate the
best values for this metric, however sensitivity information
contained in the plot does provide an indicator of the best
direction to move the poles for increasing agility.

The fourth design objective area covers pilot-in-the-loop
requirements.  A more detailed presentation of flying
qualities specification for the short period mode is given in
figure 7.  This represents the more recently proposed
McDonnell Aircraft results (ref. 22) for both gross
acquisition and tracking combined into one simplified
representation.  The specification has been plotted in terms
of frequency instead of CAP (nz/α = 2.5) for consistency
among the metirc figures.  Figure 7a shows the Level 1-2
and 2-3 boundaries for the 30� angle of attack case.  The
desirable regions (Level 1 and Level 2) are clearly marked
in the contour plot given in figure 7b.  This is substantially
different from low angle of attack recommended values
shown in figure 2.

Figure 8 shows a final overlay plot of the desirable
regions from each of the previous metric surfaces.  Clearly,
the best final design requires some judgement by the control
designer, since the best region of each individual metric
does not always overlap the others.  This highlights the
nature of control design requiring tradeoffs to be made to
achieve a final overall design.  An insightful choice is more
readily made using CRAFT since the desirable regions and
relative tradeoffs are graphically displayed.  In this design
problem, the more robust regions (large shaded areas) are
on the left side of the figure, which fortunately, tends to be
where the lower control power required area (solid contour
lines) is located.  A large portion of the Level 1 flying
qualities region overlaps this area.  One choice for this
design might be to place the short period pole at lowest
right-hand side of the Level 1 specification.  This point
should provide Level 1 flying qualities, good robustness to
model error at the input, and relatively low gains.  The pitch
agility is maximized by moving to the lower right-hand
corner of the plot.  Greater values could be reached if the
other design requirements are relaxed.

Design Issues
System scaling is an issue that arises when using DEA

and CRAFT since it helps with interpretation of the
eigenvectors.  Scaling for this study was performed as
follows:

Xs = TX (22)
where

T = diag[1/Vo, 1/αo, 1/qmax, 1/θo] (23)
and

Vo = 230 fps, qmax = 25 deg/sec, αo = θο = 30 deg.

which are trim values of the states except for qmax which is
a nominal maximum pitch rate for this aircraft at the
specified trim condition.  Scaling  leads to new system
elements in equations (7-10); these new elements are

As = TAT-1,  Bcs = TBc,  Bps = TBp,

Cs = CT-1,  Ms = MT-1

From a control designers point of view it is important to
note that scaling the system affects the eigenvectors and
gains that result from the design process.  However, the
system responses and eigenvalues are independent of
system transformations.  Therefore, interpretation of gains
and eigenvectors must be done with knowledge of any
scaling.

Another issue in the design process involves proper
selection of both the eigenvalues and eigenvectors.  Some
guidance is needed for eigenvector selection, in particular.
As explained above, the eigenvalue under study with
CRAFT is simply specified over the ζ-ω space.  The other
eigenvalues need to be specified and desirable values for all
the aircraft modes (at least for classical modes) are given in
the Mil-Std 1797A.  Desirable values for modes in the high
angle of attack regime are still a matter of research.

Eigenvectors, on the other hand, need to be assembled
by the designer.  The eigenvector choice has a significant
impact on feedback gains and unfortunately, there is not
much guidance available for determining the best
eigenvectors.  Initially in this study it was assumed that the
low angle of attack, open-loop model eigenvectors would be
a reasonable place to start.  These eigenvectors (with
appropriate eigenvalues) represent classical airplane
dynamics and might be desirable for the high angle of attack
aircraft.  Two problems arise with this choice.  First, the
eigenvectors are complex in order to match the
corresponding complex eigenvalues.  This presents a
problem when it is desired to place poles with damping
ratios greater than or equal to one.  For ζ greater than or
equal to one, the eigenvectors and eigenvalues become real.
So the choice of eigenvectors must be real and this requires
design information beyond that currently available (classical
design specifications require complex eigenspace).  The
second problem is that the control power required to map
the high angle of attack eigenspace into classical dynamics
can be large.  The gain metric shows maximum values two
orders of magnitude greater with constant eigenvectors than
that found using the transfer function build-up method used
in this study.  Figure 9 shows a comparison of gain metric
for three choices of eigenvectors.  The first two cases
(figure 9a and 9b) are for fixed eigenvectors over the entire
ζ-ω space.  These contours were determined using
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eigenvectors from the open-loop 5o and 30o angle of attack
models, respectively; the last case (figure 9c) is for a
variable eigenvector determined by the process described
below.  The maximum values of gain metric (gmmax) that
occurred for each case are (for each figure): (9a) 134,340;
(9b) 24,234; (9c) 604.  These values typically occur at the
extremes of the ζ-ω space considered and represent design
points far from the region of interest; however, these values
do indicate the relative merit of the three eigenvector
choices.  As seen in the figures, there is substantial change
in the shape of the surface in addition to the height.  As
might be expected, choosing the desired eigenvector to be
the same as the 30o angle of attack case (fig. 9b) produces a
bowl- shaped surface with the bottom of the bowl near the
open-loop short-period pole.  If the phugoid had been
chosen to be exactly the open-loop value, the bottom would
exactly correspond to the open-loop short-period pole.  This
case requires much lower gains, overall, than selecting νd to
correspond to the 5o angle of attack case (fig. 9a).  The 5o
angle of attack case, besides having substantially higher
gains, has drastically changed the shape of the surface; now
the bottom occurs at the lowest frequency and highest
damping considered (upper left-hand corner of the figure).
Figure 9c demonstrates how lower gains, relative to the
constant eigenvector case, can be achieved with the variable
eigenvector approach.  The shape of the surface again
shows very low gains in the region of the open-loop pole, as
expected.

The process of specifying eigenvectors in this study is
based on a transfer function build-up of the desired input-
output relationships and then transformation to a state space
system to determine the eigenspace.  The eigenvectors
could be specified by the designer directly  as linearly
independent combinations of zeroes and ones.  This is often
seen in the literature when eigenspace assignment is used in
an attempt to decouple responses of aircraft states.
However, this does not respect some of the physical
constraints of the aircraft.  The choice of eigenvalue and
eigenvector is closely related to specifying the placement of
poles and zeroes in a transfer function representation.
Transfer function zeroes are functions of aircraft physical
characteristics, for example, Tθ2 is directly tied to CLα.
Consequently, specifying nonaircraft-like values for these
parameters may result in physically unachievable
eigenvectors and large gains.  Fortunately, DEA does allow
a solution for the achievable eigenvectors that are as close
to the desired eigenspace as possible, however there is no
guarantee of small gains at the solution point.  Very high
gains imply the theoretically achievable eigenspace is not
physically obtainable.  The designer must work a tradeoff
between achieving a desirable eigenspace and available
control power.  One way that shows promise in reducing the
size of gains is to build up from aircraft transfer functions
and specify only those parameters where appropriate.

This building process begins with an open-loop state
space system of the aircraft states that can be written as

.
X = A X + B U (24) 

Y = C X (25)

This system can be transformed to transfer function form to
obtain the poles, zeroes, and gains for all the input-output
relationships.  One should note that scaling and gain
information will be lost in this transformation.  In transfer
function form it is easy to specify the desired poles.  The
zeroes also can be specified within limits that make sense
for the aircraft.  Note the design methodology will allow
any desired specification to be made, however, the result is
higher gains as the desired specification becomes less like
the open-loop model.  After appropriate specifications are
made, the transformation back to state space can be
performed.  This step also causes a loss of information
because the transformation back to state space is nonunique.
The inputs and outputs of the system are the same, however.
To reproduce the desired state space model, a simple
transformation is performed.  Given the nonphysical state
space model obtained from transfer functions as

.
Xn = An Xn + Bn U (26) 

Y = Cn Xn (27)

It is possible to map back to the original state space model
if Cn is invertible and the outputs Y are the desired physical
states, X.  Thus,

Xn = Cn-1 Y = Cn-1 X (28)

Substituting this expression into the nonphysical state
equation (24) produces

.
X = Cn An Cn-1 X + Cn Bn U (29) 

which is the desired state equation.

Concluding Remarks
CRAFT, a combination of DEA and a graphical

approach for representing control design metrics, has been
introduced to provide greater insight into control design
tradeoffs.  CRAFT allows integration of multiple design
goals in an efficient manner.  The method allows the
designer to use a building block approach to select or
emphasize a particular required capability or general overall
feature.  In particular it should allow selection of dynamics
that provide the greatest agility available while still
satisfying appropriate levels of flying qualities, controlling
system robustness, and still respecting the available control
power.  The approach allows MIMO design without
requiring full-state feedback and by control of the closed-
loop eigenspace flying qualities specifications can be
incorporated into the design.

The CRAFT methodology provides insights into
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tradeoffs for some common difficulties associated with
eigenspace assignment such as large gains and a lack of
robustness guarantees.  These insights are provided in the
form of a graphical display of the desirable regions for
robustness and gain magnitudes.  In addition, the sensitivity
to pole placement is clearly displayed providing an
indicator of the best directions to move poles for
improvement.  Caution is required by the user, however, to
specify the dynamics (especially eigenvectors) with
appropriate values to ensure acceptable gain magnitudes.  In
the final analysis, the overlay plot allows the designer to
select acceptable levels of a variety of metrics as well as
emphasize certain design goals, such as agility, to achieve
any desired final effect.
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Figure 1.  CRAFT control synthesis methodology
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