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Abstract—The emergence of distributed technologies as a 
reliable infrastructure for real-time control is enabling a new 
generation of distributed plug-and-play control architectures 
and methodologies; increasingly common are control 
systems that pass real-time data across traditional system 
boundaries to utilize distributed remote sensing, processing, 
and actuation. The Polymorphic Control Systems (PCS) 
project formalizes constructs that permits topological 
reconfiguration of control systems that span multiple 
heterogeneous systems and multiple communication 
mediums, towards the goal of control coordination and 
strategy optimization in a multi-system environment, 
increased resilience to failure and uncertainty, increased 
overall and individual performance, and better utilization of 
available resources.  This paper presents the concepts 
behind PCS, and presents results from a flight test 
experiment involving distributed reconfiguration of an 
autonomous landing controller in a collaborative multi-
vehicle environment. These flight test experiments 
demonstrate one of the goals of polymorphic 
reconfiguration: providing emergency assistance and 
collaborative coordination between multiple systems to 
achieve safely the mission critical objectives, where a 
system failure would have resulted in the loss of the 
aircraft.1,2 
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1. INTRODUCTION 

The continuing maturation of distributed wireless 
technologies is evident in the growing proliferation of 
active research which is springing from these areas, such as 
distributed sensor networks, control systems, and distributed 
plug-and-play avionics infrastructures [1]-[6].  Much of this 
research is spurred by the proliferation of low-cost secure 
wireless communication hardware, such as wireless 
Ethernet hardware and next generation wireless cellular 
technology, resulting in the emerging ubiquity of wireless 
technologies in our everyday lives and in a growing number 
of domains.  In particular, these recent advances are 
enabling new methods and techniques of control 
reconfiguration utilizing remote avionics, actuation, and 
sensing.  Distributed plug-and-play concepts can be applied 
[1][4] to establish dynamic distributed avionics networks as 
the backbone for communications in a single vehicle or 
across multiple vehicle systems with the goal of enhanced 
performance, resilience, and fault-tolerance.  These dynamic 
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networks have been shown to allow for the instantaneous 
restructuring of coordinated control systems topologies in a 
group of vehicles that could include delocalized sensor, 
actuator, and controller components to establish highly 
unusual control configurations, providing fault-tolerance to 
a wider class of vehicle system failures that previous 
approaches were ill-equipped to handle.  Control systems in 
these dynamic networks could conceivably be capable of 
instantaneous polymorphic change - that is, the 
instantaneous and fundamental restructuring of the 
controller form and function. Polymorphic control 
architectures could provide on the fly reconfiguration to 
optimize a controller topology given radical changes in the 
environment.  The Polymorphic Control Systems project 
seeks to research and formulate concepts for analysis and 
synthesis of component-based control systems towards the 
realization of polymorphic control concepts, with the 
ultimate goal of increased performance, resilience, and 
fault-tolerance. 

This paper presents results from PCS inspired flight test 
experiments conducted in 2007 at NASA Ames Research 
Center in Moffett Field, California.  These experiments 
involved coordinated control between ground vehicle assets 
at a landing site and an autonomous unmanned aerial 
vehicle experiencing a mid-flight emergency landing, but 
without sufficient onboard sensing to conduct a safe 
landing.  The lack of sufficient observability through its 
onboard systems forces the aircraft to consider wireless 
communication medium for closed loop control, utilizing 
the in situ resources of the airfield – in this case, an 
autonomous ground vehicle with a sensor suite designed for 
vision-based navigation of the UGV.  Through polymorphic 
restructuring of both the onboard flight system and the 
ground vehicle system, and utilizing secure communication 
over wireless 900Mhz ISM-band, the ground rovers provide 
vision-based guidance and sensing to the aircraft. 

2.  POLYMORPHIC CONTROL SYSTEMS 

The Polymorphic Control Systems approach applies control 
theoretic analysis and synthesis techniques to a 
mathematical construct that describes the composition and 
function of a distributed component-based system 
conducive to vehicle control system formulation and 
implementation, and implements these strategies on an 
embedded system architecture.  The requirements for this 
approach can be conceptually divided into three main 
constituents: a physical layer, a topological construct, and 
an analysis/synthesis approach. 

Topological 
Construct

Analysis and 
SynthesisPhysical Layer

 
Figure 1.  Conceptual Components of PCS 

The physical layer refers to the actual implementation of the 
distributed embedded plug-and-play environment that 
allows for immediate on-the-fly reconfiguration over local 
and global vehicle systems.  The physical layer comprises a 
number of technologies and mediums, including protocols 
for communication, the physical communication buses (e.g., 
Spacewire, MIL-STD-1553, etc.), various computing 
hardware communicating over the buses, wireless 
communication transceivers and radios, and the actual 
implementation of the algorithms that result from the PCS 
design process. 

The PCS research utilizes the Reflection Architecture [8] - a 
plug-and-play middle-ware communications layer for real-
time embedded systems - as the main protocol for inter-
component communication.  Reflection provides a large set 
of capabilities and functionality for component-based plug-
and-play that meets the requirements of the physical layer 
PCS definitions [1].  The benefits of component-based 
approaches to development of large scale systems [9][10], 
and vehicle systems in particular [11], are well documented 
(see treatment in [1]).  Reflection operates over a number of 
mediums, including the wireless mediums (900MHz, 
802.11x) and wired buses (RS-232/422, Ethernet) used for 
these flight test experiments. 

The topological construct defines the PCS component 
model: a mathematical description of a plug-and-play 
architecture as conceived for the purposes of PCS system 
formulation, analysis, and implementation.  This layer 
defines a topological construct capable of describing a large 
class of control configurations, which must also allow for 
modeling and analysis of real-world properties of 
distributed computing architectures such as latency, 
bandwidth limitations, errors and uncertainty in the data 
signals.  The PCS formulation provides concise definitions 
for a component-based plug-and-play system focusing on 
structural/topological definition and operations. The 
constructs model component-based intercommunications 
largely through a signal-routing architecture model, which 
is compatible with the implementation of Reflection in the 
physical layer. 

The analysis/synthesis approach defines the analytical and 
synthesis engines required to solve PCS problems posed in 
the context of the topological construct, which in turn 
generates control algorithms and procedures to implement 
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these results.  Subsequently, the algorithms are implemented 
on the physical layer. 

2.1 MODELING SYSTEMS IN PCS 

A component is a distinct, composable transform block 
whose interface is defined by its input and output 
characteristics, and whose implementation is strictly 
encapsulated.  As an example, consider a linear time-
invariant (LTI) dynamic system whose evolution is 
described by the vector-valued relationships shown in 
Figure 2.  The vector x is composed of a set of state 
parameters, the set (A,B,C,D) are matrices that represent 
static properties of the component, both of which are 
encapsulated by the component in the PCS definition along 
with the system of equations (although the parameters can 
be exposed in the interface at the discretion of the 
developer).  The set of input variables and output variables, 
u and y respectively, represent the interface of the 
component (in the example, shown as u∈ℜn,y∈ℜm). 
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Figure 2.  LTI System Represented in PCS. 

Complex dynamic systems are often decomposed into 
smaller functional blocks that can be characterized by their 
input and output relationships for the sake of 
interconnection and dataflow analysis.  For instance, the 
linear system shown in Figure 2 may be decomposed as 
follows: 
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By defining vectors z1 and z2, the equation in (1) can be 
expanded to two distinct interconnected systems, such as: 
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This componentized decomposition is represented in 
graphical form that specifies the input/output characteristics 
of the component, shown in Figure 3. 
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Figure 3.  Expansion of an LTI System Component. 

Similarly, consider a system of n components defined either 
by the general dynamic system formulation, or the LTI 
system formulation, as shown in Figure 2.  These systems of 
interconnected components can be contracted into a single 
formulation of interconnected systems, for instance through 
an evolved system approach [7] as shown in eq 3. Below.  
Here, εij is a parameter which controls the evolution of the 
component systems. 
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In a topological context, the graph for this contraction is 
shown in Figure 4. 
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Figure 4.  Contraction through Evolved Transformation 

 
The process shown in Figure 3 and Figure 4 are examples of 
more general topological operations defined as component 
expansion and component contraction.  The directed edges 
in these figures represent data flow and equivalence; that is, 
two variables are equivalent, and the directionality of the 
edge represents movements from the output of one 
component to the input of another component.  The graphs 
of Figure 3 and Figure 4 shows configuration space 
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representations of the same system from a functional point 
of view.  Through the non-isomorphic operations of 
expansion and contraction, many different representations 
can be posed of the same system from a functional and 
dynamic standpoint. 

2.2 TOPOLOGICAL CONSTRUCT 

Conceptually, the following PCS construct provides a 
formalization describing control systems from a graph-
theoretic topological standpoint, which is uncommon in the 
literature for real-time control problems.  The basic 
constructs of the PCS framework are similar to graph 
theoretic definitions that formalize hypergraphs, but have 
distinct and important differences.  Let a vertex v∈V be an 
indivisible unit in the component graph.  Vertices represent 
a data attribute of a component in a component graph.  Let a 
directed edge e∈E be defined as an ordered pair e=<s,t> 
where s,t∈V.  Edges represent a route for data flow between 
two data attributes.  Let E be the set of all edges.  For 
notation purposes, let the mappings init:E→V and ter:E→V 
be defined on every edge e∈E such that init(e)=s and 
ter(e)=t, where s∈V is the initial vertex and t∈V is the 
terminal vertex of the edge, respectively. 

A component graph G=(V,E,C) is a set of vertices V, a set 
of edges E, and set of components C that is recursively 
defined below.  Let a graph G’=(V’,E’,C’) be a subgraph of 
a graph G=(V,E,C) if V’⊆V, E’⊆E, and C’⊆C.  "G is a 
subgraph of G’" is written as "G⊆G’". 

A component graph G is edge contained if the following 
holds: init(e)∈V(K) and ter(e)∈V(K) ∀ e∈E(K). 

A component K∈C(G) is a component graph subject to the 
following constraints: 

(i) K is a subgraph of G; 

(ii) init(e)∈V(K) and ter(e)∈V(K) ∀ e∈E(K) (Edge 
Containment); 

(iii) if L∈C(K) then L is a subgraph of K (Component 
Containment), and 

(iv) K∉C(K) (Monotonicity). 

For a component K, an element of C(K) is a called a 
subcomponent of K.  All components must have at least one 
vertex.  If a component contains an edge, it must start and 
end in vertices contained within that component.  All 
subcomponents of a component are proper subgraphs of that 
component, and a component cannot contain itself.  As a 
result, subcomponents are a proper subset of their owning 
component.  A component C subsumes a component K iff 
K⊂C and either (i) c'∈C(c), or (ii) there is a subcomponent 

c’’∈C(c) that subsumes c’.  Note that a component can 
never subsume itself. 

The definition of a component as a subgraph allows an 
arbitrary level of detail when describing components in the 
system, as shown in Figure 5.  Non-trivial systems can be 
described as a single component that contains the entire 
component graph G. 

 
Figure 5.  Component Level of Detail 

The configuration space defines the space of all possible 
configurations, i.e., the space of all graphs representing all 
possible combinations of components and interconnections. 
Let the configuration space C be defined as the graph 
C=(V,E,C) where 

(i) V(C) is a set of vertices, 

(ii) C(C) is a set of components, and 

(iii) E(C) is a set of all possible directed edges on V; 
i.e. <s,t>∈E(C) ∀ s,t∈V(G). 

For notation purposes, given a graph G=(V,E,C), let the 
mappings V(G)=V, E(G)=E, and C(G)=C be defined for 
every graph G.  In addition, an entity x∈G is equivalent to 
x∈V(G)∪E(G)∪C(G).  A component C contains a set of 
vertices V if V⊆V(C). 

Let the parent component of a vertex v be defined as 
follows: for every vertex v∈V in C, there exists a unique 
c∈C(C) such that v∈c, E(c)=∅, and C(c)=∅.  This unique 
component c is said to be the parent of v, and is written 
parent(v) = c.  

A vertex has one and only one parent component.  As a 
result of this rule, the set of parent components in C(C) are 
set of components with no edges or subcomponents, and 
this set is unique and disjoint.  Further, there are 
components with no edges or subcomponents that are 
inadmissible in C because of violation of the parent 
component definition. 

The concept of connectiveness from traditional graph theory 
is useful, and is derived here for components in a graph.  
Note that these definitions do not consider edge direction in 
the definitions for component-connectivity. 

Given a graph G, two components A,B∈C(G) are neighbors 
in G if there exists an edge e∈E(G) such that (init(e)∈V(A) 
∧ ter(e)∈V(B) ) ∨ ( init(e)∈V(B) ∧ ter(e)∈V(A)). 
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Let a component-path Pc be an ordered set of components in 
G where either (i) Pc=<A,B> ∧ A,B are neighbors, or 
(ii) there exists two components A,B∈Pc such that A,B are 
neighbors, and the set (Pc-{A}) is a component-path.  A 
component graph G is component-connected if there exists 
at least one component-path between every pair of 
components in G.  A component-path P=<X0,X1,…,Xn-

1,X0> where n≥2 is a component-cycle. 

A component-cycle P is of maximal length in G if for all 
P’⊆C(G), where P’≠P and P’ contains a component-cycle, 
|P|≥|P’|.  A component graph G is a cycle-bound component 
graph if two conditions hold: (i) G is component-connected, 
and (ii) there exists a path P* of maximal length in G where, 
given a component K∈C(G), either (a) K∈P*, or (b) there 
exists a component-cycle P’ in G where K∈P’ and 
P*∪P’≠∅.  In other words, every component is either part 
of the maximal length component-cycle, or is contained in 
another component-cycle which shares at least one 
component with the maximal length component-cycle. 

Given these definitions we can formally define a particular 
configuration in configuration space, where a configuration 
is a graph that represents a finite selection set of 
components, edges and vertices.  Let a configuration graph 
G in C be defined as a graph G=(V,E,C) that represents a 
specific configuration implementation, subject to the 
following: 

(i) G∈C(C) (G is a Component); 

(ii) For all v∈V(G) there exists one and only one 
K∈C(G) such that v∈K (Disjoint Subcomponents); 

(iii) For all e∈E(G), let init(e)∈V(L) and ter(e)∈V(M) 
are contained in different components 
(Pruned Edges); 

(iv) G is component-connected 
(Component-Connectedness). 

For a configuration graph, all components in the 
representation are disjoint; in other words vertices are 
contained by only one component in G, which is not the 
parent of the vertex if parent(v∈G)∉C(G). 

The following statements (see [1]) provide some insight into 
necessary conditions for observability and controllability of 
components through topological properties of a controller 
graph. 

Consider a component graph G.  If a component K∈C(G) is 
controllable in G, then there exists a path P in G where 
K∈P, and an edge e in P where term(e)∈V(K). 

Consider a component graph G.  If a component K∈C(G) is 
observable in G, then there exists a path P in G where K∈P, 
and an edge e in P where init(e)∈V(K). 

2.3 PHYSICAL LAYER 

The physical layer in the Polymorphic Control Systems 
formulation must implement a morphable controller 
network topology over continuous systems and components, 
as defined in the topological construct.  In addition to 
supporting the component-based definitions, a candidate 
PCS physical layer must also support the following 
operations. 

Let G be a component in C with pruned edges and disjoint 
subcomponents.  Define the component-prune operation 
cprune(G) to be as follows.  If there exists a component 
A∈C(G) such that A is not component-connected to any 
other component B∈(C(G)-A) for all B, then 
cprune(G)=(V(G),E(G),C(G)-A).  Otherwise cprune(G)=G. 

Let G and K be non-empty component graphs in C, let 
e∈E(C), e≠0, such that e connects G and K.  Then define 
combineCGraphs(G, K, e)=( V(G)+V(K), E(G)+E(K)+e, 
C(G)+C(K) ).  The result of combineCGraph( G, K, e ) is 
itself a component graph. 

Let G be a configuration graph in C, let e∈E(C), e≠0, and 
ter(e)∪init(e)⊆V(G), then the operation addEdge(G,e) is 
defined by the following: 

(i) If no component in G subsumes ter(e), then 
addEdge(G,e)=combineCGraph(G, 
parent(ter(e)), e); 

(ii) Else if no component in G subsumes init(e), then 
addEdge(G,e)=combineCGraph(G, parent 
(init(e)), e); 

(iii) Otherwise addEdge(G,e) = G. 

Let the operator  ∅ be defined as G∅e := cprune( (V(G), 
E(G)-e, C(G) ), where G is a configuration graph in C, and 
e∈E(C). Similary, let the operator ⊕ be defined as  G⊕e := 
(V(G),E(G)+e,C(G)).  Note that G⊕e and G∅e results in a 
configuration graph. 

In implementation, these definitions are implemented 
through hardware or software algorithms that are specific to 
the particular layers involved. 

3. FLIGHT TEST EXPERIMENTS 

PCS flight test experiments were conducted that focused on 
a specific case of reconfiguration where observability of the 
system has been damaged or degraded, and no possible 
reconfiguration onboard the vehicle system would provide 
the necessary conditions for a safe landing to occur.  In this 
situation, traditional control strategies for failure mitigation 
- such as reconfiguration (recovering from actuator failure), 
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robust design (uncertainty), or adaptive control strategies 
(actuator failure or uncertain dynamics) - would not be 
sufficient to recover and save the aircraft.  The objective of 
the experiments was to demonstrate through flight-testing 
the viability of real-time polymorphic reconfiguration, 
demonstrate the PCS algorithms effectiveness in time-
critical control applications, and demonstrate the proper 
operation of the real-time embedded software that is hosting 
the PCS algorithms. 

 
Figure 6.  Flight Testing at Moffett Field, CA 

 

 
Figure 7.  UGV Assist in UAV Landing 

The experiment was designed as follows. A UAV 
performing flight maneuvers at altitude is required to 
perform an immediate landing maneuver.  The UAV is 
assumed to have suffered damage to its onboard position 
estimation sensors, and accurate ground-relative position 
measurements - particularly AGL altitude, glide slope, and 
localizer deviation measurements - are not available to 
conduct a landing.  A ground-based unmanned autonomous 
rover is in the nearby vicinity, monitoring the airfield for 
debris and foreign objects utilizing its onboard sensors suite 
that includes a vision-based navigation system to identify 
and track airfield debris hazards.  The PCS system is 
utilized to model the system, analyze and reconfigure the 
controllers onboard both vehicles, and conduct the aircraft 
to a safe and timely landing. 

The limited accuracy of low-cost position measurement 
sensors causes difficulties for autonomous landing of small-
scale low-cost UAVs. Many small-scale UAV systems 
utilize low cost avionics suites with standard GPS, which 

provides position accuracy of approximately 10m (with 
95% confidence) in the horizontal direction and 15m (with 
95% confidence) in the vertical direction, which is 
insufficient accuracy to perform a flare and landing 
maneuver.  Additionally, GPS does not provide ground-
relative estimations, and landing is not possible without 
accurate measurement of the ground altitude on the runway. 
 While these are real issues faced by UAV designers and 
developers, the purpose of this experiment is not to design a 
UAV landing system.  Rather, these experiments 
demonstrate a scenario where, at a certain point in time, the 
global system is faced with a scenario where it cannot meet 
desired objectives (due to damage of onboard components, 
for instance), and state of the art control techniques will not 
be able to complete the mission objectives or even save the 
aircraft. 

The PCS flight test experiments were conducted on Moffett 
Field (Figure 6) at NASA Ames Research Center on two 
research vehicle platforms: the Exploration Aerial Vehicle 
(EAV) UAV platform, and the Mobile Autonomous 
eXplorer (MAX) UGV platform. 

3.1 EXPLORATION AERIAL VEHICLE UAV 

The Exploration Aerial Vehicle (EAV) [12] is an unmanned 
autonomous aerial vehicle build on a Hanger 9 airframe 
modeled after the 2000 version of a Cessna 182 at one 
quarter-scale (Figure 8).  This particular airframe affords a 
large interior volume for installing flight avionics and 
systems.  The specifications for the EAV are shown in 
Table 1. 

 
Figure 8.  The Exploration Aerial Vehicle (EAV) 
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Table 1.  Exploration Aerial Vehicle Specifications 

Airframe  Hanger 9 Cessna 182 Skylane 
95” ARF 

Wing Span 94.75 in (2406 mm) 
Overall Length 76.75 in (1949 mm) 
Wing Area 1246 sq in (80.39 dm²) 
Wing Loading 32.7 oz/sq ft 
Flying Weight (Empty) 18.5 lb (8.22 kg) 
Flying Weight (Full) 23.2 lb (10.52 kg) 
Max Payload Weight 10 lbs 
Cruise Speed 45 knots 
Operations Ceiling 500 ft (flight field restrictions) 
Engine Make/Model Zenoah G-38 
Engine Type 2-Stroke Gas/Oil 
Engine Displacement 2.3 cu in (38 cc)  

Actuation/Servomotors 
Six (6) HiTec HS-5646MG DC 
Programmable Digital Ultra 
Torque Servos 

Primary CPU Diamond Athena 
660MHz/128MB RAM 

Secondary CPU Versalogic Cheetah M 
1.6/512MB RAM 

Embedded Controller Motorola DSP56807 

Sensor Suite 

Athena GS111m INS/GPS Unit, 
provides full 6DOF state, 
WAAS-enabled GPS, angle of 
attack, sideslip, airspeed and 
pressure altitude 

Sensors/Vision Point Grey Dragonfly Cameras 

Communication Links 

72Mhz Receiver (Pilot/ Safety 
Control), 900Mhz Transceiver 
(Data Communications), 2.4GHz 
Transceiver (Data/ Video 
Downlink) 

 

A set of flight tests had been conducted previously to 
identify the major lateral and longitudinal modes of the 
EAV.  During these tests, specific maneuvers (such as 3-2-
1-1, 2-1-1, pulses, and doublets) applied to the aircraft 
excited the aircraft modes sufficiently for system 
identification.  A least-squares regression in frequency 
domain identified the major modes of the system, as shown 
in Figure 9. 

Spiral Mode
Pole: -0.0692
NatFreq (rad/s) : 0.0692
Damping Ratio: 1.000

Roll Mode
Pole: -7.9305
NatFreq (rad/s) : 7.9305
Damping Ratio: 1.000

Dutch Roll Mode
Pole: -2.0211 +/- 4.5734i
NatFreq (rad/s) : 5.0001
Damping Ratio: 0.4042

 

Phugoid Mode
Pole: -0.9535 +/- 0.3622i
NatFreq (rad/s) : 1.0200
Damping Ratio: 0.9348

Short Period Mode
Pole: -6.7387 +/- 4.6572i
NatFreq (rad/s) : 8.1914
Damping Ratio: 0.8227

 

Figure 9.  EAV System: Pole-Zero Plots of the Lateral 
and Longitudinal Modes 

Table 2.  EAV System Characteristics 

Mode Pole Frequency 
(rad/s) 

Damping 
(ξ) 

Roll Mode -7.9305 7.9305 1.0000 
Dutch Roll 
Mode 

-0.0692 5.0001 0.4042 

Spiral Mode -0.0692 0.0692 1.0000 
Short Period 
Mode 

-6.7387 +/- 
4.65721i 

8.1914 0.8227 

Phugoid 
Mode 

-0.9535 +/- 
0.36220i 

1.0200 0.9348 

 

3.2 MOBILE AUTONOMOUS EXPLORER UGV 

The Mobile Autonomous eXplorer (MAX) UGV platform is 
a commercial robotics platform designed by Carnegie 
Mellon University West Campus and Senseta, Incorporated 
(Figure 10).  This UGV is a small all-terrain vehicle used 
for research and education, with a powerful and densely 
packed sensor and computing suite detailed in Table 3. 
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Figure 10.  The Senseta Inc. Mobile Autonomous 

eXplorer (MAX) Ground Rover 

Table 3.  MAX Ground Rover Specifications 

Airframe  Senseta, Inc. MAX Rover, version 
5.0A (Ames), Carbon-Fiber Frame 

Dimensions 18” x 15” x 19” 
Top Speed 11.2 mph (5.0 m/s) 

CPU – General Purpose 
1.8 GHz Pentium-M, 1GB RAM 
Mini-ITX Board with Full-Size PCI 
Expansion Slot 

CPU - Embedded 
Two (2) Programmable Onboard 
I/O Boards based on the Motorola 
DSP56F807 Chipset 

Drive Train/Suspension 

Two (2) Novak SS4300 Brushless 
DC Motor Systems, Four wheel 
drive with front and rear 
differentials, Beam Suspension 

Turning Radius 
Twin, independent Ackerman 
steering with tight turning radius 
(25 cm) 

Sensing- Inertial/GPS 

Athena Guidestar GS-111m 
Navigation System (3-axis 
accelerometer, 3-axis gyroscope, 3-
axis magnetometers) with DGPS 
(cm accurate) 

Sensing- Sonars 10 sonar rangefinders with 
integrated photo sensors 

Sensing- LIDAR 
Six Hokuyo Scanning LIDAR, 240o 
Scan Angle, 1024 Lines at 50Hz, 
4m range, +/-10mm 

Sensing- Vision 

Stereo camera pair (640x480 @ 
30fps or 1280x960 @ 7.5fps 24-bit 
color) mounted on an articulated 
panospheric pan and tilt unit 

 

3.3 AUTOLANDING SYSTEM 

The onboard flight system and ground rover system were 
designed and implemented in the Reflection Architecture, 
allowing PCS reconfiguration to occur on the fly in this 
flight test experiment on the EAV flight computer, just prior 
to the approach phase.  The vision processing components 
were implemented using Matlab Simulink on the ground 
rovers; unfortunately, time constraints did not permit the 
vision processing component to be ported over to 
Reflection, so the ground rover system was manually 

configured to the final PCS control graph configuration, and 
did not reconfigure on the fly. 

 
Figure 11.  Aircraft Landing Profile 

 
Figure 12.  FMS Autopilot Landing Logic and Mode 

Transition Diagram 

Conceptually, the EAV controller is composed of three 
major components: the flight management system (FMS), 
the mode-based autopilot system, and the hardware/actuator 
interfaces (see Figure 13 for details of a landing mode 
configuration).  The FMS onboard the UAV is responsible 
for monitoring the aircraft, receiving instructions from the 
ground station computers, managing the flight logic, and 
instigating the appropriate mode transitions of the lower-
level autopilot systems.  This responsibility includes 
implementing the autopilot landing system logic. 

The autopilot landing system follows the profile shown in 
Figure 11.  Figure 12 shows the FMS state transition 
diagram for the autopilot landing system.  This system has 
four phases:  approach, descent/glide slope follow, flare 
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transition, and flare.  In the approach phase, the aircraft 
slows to the reference approach speed and descends from 
cruising altitude to the descent altitude.  The controller then 
follows a descent trajectory by following a controlled glide 
slope angle that varies between 0.0 and 10.0 degrees (5 
degrees nominal) based on the error between the desired 
landing point and the aircraft’s estimated landing point.  At 
a predefined transition altitude, the aircraft transitions from 
the glide-slope controller to the flare controller.  During the 
autopilot testing, the UAV system was found to provide 
more consistent performance with the introduction of a flare 
transition phase; this transition phase gradually transitions 
from the glide-slope follow to the flare trajectory.  Once the 
UAV enters the final flare phase, the aircraft throttles to a 
minimum setting, with a fixed descent rate until touchdown. 

3.4 PCS ANALYSIS 

Figure 13 shows a PCS configuration graph for one of the 
autopilot modes; in this case, the ‘descent’ phase of the 
autopilot landing system.  In this configuration graph, the 
highlighted position signals have insufficient accuracies to 
achieve an autonomous landing.  The component graph Geav 
comprises the set of components  
C(Geav)={Kfms, Kc, Km, KUAV}, and the component Kc can be 
further decomposed into C(Kc)={Kc1..Kc7}.  Here, Kci are 

PID controller blocks.  The UAV dynamics represented by 
the component Kuav represent the physical system rather 
than an implemented component.  The inclusion of Kuav 
endows Geav with several appealing properties:  Geav is an 
edge contained, component connected, cycle-bound 
component-graph.  The removal of the edge set Ev=(ev1,ev2) 
leaves Geav without a maximal length component-cycle that 
would meet the requirements for Geav to be cycle-bound, 
which is a necessary condition in the outer loop 
implementation for controllability of Kfms. 

The ground vehicle’s autonomous control system is shown 
in Figure 14 as a highly contracted high level PCS 
configuration graph, Gmax.  Similar to Geav, the KUGV and 
Kenv are included for analysis, although Gmax is not a 
maximal-cycle component graph (Kenv, for instance, does 
not meet the necessary conditions for controllability).  A 
path of interest in this graph is the path {Kcpc, Kcam, Kvis, 
Ktf}.  Kvis is the vision processing system, which is an 
interface to the camera hardware and provides a steady 
stream of image data.  Ktf is a vision processing/object 
detection filter which produces the position of a tracked 
object of interest.  Kcpc is the camera pan/tilt head tracking 
controller, which points to an input position.  Establishing a 
path from Ktf to Kcpc would form a closed loop tracking 
control around the camera system, aiming the camera at the 
current object of interest being identified by the tracking 
filter Ktf. 

 
Figure 14.  PCS Configuration Graph Gea, for the EAV Glide Slope Phase Autopilot 

The highlighted signals have accuracies which are insufficient for a safe landing. 

 
Figure 14.  PCS Configuration Graph for the Conceptual UGV Autonomous Control System 
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Problem Statement:  The PCS problem statement can be 
stated in two parts.  Given the graph defined by G’= 
combineCGraph((Geav∅Ev), Gmax), find a sequence of 
operations on the graph G’ that arrives at a graph G*∈C, 
where G* provides a control path that includes the 
components {Kfms, Kc, Kuav}, and G* stabilizes and controls 
Kuav.  Given a candidate graph G*, determine the control 
strategy that provides guidance for the aircraft to safely 
conduct an autonomous landing. 

Control Topology:  Several candidate graph topologies can 
be constructed utilizing Ktf to track the UAV, but since no 
criteria for optimization or performance was enforced in this 
problem statement, the candidate graph G* was selected for 
ease of implementation, and is shown in Figure 15.  In more 
general situations where additional candidate topologies can 
be considered, or multiple resources require consideration to 
constraints such as bandwidth or processing limitations, the 
graph theoretic constructs were designed to allow analysis 
and implementation of topological optimization operations, 
as described in [1]. 

The sequence of operations that operate on Guav are shown 
in Figure 16.  This solution required the development of a 
new controller component Kekf that was not an element of 
the original graphs Geav or Gmax.  This component contains a 
custom extended Kalman filter, designed to take the output 
angle provided by the image processing component Ktf and 
provide an estimate for the position of the aircraft.  Note 
that since the edge from Ktf to Kekf crosses the system 

boundary, latency will be incurred on the signal, and this is 
taken into account in the filter design.  The details of the 
development of this filter are given in [2]. 

Once the new component Kekf was added, a minimum-cut 
was determined to partition the components to the various 
partitions to minimize communication bandwidth usage.  
During this process, the Kekf component was moved to the 
UAV system partition. 

The graph G* is edge contained, component connected, and 
is a maximal-cycle component-graph (with the elimination 
of Kc4).  The necessary conditions for observability and 
controllability on Kfms is provided by introducing the edge 
from Kekf to Kfms, which transports the estimated position of 
the UAV based on vision (P*

v). 

Rover Control Strategy:  Similar to the selection of the 
configuration topology G*, the control strategies on the 
control graph G* for both the rover and the UAV system 
were selected for sufficiency and ease of implementation. 
As shown in Figure 7, the rover is given a high level 
command to navigate to a position on the runway ahead of 
the landing zone.  This requires manipulation of the planner 
(Kpln), but the control structure cycle {Kpln, Ktp, Kcms, Kap, 
Kmtr, Kugv, Ksen} was not modified from the original Gmax 
configuration (edge Ksen-Kpln is not shown).  From this 
vantage point, the rover can directly measure cross-track 
error, glide slope deviation, and can infer AGL altitude and 
position.  The control path {Kcpc, Kcam, Kvis, Ktf} does exist 
as a cycle in G*, representing a closed loop control of the 

 
Figure 15.  Configuration Graph G* 

The highlighted signals and Kekf were added. 
Bold-outline blocks must remain in a particular system partition. 



 

 11

tracking head.  The tracking filter must be set to track the 
UAV, and the closed loop controller for the tracking head 
was included that will track the aircraft as the aircraft 
descends. 

UAV Control Strategy: The manipulation to the UAV 
control system is largely topological. 

In order to establish a controller that satisfies the objectives, 
the onboard UAV system reconfigures from G’ to G*.  One 
aspect of the reconfiguration is that data from the rover’s 
remote sensors are routed to several points in the mid-level 
control loops.  The reconfiguration bypasses the cross-track 
error calculation component Kc4 completely, and feeds the 
cross-track error directly into Kc5 from the vision 
measurement in Kekf, in an attempt to close the loop around 
the remote sensors at the lowest level possible.  Likewise, 
the reconfiguration routes the glide-slope measurement 
directly to the Kc2 component. 

Implementation Concessions for Flight Test:  Unfortunately, 
the constraints of flight testing on a live runway and on 
schedule required a large number of concessions.  The rover 
was positioned on the side of the runway, rather than a 
location in the center of the runway, because of flight safety 
issues.  Additionally, the vision controller development 
required more time than was expected, which did not allow 
time for the Matlab controller to be ported to Reflection.  As 
a result, the vision processing on the rovers had to be 
performed in Matlab at run-time, and the rover system could 
not take part in the reconfiguration; rather, the rover’s 
configuration graph in G* was implemented completely in 

Matlab [2]; the rover position and camera articulations were 
fixed.  Vision sensor data was directly uploaded to the 
UAV’s system through a wireless 900Mhz radio modem 
link. 

4.0 FLIGHT TEST RESULTS 

The flight control algorithms for PCS were successfully 
implemented and tested on the EAV UAV and the MAV 
UGV vehicle systems in a series of tests in the later part of 
2007.  The graphs in Figure 17 through Figure 20 at the end 
of this report show profiles and trajectories for many of the 
approaches. 

The Reflection Architecture [8] was used for constructing 
and maintaining the PCS graphs.  The algorithms onboard 
the EAV were implemented in C++ on a 700Mhz Pentium 
III class PC/104 processor.  The reconfiguration script was 
written in ReflectionScript, and interpreted averaged 10.3 
milliseconds to execute the reconfiguration on this platform. 
 Several successful flight tests were conducted that tested 
the mid-flight control reconfiguration.  The reconfiguration 
onboard occurred without any noticeable problems. 

The ground rover systems were not implemented in a PCS-
enabled architecture because of schedule constraints, but 
rather the final configuration was implemented in Matlab 
utilizing the image processing toolbox.  The vision 
processing loop, running in Matlab on the 1.8 GHz mini-
ITX CPU, ran at roughly 5-10 Hz, but varied depending on 
the image complexity.  Development of the vision 

 
// Reconfiguration operations 
 
define Kekf; 
define objMatlabIntrfc; 
 
// Load Matlab Interface 
objMatlabIntrfc = Guav.CreateComponent ( "pcsmatlabinterface.dll" ); 

// ... objMatlabIntrfc specific function calls omitted... 
 
// Delete and add components. 
Guav.DeleteComponent ( Kc1 ); 
Guav.DeleteComponent ( Kc2 ); 
Guav.PruneEdges (); 
Kekf = Guav.CreateComponent ( "pcstrackingfilter.dll” ); 
 
// Connect the graph 
Guav.CreateEdge ( "Kimu.m_posEast_ft", "Kekf.m_posEast_ft" ); 
Guav.CreateEdge ( "Kimu.m_posNorth_ft", "Kekf.m_posNorth_ft" ); 
Guav.CreateEdge ( "Kimu.m_posUp_ft", "Kekf.m_alt_agl_ft" ); 
Guav.CreateEdge ( "Kimu.m_velEast_fps", "Kekf.m_velEast_fps" ); 
Guav.CreateEdge ( "Kimu.m_velNorth_fps", "Kekf.m_velNorth_fps" ); 
Guav.CreateEdge ( "Kimu.m_velUp_fps", "Kekf.m_velUp_fps" ); 
Guav.CreateEdge ( "Kekf.m_posNorthOut_ft", "Kfms.airplane_pos_north_ft" ); 
Guav.CreateEdge ( "Kekf.m_posEastOut_ft", "Kfms.airplane_pos_east_ft" );  
Guav.CreateEdge ( "Kekf.m_alt_aglOut_ft", "Kfms.airplane_pos_altitude_ft" ); 
Guav.CreateEdge ( "Kekf.m_crossTrackAngleErr_rad", "Kc5.inputXTrackAngularErr_rad" ); 
Guav.CreateEdge ( "Kekf.m_crossTrackAngleErr_rad", "Kc2.inputGSAngleActual_rad" ); 
Guav.CreateEdge ( "objMatlabIntrfc.m_azimuthAngle_rad”,  
Guav.CreateEdge ( "objMatlabIntrfc.m_isRxExperimentData", "Kekf.m_isRxExperimentData" ); 
Guav.CreateEdge ( "objMatlabIntrfc.m_isVisionDataValid", "Kekf.m_isVisionDataValid" ); 
Guav.CreateEdge ( "objMatlabIntrfc.m_imageTime_sec", "Kekf.m_imageTime_sec" ); 
Guav.CreateEdge ( "objMatlabIntrfc.m_vAngle_rad", "Kekf.m_vAngle_rad" ); 
Guav.CreateEdge ( "objMatlabIntrfc.m_hAngle_rad", "Kekf.m_hAngle_rad" ); 

Figure 16.  UAV Reconfiguration Script for G* (ReflectionScript Language) 
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processing algorithms, including noise rejection, is covered 
in [2]. 

The amount of time required to develop the flight test was 
much longer than expected.  In fact, the majority of the 
development and flight test time was spent tuning and 
modifying the landing controller, developing successful 
strategies for the rover vision systems [2], and interfacing 
with Matlab.  These issues resulted in accomplishing only a 
fraction of the initial goals.  The vision processing and EKF 
filter performed very well during the tests.  The onboard 
EAV systems are capable of providing around 3.5-7m 
accuracy in altitude AGL.  Through reconfiguration, the 
vision-based system provided less than 1.5m error.  See 
reference [3] for further details. 
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Figure 17.  Ground-Track of Autonomous Landing. 

 
Figure 18  3D Plots of the Autonomous Landings. 

Showing measurement delay consideration, see ref. [3]) 

4.0 CONCLUSION 

The successful flight test of this small-scale PCS 
experiment fielded PCS inspired architectures and 
controllers for the first time on real flight vehicles.  The 
goals for the PCS project are broad, and this simple and 
modest flight test experiment barely scratches the surface of 
possibilities for topological approaches to control 
reconfiguration over distributed networks.  Previous 
experiments have shown the scalability of the PCS 
approach; PCS itself is in some sense a modeling tool, and 
using these tools scalable approaches have been introduced 
to automatically assemble controllers when competing 
multiple configuration possibilities over limited bandwidth 
and processing situations [1].  Both these previous 
applications and the experiment detailed in this paper show 
real-time configuration on various types of vehicle systems. 
These applications begin to shed light on how distributed 
wireless technology, lightweight plug-and-play 
architectures, and graph-theoretic topological analysis can 
be applied to the problem of control reconfiguration to 
develop a class of controllers that can adapt to certain 
environments, situations, and failures better than alternative 
state of the art techniques. 

Further development into the mathematical formulation will 
be pursued.  The conditions for stability, controllability, and 
observability are currently being investigated to see if graph 
theoretic approaches can provide new insight into control 
systems from a topological perspective.  For instance, 
certain guarantees when contemplating controller/dynamic 
system composition and reconfiguration may be easier to 
achieve through topological analysis than through current 
approaches based on linear and non-linear analysis.  This 
may lead to optimization methods for rejection or 
acceptance of candidate control topologies, control system 
optimizations in large distributed control systems from a 
control structures approach, or automated assembly of 
controllers in damaged systems through topology 
reconfiguration. 
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Figure 19.  Descent and Landing Tracking Performance 
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Figure 20.  Flight Test Experiment Landing Profiles 

(Top) Altitude profiles for various landings, as reported by Kekf 
(Middle) Vertical speed profiles, (Bottom) Airspeed profile. 
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