Transcript of the Joint FAA/Industry Symposium on Level B Airplane Simulator

Motion Requirements

Part 8 of 9

Appendix 2:

Proposed Revision to Level B Standards Contained in AC120-40C (Draft)

Washington Dulles Airport Hilton June 19 - 20, 1996

PROPOSED REVISION TO LEVEL B STANDARDS CONTAINED IN AC120-40C (DRAFT)

AIRPLANE SIMULATOR QUALIFICATION

PURPOSE. In March and June of 1996 the FAA Advanced Qualification Program(AQP) Manager and the National Simulator Program (NSP) Manager convened workshops of Subject Matter Experts on flight simulator aerodynamic programming and on motion systems to specifically address Level B flight simulator standards. The objective was to identify Level B flight simulator characteristics specific to the needs of regional air carriers for recurrent training. For the AQP, the Level B simulator will totally support a Line Oriented Evaluation. Of course, once the standards for Level B simulators are agreed and promulgated, they will be applicable to any user of Level B simulators in an FAA approved flight training program.

The proposed revision contained herein reflects the results of the Level B Flight Simulator SME Workshops. Changes to Appendix 1, <u>Simulator Standards</u>, and Appendix 2, <u>Simulator Validation Tests</u>, of Advisory Circular (AC)120-40C (Draft) are proposed as indicated in the following tables. These tables would replace, or revise as indicated, the pertinent sections of the AC tables. The aerodynamic programming workshop addressed data sources and flight testing techniques. Those results are in Appendix 7.

SIMULATOR STANDARDS			ATC /EL	OR	COMMENTS
	Α	В	С	D	
 2. GENERAL v. Relative responses of the motion system, visual system, and cockpit instruments shall be coupled closely to provide integrated sensory cues. These systems shall respond to abrupt pitch, roll, and yaw inputs <i>for levels A</i>, <i>C</i>, <i>and D</i>, <i>and to abrupt pitch</i>, <i>roll and sway inputs for</i> <i>Level B</i> at the pilot's position within 150/300 milliseconds of time, but not before the time, when the airplane would respond under the 	Х	X	x	X	For Level A response must be within 300 milliseconds For Levels B, C and D response must be within
same conditions. Visual scenes					150 milliseconds
3. MOTION SYSTEM. a. Motion (force) cues	X	X	X	X	
b. A motion system having a minimum of three degrees of freedom.	Х				
<i>c.</i> A motion system having a minimum of four degrees of freedom which must be at least pitch, roll, sway and heave d. re-designate "c.", "d."		Х	x	x	
e. re-designate "d.", "e."	Х	X	X	л Х	

APPENDIX 1. SIMULATOR STANDARDS Changes

APPENDIX 2. TABLE OF VALIDATION TESTS Changes:

There is a disagreement between Appendices 1 and 2. Appendix 1, Item 3.e. requires motion special effects for Level B, Appendix 2, Item 3.e. does not. Therefore, at least App. 2 Item 3.e. (2) through (6) and (8) and (9) should be marked as applicable to Level B.

Appendix 2, Item 3.a., b., and c. Should be unmarked for Level B and a comment added that Level B is listed separately.

Following is a proposed revision to the Table of Validation tests for Motion.

I = Initial Evaluation R = Recurrent Evaluation

K – Recuirent Evaluat		FLIGHT		ALIFI			
TESTS	TOLERANCE	CONDITION		QUIR			COMMENTS
	π		А	В	С	D	
3. MOTION SYSTEM	As specified by operator	N/A	IR		IR	IR	Appropriate test to
Response	for simulator acceptance	14/21	IX		ш	ш	demonstrate frequency
							response required
b. Leg Balance	As specified by operator		IR		IR	IR	Appropriate test to
	for simulator acceptance						demonstrate leg balance
I DI				.			required
Leg Balance c. Turn Around	Design dependent As specified by operator		IR	Ι	ID	ID	See Appendix 7
c. Turn Around Check	for simulator acceptance		IK		IR	IR	Appropriate test to demonstrate smooth turn
CHEEK	r						around required
Turn Around				Ι			See Appendix 7
Check							
e. Motion		N/A					See appendix 7 for a full
Excursion							description of Level B
							motion requirements and recommendations.
(1) sway 45 in	-0 + as desired			Ι			Total minimum usable
(1) sway is in (2) heave 40 in	-0 + as desired			I			non-simultaneous
(3) pitch 40°	-0 + as desired			Ι			excursions about a single
(4) roll 40°	-0 + as desired			Ι			reference point.
							See Appendix 7
f. Accelerations				.			
(1) sway $\pm 0.6g$ (2) heave $\pm 0.6g$	-0 + as desired -0 + as desired			I I			See Appendix 7 for systems having more than
(2) neave $\pm 0.0g$	-0 + as desired			1			four degrees of freedom
g. Velocity							
(1) sway 20 in/s	-0 + as desired			Ι			See Appendix 7 for
(2) heave 20 in/s	-0 + as desired			Ι			systems having more than
				 			four degrees of freedom
h. Bandwidth:	1.450						See Appendix 7
phase lag at 0 - 4 hertz	not to exceed 45°						
0 - 4 hertz							
i. Crosstalk				Ι			See Appendix 7
j. Smoothness				Ι			See Appendix 7

AC120-40C Appendix 7

3. Motion System continued

5. Wotion System co.					
k. Motion Cue	Use AC120-63		R		Use procedure from AC120-
Repeatability	procedure				63 or the IATA Procedure
1. Special Effects	Re-designate "e"				
	to "l"				
6. Simulator					
Systems					
a. Visual, Motion	Change Level B from				
and Cockpit	300 to 150				
Instrument	milliseconds				
	minisceonus				
Display					

APPENDIX 7. Level B Motion and Aerodynamics Tests Requirements

The Level B motion criteria and the aerodynamic data sources and test techniques contained in this Appendix are intended to replace those given in Appendix 2 and elsewhere in this AC.

1. DISCUSSION. In March of 1996 the FAA Advanced Qualification Program (AQP) Manager and the National Simulator Program (NSP) Manager convened a workshop of Subject Matter Experts to address and attempt to simplify the aerodynamic data and flight testing requirements for Level B flight simulators. The results of that effort are tabulated in this Appendix.

In June of 1996 the FAA AQP and NSP convened an additional workshop of Subject Matter Experts on flight simulator motion systems to specifically address the Level B flight simulator. The objective was to identify the characteristics of a motion system applicable to Level B simulators to specifically address the needs of regional air carriers for recurrent training. More specifically, for the AQP, the Level B simulator will totally support a Line Oriented Evaluation. Of course, once the standards for Level B simulators are agreed and promulgated, they will be applicable to any user of Level B simulators in an FAA approved flight training program

For the first time, a table of motion objectives was provided prior to the meeting. Although the motion objectives were not discussed in detail during the SME workshop, they were deemed to be descriptive of the contribution of motion to pilot certification and training activities. An edited version of the table of motion objectives is, therefore, included in this appendix.

2. LEVEL B MOTION CHARACTERISTICS

a. Transport Delay/Cue Synchronization

Transport Delay: 150 milliseconds is the maximum permitted. The time delay may also be measured as a "latency" or lag of the response of the motion, visual or instruments following the input when compared to the airplane response time.

Motion/Visual Phase Relationship: motion response must lead visual response. There is no specified amount of lead. When measured to assure that motion does not lag visual, motion acceleration is measured and visual displacement is measured.

b. Degrees of Freedom

At least four degrees of freedom are necessary to satisfy the motion objectives of critical pilot certification and training tasks. The following degrees of freedom are necessary:

Pitch, Roll, Heave and Sway.

c. Motion Platform Excursions

Acceptable usable, non-simultaneous excursions are the minimum limits of movement about a single specified reference point. Usable excursions are those actually used by the simulator in normal training mode without exceeding any safety limits. <u>Total</u> minimum excursions, which may be split to best advantage (for example pitch could be + 10 and - 30 or other split values), must be measurable about a common reference point as follows:

Lateral (sway)45 inchesVertical (heave)40 inches

	D	RAFT
DATE		AC120-40C
		Appendix 7
Pitch	40 degrees	
Roll	40 degrees	
If the motion system pro	ovides six degrees of freedom the fo	llowing additional minimum excursions will apply:
Longitudinal (s	surge) 50 inches	
Yaw	45 degrees	

These six excursions are the undistorted displacements that can be achieved by driving one degree of freedom at a time.

d. Accelerations

Accelerations of the motion platform shall be measured about the same platform reference point about which excursions are measured. Minimum accelerations are:

Lateral (sway)	± 0.6 g
Vertical (heave)	± 0.6 g
Pitch	not specified
Roll	not specified

If the motion system provides six degrees of freedom the following additional minimum acceleration will apply:

Longitudinal (surge)	± 0.6 g
Yaw	not specified

e. Velocities

Velocities of the motion platform shall be measured about the same platform reference point about which excursions and accelerations are measured. Minimum velocities are:

Lateral (sway)	20 inches per second
Vertical (heave)	20 inches per second
Pitch	not specified
Roll	not specified

If the motion system provides six degrees of freedom the following additional minimum velocity will apply:

Longitudinal (surge)	20 inches per second
Yaw	not specified

AC120-40C Appendix 7

f. Bandwidth

The motion base platform shall exhibit a maximum phase lag of 45 degrees at a frequency of 4 hertz. At lower frequencies the phase lag shall be 45 degrees or less. This characteristic shall be determined by injecting an acceleration command into the kinematic transformation equations and measuring the acceleration output of the motion platform. The response bandwidth shall be determined in each translational degree of freedom.

g. Crosstalk

Motion response in a given degree of freedom should not be perceptibly distorted by response in other degrees of freedom. For example, if the desired response is sway, there should be no perceptible roll or other responses. Crosstalk perceptibility is a subjective measure. Crosstalk shall be imperceptible to a trained observer during operational use of the flight simulator. The observer must be at the proper location, seated at the pilot station with the seat adjusted to the appropriate operational position, during crosstalk evaluations.

h. Smoothness

There shall be no perceptible "turnaround bump" as the direction of motion of any actuator of the system reverses with the simulator being "flown" normally.

i. Leg Balance

If a synergistic hexipod (6 degrees of freedom) or similar system is used to satisfy the Level B flight simulator requirements, no leg of the system shall lead or lag a selected reference leg by more than 1.5 degrees. This requirement shall apply to other system designs if more than one actuator is required to drive the system in any single degree of freedom.

j. Recurrent Evaluation Procedure

The "Motion Cue Repeatability Testing" procedure described in AC120-63 <u>Helicopter Simulator Qualification</u> or similar tests developed by the International Air transportation Association, when released and published, may be used for this procedure.

3. LEVEL B FLIGHT SIMULATOR MOTION OBJECTIVES

a. Training/Pilot Certification Events

Events are listed in the order of Appendix 3 of draft Advisory Circular 120-40C. The associated maneuver or disturbance is listed in the "Event" column under each pertinent event. The pertinent degrees of freedom (DOF) shown in column 2 apply to the group of training events or special effects shown in column 1. The training events (maneuver or disturbance) are grouped in column 1 when the same DOF apply to all maneuvers or disturbances in the group.

Event	Pertinent	Motion
maneuver or	Degree(s)	Objective
disturbance	of Freedom	Objective
1.b. Surface Operat		
(2) pushback/		Provide the pilot with the sensation of aircraft movements, thrust effects
(2) pushback/ powerback	sway	and side motion. Avoid the effects of a "sterile"
powerback	1	
	heave	motion environment that occurs with only visual stimulus
(3) Taxi		
(iii) ground	sway	Provide sensation of the effects of rapid steering inputs, roughness of
handling	1	taxiway/runway surface.
(iv) nosewheel	heave	Feedback to the pilot the effect of turns at excessive groundspeed causing
scuffing	· · ·	the nose wheel tire(s) to lose sideforce friction and "scuff"
(v) brake	pitch	Familiarize pilot with braking technique appropriate for the sensitivity of
operation		the brakes and provide deceleration sensation.
(vi) brake fade		Less than expected deceleration with brakes
1.c. Takeoff(s)		
(1) normal		
(ii) acceleration	pitch	Provide the sensation of acceleration on a surface with some roughness, the
		pitch or heave sensation during takeoff rotation.
(iii) steering	sway	Effects of nosewheel and rudder inputs during the takeoff roll. These
		effects are usually side to side accelerations at the pilot station.
(iv) crosswind	heave	Effects of sidewise skipping on the ground if adequate wind compensation
		is not used.
(2) Abnorm/	roll	Subject the pilot to the accelerations, and pitch over associated with
Emergency		maximum braking and with side accelerations associated with directional
		control.
(i) rejected		Induce the rapid sway accelerations, "the lead cue", that may occur at the
(ii) engine		pilot station when there is an engine failure.
failure		
(iv) windshear		Acquaint the pilot with the large accelerations that may be associated with
		windshear and impose the task difficulty that accompanies escape from an
		windshear encounter where there may be heavy turbulence.
1.d. In-Flight Opera	tion	
(2) Cruise		
(v) High M	sway	Provide the buffets and vibrations associated with speeds near. the critical
handling/over-		Mach number
speed warning	heave	
(viii) approach	sway	Provide the buffets and vibrations associated with speeds.
to stalls	heave	approaching the stall speed
(x) engine	sway	Provide the accelerations resulting from a sudden change in thrust and the
inoperative		thrust asymmetry. Provide the lead cues of a
	roll	shutdown in the event of an unexpected engine failure
(3) Descent		
(ii) maximum	pitch	Familiarize the pilot with the pitch attitude and the accelerations associated
rate		with the large pitch change to effect an emergency descent.
1.e. Approaches		
(1)(ii)(B)	pitch	Familiarize the pilot with the pitch attitude, the large yawing moments and
missed	-	the accelerations associated with the large pitch change and large
approach		asymmetric thrust change to effect a missed
engine inop	sway	approach with a critical engine inoperative
	roll	

b. Level B Motion Objectives

DATE

Event	Pertinent	Motion
maneuver or	Degree(s)	Objective
disturbance	of Freedom	
1.f. Visual Segmen	t and Landing	
(1) Normal(i) crosswind	sway	Feedback to the pilot the proprioceptive cues associated with landing, especially touchdown sink rate and side forces which help inform the pilot of the "quality" of the landing. The side
(1) 01035 willd	heave	forces and associated rolling moments resulting from dragging
	pitch	a wheel sideways are essential to estimating the quality of a
	roll	crosswind landing
(2) Abnormal(i) engineinoperative	sway	Same as for normal/crosswind
(ii) rejected	heave	Provide the sensation of quickly changing from large positive acceleration to the acceleration associated with maximum braking and high speed steering.
(iii) with windshear	pitch	Acquaint the pilot with the large accelerations that may be associated with windshear and impose the task difficulty that accompanies escape from an windshear encounter where there may be heavy turbulence.
(viii) with flight control system failures	roll	Same for normal/crosswind
1.g. Surface Oper	ations (Post Landi	ing)
(ii) reverse thrust	sway	Provide lead information of asymmetric reverse thrust and the deceleration cues associated with reverse thrust
(v) brake and anti-skid	heave	Familiarize the pilot with the sensation of maximum brake operation
	pitch	
3. SPECIAL EFFE	ECTS	
a. runway rumble	heave	Speed information and rough runway feedback
b. buffets,	sway	Familiarize the pilot with the effects of spoilers, thrust reverse
on ground	heave	
c. Bumps after lift off of nose and main gear	heave	Provide systems operations information
d. buffet, landing gear	sway	Same as above
in transit	heave	
e. flap, spoiler,	sway	Familiarize the pilot with the characteristic buffets of in-flight
speedbrake, stall buffet	heave	deployment of spoilers and approach to stall buffet warning

DATE

DRAFT

Level B Motion Ob	jectives continued	
f. touchdown	sway	Same as landings
cues, main	heave	
and	pitch	
nose wheels	roll	
g. nosewheel	sway	Familiarize pilot with nose tire scuffing speed and
scuffing	heave	characteristics
h. thrust effect	sway	Provide information on thrust level and the associated
w/ brakes set	heave	vibrations.
Unusual	sway	Provide lead information on the development of a rapidly
Attitudes	heave	developing unusual attitude and the response of recovery
	pitch	control inputs
	roll	
General and	sway	Remove the sterility of the smooth no motion environment.
Continuous	heave	The real atmosphere contains frequent disturbances which
Atmospheric	pitch	continually induce minor upsets from the straight and level
Disturbance	roll	flight and flight during maneuvers

AC120-40C Appendix 7

4. VALIDATION TEST DATA SOURCES AND TEST TECHNIQUES FOR LEVEL B FLIGHT SIMULATOR COMPLIANCE WITH (DRAFT) AC120-40C

a. **DISCUSSION.** In March of 1996 the FAA AQP Manager and the NSP Manager convened a workshop of Subject Matter Experts to simplify the aerodynamic data and flight testing requirements for Level B flight simulators. The workshop resulted in the following table. These data sources and test techniques may be used in lieu of those otherwise contained in this AC.

120-	Test Name	Existing	Test Objective (Obj)	Comment
40C		Data Source	Proposed Test Technique and Instrumentation	
test No				
1. PERF	ORMANCE			
a. TAXI				
1.a.(1)	Min Rad turn	AFM/Ops	Obj: Verify ground handling and required ground	NC
		Manual	maneuvering surface area.	
			None Required	
1.a.(2)	Rate of Turn		Obj: Verify that steering is commensurate with airplane	Rev
	vs Nosewheel		steering.	
	Steering		Tiller protractor and video of heading indicator during steady	
	Angle		state turn or <u>full rudder pedal steady state turn</u> and video. If less	
			than full rudder pedal is used, pedal position must be recorded.	
			(A single test procedure may not be applicable to all airplane's	
			steering systems, therefore appropriate measurement procedures	
			should be devised and proposed for FAA concurrence.) If	
			heading change rate and speed are constant, ground speed can	
			be calculated, otherwise groundspeed must be measured by	
			accepted methods.	
b. TAKE		r		
1.b.(1)	Ground	Cert Data	Obj: Confirm the simulator model ground performance	Rev
	Acceleration	TIR	during acceleration.	
		AFM	As currently permitted by 40B. Also, could use stop watch,	
			calibrated A/S and rwy markers to acquire data during a takeoff	
			with power set before brake release. Power settings hand	
			recorded. If an inertial measurement system is installed, speed	
11.(2)			and distance may be derived from acceleration measurements.	NG
1.b.(2)	Min Cont	Cert Data	Obj: Confirm the simulator on ground aerodynamic	NC
	Spd, Grd	TIR	controls, thrust and control models.	
		AFM	Available in AFM, Required Certification Test	

b. TABLE OF LEVEL B DATA SOURCES AND TEST TECHNIQUES

AC120-40C Appendix 7

1.b.(2)	Alternative to	None	Obj: Confirm the simulator on ground aerodynamic	**
	Min Cont Spd, Gnd		controls, thrust and control models. Rapid throttle reductions at speeds near Vmcg recording yaw rate, control inputs etc. The nose wheel must be free to caster, or equivalently freed of sideforce generation. The applicant for simulator qualification must demonstrate that the simulator yawing moment due to asymmetric thrust and the rudder yawing moment to compensate are the same as those of the airplane. Inertial	Rev
			measurement system and cockpit control force and position	
1.b.(3)	Min Unstick	Cert Data	measurement device. Obj: Confirm low speed elevator effectiveness in ground	**
	Speed	TIR	effect and confirm lift model at high angle of attack in ground effect. Required speed definition for Part 25, not defined for Part. 23 Commuter Category. Rotate, using full elevator input, at a speed less than V_R , hold a constant attitude until lift off etc. The test and procedure are described in AC 25-7 para 10. B.(5) which should be consulted for the test procedure. An equivalent test may be used for Part 23 Commuter Category airplanes for which V_{MU} is not an airplane certification requirement. The elevator effectiveness and lift computation for the simulator must be verified by comparison to the airplane. Inertial measurement system and control input measurement devices.	NC
1.b.(4)	Normal Takeoff	Cert - Performance Only	Obj: Confirm the overall performance and handling of the simulator model during ground, lift off and transition through ground effect, and initial climb operations. Calculate AOA from pitch attitude and flight path. Inertial measurement system, radio altimeter, video of calibrated aircraft instruments, Force and position measurement on cockpit controls.	** NC
1.b.(5)	Critical Engine Failure on Takeoff	Performance data available from certification	Obj: Confirm simulator model response to a critical engine failure during the take off run, corrective control inputs, effect on takeoff distance, and initial climb with one engine inoperative. Need is aircraft dynamic response to engine failure and control inputs required to correct flight path. Inertial measurement system and video system. Omit AOA measurement. Measure heading and lateral acceleration.	** Rev
1.b.(6)	Crosswind Takeoff	None, except limiting crosswind	Obj: Confirm proper response of simulator model, including flight controls, to a crosswind during take off and post lift off. Inertial measurement system, video of calibrated aircraft instruments, Control forces measurement device, Omit AOA. Measure heading and lateral acceleration. The wind profile should be specified. The 1/7 law to 10 meters is suggested as an acceptable wind profile model that is now in use.	** Rev
1.b.(7)	Rejected	None		Rev

AC120-40C Appendix 7

c. CLIM	В			
1.c.(1)	Normal Climb, all engines	Certification data, TIR, AFM,	Obj: Confirm simulator model climb performance. As now permitted by 40B, could also do with stop watch and calibrated ships airspeed system	Rev
1.c.(2)	Second Segment Climb, One Engine Inoperative	Certification data, TIR, AFM	Obj: Confirm simulator model climb performance in airplane take off configuration with one engine inoperative. As now permitted by 40B, could also do with stop watch and ships calibrated airspeed system	Rev
1.c.(4)	Approach Climb, one engine inoperative	Certification data, TIR, AFM	Obj: Confirm simulator model climb performance in airplane approach configuration with one engine inoperative. As now permitted by 40B, could also do with stop watch and ships calibrated airspeed system	Rev
1.d.(1)	Deceleration	Certification	Obj: Confirm simulator overall lift, drag and wheel braking	Rev
(1)	Time and Distance, Wheel Brakes	data, landing distance tests, TIR, AFM	model on the ground. None Required if time to stop is available in certification data	
1.d.(2)	Deceleration Time and Distance, Reverse Thrust	None	Obj: Confirm simulator on ground overall lift, drag and thrust modeling with reverse thrust. Landing Tests, stop watch, runway markers, video, calibrated aircraft instruments. Thrust control lever positions and engine output (pertinent parameters) must be recorded.	Rev
f. ENGI	NES		-	-
1.e.(1)	Acceleration	None	Obj: Demonstrate that the simulator engine model responds correctly during the specified condition. Calibrated aircraft instruments, video with time read out.	Rev
1.e.(2)	Deceleration	None	As above	Rev
	LING QUALIT	TIES		
a. STAT	IC CONTROL	CHECKS		
2.a.(1)	Column Position vs Force	Maintenance Manual for surface to column calibration	Obj: Confirm model of flight control system force, position and friction relationships. Control force and position measurement device and x - y recorder needed. Surface position could be measured from FDR sensor or, if no FDR sensor, at selected column positions using a control surface protractor.	* Rev
2.a.(2)	Wheel	Maint Man	Same as above	*
	Position vs Force	as above		Rev
2.a.(3)	Pedal Position vs Force	Maint Man as above	Same as above	* Rev
2.a.(4)	Nosewheel Steering Force and Position	None	Obj: Confirm important nosewheel steering metrics of the simulator model which are important to ground handling. Use 45A. Measure breakout with hand held force gauge. Use hand held gauge to measure force after breakout for small arc. Predict remainder.	Rev

2.a.(5)	Rudder Pedal Steering Calibration	Acft Design Data	Obj: Confirm important nosewheel steering metrics of the simulator model which are important to ground handling. Force pads on pedals, pedal position measurement device, design data for nose wheel position. (Turn radius will be compared to AFM at full pedal, and possibly other, deflections also) [See 1.a.(2) above]	* Rev
2.a.(6)	Pitch Trim Calib. Indicate vs Compute	None	Obj: Validate the simulator model pitch trim calculation. Calculated	NC
2.a.(7)	Power Lever and other engine control levers Angle vs Engine Indication	None	Obj: Confirm that given engine control lever positions result in the proper engine performance indications. Fabricate scale to use on throttle quadrant. Video camera to record steady state instrument readings or hand record steady state engine performance readings	Rev
2.a.(8)	Brake Pedal Position vs Force	Acft Design Data	Obj: Assure that the brake pedal produces the appropriate force feedback for a given brake pedal position. Use design/predicted data. As for Level 6, measure only at 0 and maximum and use acft design data curve for deflections between extremes	* Rev
	ITUDINAL	1	1	1
2.c.(1)	Power Change Dynamics	None	Obj: Confirm the correct simulator model dynamic response to an in flight airplane power or configuration change. Do as per AC120-40B. Inertial measurement system would then be required. Transient data is needed therefore the dynamic case must be done.	** NC
2.c.(2)	Flap/Slat Change Dyn	None	Same as above	** NC
2.c.(3)	Spoiler/ Speedbrake Change Dyn	None	Same as above	** NC
2.c.(4)	Gear Change Dynamics	None	Same as above	** NC
2.c.(5)	Gear Flap Slat Operating Time	Design Data, Certification Tests	Obj: Assure that the simulator model configuration change time increment corresponds to that of the airplane. Measure in conjunction with acquisition of data for 2.c.(1), (2), (3), (4) above. Statement of compliance referencing an appropriate data source. [Such as design data, production flight test schedule, maintenance test specification etc.]	Rev
2.c.(6)	Longitudinal Trim	Certification Tests (limited)	Obj: Confirm that simulator model parameters are correct in level flight steady state conditions. Inertial measurement system for pitch attitude, cockpit controls position measurement equipment with a calibration of cockpit controls positions and surface positions, ships engine instruments, do a number of level runs in accordance with the guidance of AC120-40B.	** Rev

2.c.(7)	Longitudinal	Certification	Obj: Confirm the simulator model longitudinal control force	**
	Maneuver	Tests, TIR	as a function of normal acceleration. Ships calibrated airspeed	NC
	Stability		indicator. Apply a temporary high resolution bank angle scale	
			to attitude indicator, inertial measurement system and	
			wheel/column force measurement device.	
2.c.(8)	Longitudinal	Certification	Obj: Confirm the simulator model longitudinal control force	NC
	Static	Tests	as a function of airspeed increments from trim airspeed.	
	stability	TIR	Ships instruments, hand held force gauge	
2.c.(9)	Stick Shaker,	TIR, AFM	Obj: Confirm that the simulator model produces stall at the	NC
. ,	Airframe		correct airspeed and incorporates the appropriate warning	
	Buffet, Stall		modeling at airspeeds approaching the stall.	
	Speeds		Acquire using stop watch, ships calibrated airspeed, and video,	
	1		hand record flight condition and configuration. The speeds are	
			available in the TIR and AFM. Consideration should also be	
			given to stall characteristics	
2.c.(10)	Phugoid	None	Obj: Confirm that the phugoid is correct as this mode is	**
(-*)	8		indicative of certain features of the longitudinal	NC
			aerodynamic model and is very important to longitudinal	
			trim ability.	
			Inertial measurement system is necessary to accurately measure	
			this important response. Cockpit controller positions are also	
			important response. Complete online positions are also important, especially in cases where the dynamics of flight	
			control system components alter the character of the response.	
2.c.(11)	Short Period	None	Obj: To assure that this primary longitudinal maneuvering	**
2.0.(11)	Short renou	None	mode is correctly produced by the simulator model.	NC
			Inertial measurement system, measuring primarily accelerations	110
			(normal), video	
d. LATE	RAL DIRECTI	ONAL		
2.d.(1)	Minimum	Certification	Obj: Confirm the minimum airspeed at which control can	**
~ /	Control	Tests, TIR,	be maintained with one engine inoperative. Control force	NC
	Speed, Air	, ,	and deflection, asymmetric thrust and overall handling	
			approaching and at the minimum control speed are	
			important and should be recorded.	
			Inertia measurement system, cockpit control force and position	
			measurement device. An alternative procedure to measuring	
			just the minimum speed at which control can be maintained is to	
			measure the needed control deflections and other parameters at	
			several speeds as the speed approaches the minimum control	
			speed and as close as possible to the minimum speed in order to	
			I SDEED AND AS CLOSE AS DOSSIDLE TO THE INHUMBENDEED IN OLDER TO	
			develop several simulator validation points at progressively	
2.d.(2)	Roll	None	develop several simulator validation points at progressively lower speeds	*
2.d.(2)	Roll Response	None	develop several simulator validation points at progressively lower speeds Stop watch, ships calibrated instruments, high resolution scale	
2.d.(2)	Response	None	develop several simulator validation points at progressively lower speeds Stop watch, ships calibrated instruments, high resolution scale on attitude indicator, FDR sensor for lateral control (wheel)	* Delete
2.d.(2)		None	develop several simulator validation points at progressively lower speeds Stop watch, ships calibrated instruments, high resolution scale	

AC120-40C Appendix 7

2.d.(3)	Roll	None	Obj: Confirm that the simulator model properly produces	**
	Response to		this primary lateral-directional dynamic response mode and	Rev
	Step Input		produces the correct steady state roll rate.	
			Inertial measurement system to obtain rates. Lateral control	
			input measurement device, video. Cruise case in addition to	
			flight conditions specified in AC120-40B	
2.d.(4)	Spiral	None	Obj: Confirm that the simulator model properly produces	NC
	Stability		this primary lateral-directional dynamic response mode.	
	5		Stop watch, ships calibrated instruments, high resolution scale	
			on attitude indicator or video	
2.d.(5)	Engine	None	Obj: Validate simulator trim or control deflections required	Rev
	Inoperative		to counterbalance engine inoperative asymmetric forces and	
	Trim		moments.	
			Apply high resolution scales to trim controls and perform a	
			ground calibration using protractors on the control/trim surfaces	
			(ignores airloads). Use control scales for in-flight	
			measurements. Very system dependent, but similar methods for	
			other controls. Alternatively measure cockpit control force and	
			position, especially during second segment climb where	
			trimming is not a certification requirement and not a task to be	
			accomplished in flight until the proper altitude and conditions	
			are satisfied.	
2.d.(6)	Rudder	None	Obj: Validate simulator model short term transient	**
2.4.(0)	Response	rtone	response to rudder inputs.	NC
	Response		Inertial measurement system, Rudder pedal input position	110
			measurement device.	
2.d.(7)	Dutch Roll	None,	Obj: Confirm the lateral-directional simulator modeling as	**
2.u.(7)	Duten Kon	maybe TIR	manifest by this coupled primary response mode.	NC
		maybe The	Inertial measurement system. Record with and without yaw	ne
			damper. Rudder pedal input position measurement device.	
2.d.(8)	Steady State	None,	Obj: Confirm the relationship that exist between sideslip	*
2.0.(8)	-	maybe TIR	and rolling moment and secondarily the rudder and roll	Rev
	Sideslip	maybe IIK	· ·	Kev
			control power.	
			Use ground reference (a long straight path) for track and heading indicator for sideslip angle. Cockpit controller force	
			and positions measurement device. If inertial measurement	
			system is installed, measure lateral acceleration. Video. This	
			test was not discussed during SME meeting. Revisions have	
TANT			been made based on the overall discussions.	
$\frac{\text{e. LANE}}{2}$		NT		**
2.e.(1)	Normal	None	Obj: Confirm the overall performance and handling of the	
	Landing		simulator model during descending flight near the ground,	NC
			transition through ground effect, landing flair and touch	
			down.	
			Inertial measurement system, cockpit control force and position	
			measurement device	

AC120-40C	
Appendix 7	

2.e.(3)	Crosswind	None	Obj: Confirm proper response of simulator model, including	**
2.0.(3)	Landings	rtone	flight controls, to a crosswind during descending flight near	NC
			the ground, transition through ground effect, decrab and touchdown/rollout.	
			Inertial measurement system, cockpit controller positions and	
			forces, record normal and lateral acceleration in lieu of AOA and sideslip.	
2.e.(4)	One Engine	None	Obj: Confirm proper response of simulator model,	**
	Inoperative		including flight controls, with one engine inoperative during	NC
	Landing		descending flight near the ground, transition through ground effect, touchdown and rollout.	
			Same as above	
2.e.(7)	Rudder	None	Obj: Demonstrate that the rudder effectiveness during	Delete
	Effectiveness		reverse thrust on landing in the simulator is representative	
	with Rev		of the airplane.	
	Thrust		No test recommended since the test was specific to airplanes	
			with aft fuselage mounted engines	
f. GROU	JND EFFECT			
2.f.(1)	Ground	None	Obj: Confirm the simulator modeling and proper	**
	Effect		aerodynamic modeling changes as a function of height and	Rev
	Demonstrate		rate of change of height in ground effect. Level fly-by trim	
	G.E.		runs. Use high resolution scale on elevator trim control.	
			Ground calibrate Trim control with trim surface. Use ships	
			calibrated flight instruments and engine instruments, video of	
			trim controls and aircraft instruments. Or fly low angle	
			constant pitch attitude approach and landing at constant power	
			and record trim, control displacement and airspeed changes as	
			ground is approached (not applicable to all airplanes). Inertial	
			measurements system, cockpit controller force and positions,	
			radio altitude and altitude rate are needed.	

Comments Legend

- ** tests for which an inertial data acquisition system is recommended 20 tests
- tests for which some instrumentation less than inertial is recommended 6 tests Total number of tests requiring installation of instrumentation - 26 Total number of tests listed - 48
- NC no change from the current AC120-40B guidance
- Rev revision of the current AC120-40B guidance, usually by the use and acceptance of existing data sources or the use of more basic (less sophisticated and complex) flight test methods.

DATE

AC120-40C Appendix 7

Notes:

- 1. Measurement of <u>angle of attack and sideslip</u> have been omitted for all tests. Also measurement of control surface positions is not required, however, cockpit controller positions must be measured where indicated and tolerances comparable to those for the control surface determined. These measurements alone result in revision to most Level B validation tests.
- 2. With the exception of the alternative, and in some cases relieving, techniques and instrumentation recommendations given above, all tests should be done to comply with the guidance of AC120-40C.
- Measurements of control surface deflections/positions have been omitted in the above table, however, cockpit controller positions must be substituted and equivalent tolerances will have to be used when complying with AC120-40C Level B simulator qualification guidance.
- 4. To accommodate the recommended test methods and techniques, some measurements would be replaced with pilot's notes.
- 5. Certification/TIR data points are usually at the extremes of weight and CG, but still lie on the locus of a given parameter and are useful for model validation.
- 6. TIR data may be proprietary and should not be relied upon until known to be available.