Deriving a new NRR from ANSI S12.6B method, inter-laboratory reproducibility of data, precision of the data

William J. Murphy, Ph.D.

National Institute for Occupational Safety and Health Division of Applied Research and Technology Engineering and Physical Hazards Branch Hearing Loss Prevention Section

When Have Enough Subjects Been Tested?

William J. Murphy, Ph.D.

National Institute for Occupational Safety and Health Division of Applied Research and Technology Engineering and Physical Hazards Branch Hearing Loss Prevention Section

Where We're Going . .

- What are Precision and Accuracy?
- What is the Noise Reduction Rating?
- How were the sample sizes determined?
- Where is the Error in the NRR?
- 3 Ways to Estimate NRR Error.
- How to use the NRR Error?
- Classification of Protectors by Precision

Precision & Accuracy

 Precision is the error in the estimation of a rating relying solely upon the data from the tested sample population

 Accuracy is the error when the rating estimate is applied different noise spectrum.

Example of Marksmanship You can be very Precise...

...and still be inaccurate!

Selected Rating Methods • NRRSF Rating (NHCA Task Force, 1994) - Naïve Subj. Fit, 20 Subjects, 2 REAT trials • SNR Rating (ISO 4869-2, 1992) - Subj. Fit, 16 subjects, 1 REAT trial • HML Rating (ISO 4869-2, 1992) - Subj. Fit, 16 subjects, 1 REAT trial • NRR Rating (40 CFR 211, U.S. EPA) - Exp. Fit, 10 subjects, 3 REAT trials

Noise Reduction Rating for Subject-Fit Data

- Measure REAT: 10 or 20 subjects, 2 Trials, 7 Frequencies
- Determine Mean, μ , and Std. Dev, σ
- Calculate A-weighted Protected Exposure Level for Pink Noise:

$$L_{Af} - (\overline{\mu}_f - \sigma_f)$$

- Subtract from C-weighted Pink Noise
- Subtract 5 dB for C-A correction factor

 $NRR(sf) = 108.5 \, dBC - 10 \log \sum^{8000} 10^{0.1(L_{Af} - APV_{f^{84}})} - 5 \, dB$

Why 10 and 20 subjects?

Four-lab interlaboratory study

 Informed User Fit versus Subject-Fit
 Analyzed the variability of the REAT data

- Subject-Fit data were less variable across laboratories
- Earplugs more variable than Earmuffs

Distributions of REAT Data

Minimum Detectable Difference

 The standard error, σ, can be used to estimate, D, the minimum detectable difference between REAT measurements

$$D = (\operatorname{Probit}(1 - \alpha) + \operatorname{Probit}(1 - \beta))\sqrt{2}\sigma$$

Minimum Detectable Difference

 The standard error, σ, can be used to estimate, D, the minimum detectable difference between REAT measurements

Estimating Minimum Number of Subjects for a Desired Resolution

 Choose a desired resolution, *R*, and the number of subjects tested while determining the minimum detectable difference, *D*.

$$N_{\rm subjects} = n_s \left(\frac{2.5966\sigma}{R}\right)^2$$

Estimated Number of Subjects

Problems with Reproducibility

- Subject estimates are different across frequencies
- Highest estimate is conservative
- Can we do better?

Consider the Error in the NRR

Elements of Error in the NRR

- Frequency Dependence in the NRR
 - Attenuation
 - Standard Deviation
 - A weighting
 - C-weighting

125 250 500 1000 2000 4000 8000

Why should I care about Error?

Estimate Number of Subjects

$$N_{\rm subjects} = n_s \left(\frac{2.5966\sigma}{R}\right)^2$$

- Determining Meaningful differences between protector tests
 - Quality Control
 - Retests and Audits

Comparison between competing products

How to estimate NRR Error • Direct computation – Means and Covariance

Monte Carlo Simulation

 Probabilistic Subject Simulation

Bootstrap Simulation

 Resample REAT Data

Direct Computation REAT Means and Standard Deviations Covariance from the original data Weighted for each band Depends upon α, σ, μ and N.

Data may not be normally distributed.

Direct Computation

NIOSH

Monte Carlo Simulation

- Use original REAT data covariance.
- Generate sets of random numbers – Maintain $\overline{\mu}$, σ and σ_{xy}
- Calculate NRR_{SF} for each set.
- Repeat many times
- Estimate NRR_{SF} and, σ_{NRRSF}
- Data may not be normally distributed.

Monte Carlo Simulation

Bootstrap Simulation

- Repeatedly resample the REAT data
- Estimate NRR_{SF} and, σ_{NRRSF}
- Reproduces non-normal data
- Directly estimates the standard error

Bootstrap Simulation

Comparison of Errors for SF Data

NIOSH

Comparison of Errors for IUF Data

Which Error?

 Direct Computation – Assumes normality - Easily computed Monte Carlo Simulation - Assumes normality (can be modified) - Requires computer simulation Bootstrap Simulation - Requires computer simulation Does not assume normality

Which Error?

Bootstrap Simulation

 Requires computer simulation
 Does not assume normality

NRR_{SF} Error, What Next?

- Estimate minimum detectable difference using the NRR_{SF} error.
- Classify Precision based upon

NRR_{SF} Error < 1.0 dB Red < 2.0 dB Yellow < 3.0 dB Blue > 3.0 dB White

Estimate of Sample Size

When does Precision Matter?

High Noise Environment

Overprotection of Workers' Hearing

 Speech Communication
 Audibility of Warning Sounds

Reduced Hearing Loss

Precision in the Real World

- Subject-fit data better predict real-world outcome.
- The utility of the rating is driven by predictive ability.
- The trustworthiness of the rating is driven by the precision

Improving the Prediction of Protection

<mark>S12,6 B</mark>

S3.19

Summary

 Precision is a function of the test data Can be determined for any rating method 3 methods to estimate NRR error Comparable results from each method - Useful in power calculations - Useful in comparisons Protector precision should be classified - Will facilitate correct selection of protection

