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Abstract

We frequently detect activity that is less than the minimum detectable activity! This occurs
because the "minimum detectable activity" is misnamed, not because we are doing something
impossible or nonsensical. The random nature of radioactive decay leads to erratic count rates
when the total number of radioactive transitions detected is not very large (<100), a situation
complicated by the need to subtract some value of "background" from the observation of the
sample. Both classical and Bayesian statistical methods address this problem. Pioneering
scientists grappled with the terminology for characterizing counting system performance and
interpretation of data. Unfortunately, the choices made for termsin the 1960s and later have
caused decades of confusion. Had Currie's 1968 term "critical level" (ak.a. "decision level") been
named the "false alarm level" and expressed only in terms of directly observed quantities (e.g.,
counts or count rates), it may have avoided the confusion so prevalent today. Had Currie's
"detection level" (ak.a. "lower limit of detection,” "minimum detectable activity") been named
"advertizing level" and expressed only in terms of the ultimate quantity of interest (e.g., Bg, uCi,
Bg/kg, or pCi/g) we might not be in a situation in which the quantity it representsis so widely
misused. "Never compare a measurement result with an advertizing level (MDA); compare
measurement results with afalse alarm level (DL)."

1 Suggested Readings

None of these references is perfect. Neither isthis handout. But these, in Dan Strom’s opinion,
are the best.

For basic statistics, atruly superb reference for itsinsight, clarity, examples, and problemsis
Chapter 11 and Appendix E in Jm Turner’s second edition of Atoms, Radiation, and Radiation
Protection (Turner 1995).

For dightly more applied concepts, a current consensus standard with well-thought-out statistics
and examplesis Performance Criteria for Radiobioassay (Health Physics Society (HPS) 1996).
Another with an applied bent is Air Sampling in the Workplace (Hickey et al. 1993). Recent
publications in the environmental restoration area with statistics discussions include Multi-Agency
Radiation Survey and Site Investigation Manual (MARSSIM)
(http://wvww.epa.gov/radiation/marssim/) (U.S.Nuclear Regulatory Commission (NRC) et a.
1997) and Minimum Detectable Concentrations with Typical Radiation Survey Instruments for
Various Contaminants and Field Conditions (U.S.Nuclear Regulatory Commission (NRC)



1998).

Two classic papers, which are still very much worth reading, are the 1963 and 1968 papers by
pioneersin the field (Altshuler and Pasternack 1963; Currie 1968).

A paper with great insight, but which has been largely ignored, is Wes Nicholson's classic
(Nicholson 1966) and references therein. Nicholson takes the conceptually clear approach of
using underlying count rates, rather than framing the problem in terms of counts, as has been done
by most others.

An especidly interesting paper with many profound ideas dates from the late 1940s (Rainwater
and Wu 1947). In particular, these authors explicitly introduce the Bayesian concept of inferring
adistribution of observed results from a population parameter (e.g., a count rate), and then
showing that the inverse relationship is symmetric: starting with an observation, one infers a
distribution of population parameters that may have given rise to the observation.

For Bayesian statistics, be sure to read the definitive work by Little (Little 1982). Thomas
Bayes'sorigina 1763 treatise is till available (Bayes 1958) but is merely of historical interest.
For elementary insight into Bayesian thinking, | recommend Don Berry’ s introductory text (Berry
1996). For recent Bayesian applications in radiation protection, visit http://www.pnl.gov/bayesian
for introductory materials and important links, especially to the ground-breaking work at Los
Alamos National Laboratory by Guthrie Miller, Bill Inkret, Harry Martz, and Mario Schillaci.

2 I ntroduction

The problem of detecting extremely small amounts of radioactive materid is a problem of picking
asmall signa out of asignificant noise. There are many natural examples when the signal-to-
noise ratio istoo small to detect something. Examplesinclude trying to hear a whisper at arock
concert, listening from another room for the cough of a baby with the croup, straining to hear a
single voice in a crowded stadium, trying to hear a dripping faucet next to a waterfal, looking to
pick out the first star of the evening, trying to perceive the weight of afeather with a gloved hand,
trying to catch a whiff of a scent that sets a dog barking. Often, natural detectorsaren’t up toit:
we can't see the Cerenkov radiation from cosmic rays with our naked eyes, we can’'t sense low-
LET ionizing particles with any of our senses. However, dark-adapted astronauts do report
seeing flashes from high-Z, high-energy (HZE) particles in space, so the threshold of detection
for, say, alpha particles in the eye, is not too much lower than our current sensitivity.

How can you separate two random processes that occur at the same time and giverise to
indistinguishable electrical pulses from a detector? Specifically, one process, background, is
presumed to be constant (How constant isit? The chi-square test for “expected” amount of
variability can be used to determine how constant background is). The other process, the signal
from the analyte in the unknown (How unknown isit? Bayes's theorem can be used to
incorporate what you aready know), differs from one sample to the next and is variable.

The decision one usually must make is whether, given a set of observations N, t,, N, and t,, there
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is any analyte present in the unknown. Thisdecisionisobviousif R, >> R,. However, we often
make this decision when the consequences of awrong decision are significant. The question is
particularly acute when assaying small quantities of transuranic (TRU) elements, such as
plutonium, in waste or in environmental or bioassay samples. The decision about whether thereis
analyte present may aso be the decision that “this waste drum is not suitable for near-surface
disposal under 10 CFR 61 and must be shipped to a high-level waste repository;” or “thisland is
still contaminated and millions of dollars must be spent to clean it up;” or “this worker had an
unexpected intake of plutonium that may have resulted in an He 5, greater than 5 rems.” Thusitis
important that we use the proper statistics for such decisions.

Classical or long-term frequentist statistical methods have been used for years to distinguish signal
from noise, although they didn’t mature until the 1960s. More recently, statistical inference
methods based on Bayes' theorem (Bayes 1958) have begun to be used for this problem (Little
1982).

Innovative work employing Bayes methods has been undertaken by one DOE site, the Los
Alamos National Laboratory (LANL) (Miller et al. 1993; Miller et al. 1995; Miller et a. 1997,
Miller et a. 1998). The Bayesian formalism is attractive because is incorporates prior knowledge
in addition to the results of a given measurement, and it results in a distribution of likely outcomes
rather than merely a point estimate with an uncertainty. However, the method has been criticized
as being too subjective. At present, the DOE has taken no official position on the use of Bayesian
methods; the method has been in use at the LANL for several years (Inkret and Miller 1995). In
November of 1997 aworkshop was held on Bayesian methods; proceedings are in preparation
and aweb site containing much of the material presented is available
(http://www.pnl.gov/bayesian/; be sure to follow the link to LANL).

3 Classical Statistical Methods Precise " Tmprecise
3.1 Precision (Reproducibility), Bias, and oot
Accuracy

Biased

The precision of a measure-ment result is an
expression of the degree to which it can be repro- Inaccurate
duced or repeated, that is, a measure of the agreement
among individual measurements. Lack of precisionis

Accurate Inaccu.rate V

caused by random errors (indeterminate errors).

Unbiased

The biasis the amount that a measurement or average
measurement differs from the “conventionaly true
value.” Biasis caused by systematic errors

(determinate errors). Figure 1. Diagramillustrating bias,
precision, and accuracy (adapted from
Bias and precision are generally independent Remington’s Pharmaceutical Sciences)

quantities. A set of measurements of the same sample
with alarge standard deviation are not very precise (not very reproducible). A set of
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measurements of the same sample with a small standard deviation are precise (reproducible). The
bias of imprecise measurements may be high or low; smilarly, the bias of precise measurements
may be high or low.

The accuracy of a measurement result is the degreeto
which it is accurate (equals a“conventionally true
value’ or standard value for the quantity being
measured) and precise (repeated measurements are
close together). Unfortunately, accuracy is ¢ o 1
sometimes used as a synonym for bias, so be careful. I: ° ——7 °

3.2 Elementary Concepts

_ _ Figure 2. On the average, the duck was
If N counts or events are observed in atimet, then dead (adapted from Remington’s

the cou_nt rate, dN/(_JIt = R = Nit. Thevariance  pparmaceutical Sciences)
of a Poisson (counting) variable, Var(N) = N. The

standard deviation, s = /N.

Counts due to background radiation must be subtracted for low-level measurements. For an
observed number of background counts N, during a background counting time t,,, the background
count rate is

R, = N/t (1)

Similarly, for an observed number of gross counts N, during a gross counting time t,, the gross
count rate, R, is

R, = Ny/it,. )
The net count rate, R, is
N, N,

R, incps (or cpm) = R, - R, = t_g - 3)
b

The standard deviation of net count rate, S(R), is
sR) = Rft, + RJt, = NJt2 + NJt2. (4

The standard deviation is a measure of precision or repeatability, and therefore isavalid,
distribution-free measure of uncertainty due to random statistical fluctuations during counting.
The coefficient of variation, also caled the “relative standard deviation,” expresses the standard
deviation as afraction of the net count rate:

s
Coefficient of Variation = C.V. = = (5)

|
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The bias of a measurement result is the degree to which it equals a“conventionally true value” or
standard value for the quantity being measured. Standard deviation is a measure of precision or
repeatability, and therefore is a valid, distribution-free measure of uncertainty.

3.2.1 Relating Count Rateto Activity: Counting Yield

The counting yield K (also known as counting efficiency) is the expected number of counts
observed per radioactive transition, usually a number lessthan 1 that isintrinsically dimensionless.
Equally well, K relates count rate to activity as [counts per second] / [transitions per second] or
cps/Bg. Other common expressions for K are in units of cpm/dpm, cpm/nCi, cpm/uCi, etc. The
activity A is

A =

Rn
ré (6)

K is determined experimentally for a given detector, geometry, absorption, radionuclide, etc.

SA) = % = ACV). )

If the counting yield K iswrong, the measurement result will be inaccurate or biased, regardless of
how preciseit is.

One should report the amount of activity in thissampleas A + s(A) Bqg (1 s.d.) (i.e., 68%
confidence limits). Multiples of the standard deviation contain no more information thatn the
standard deviation.

3.3  Qualitative Notions of Decision Level and Minimum Detectable Amount

Two very important statistical concepts, the decision level (DL; ak.a. critical level [L]) and the
minimum detectable amount (MDA; a.k.a. detection level [L,], lower limit of detection [LLD], ...)
are based on the standard deviation of the net count rate when an appropriate blank is being
counted. DL and MDA are covered mathematically later. Sufficeit to say at this point that one
can determine, in advance of receiving a sample, how small an amount of radioactive material is
likely to be distinguishable from background with a giving counting system and choice of counting
times. this amount isthe MDA. The MDA isthe vaue that one can legitimately advertise that one
can measure with reasonable assurance. Once one has made a measurement on a sample, one may
wish to decide whether there isindeed any activity above background in the sample. Thisisdone
by comparing the counting result to the DL, a value typicaly about half the MDA. Yes, itis
possible and not even infrequent to be sure one has detected activity less than the MDA but more
than the DL. It should be remembered that the smaller the amount of activity in the sampleis
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Table 1. Comparison of decision level and minimum detectable amount

“DL” “MDA”
Name decision level minimum detectable amount
Former Name critical level, L detection level, L,
Former Name lower limit of detection, LLD; aso, un-

fortunately, “lower level discriminator”
What? the lowest useable actionlevel  NOT an action level!

Use compare measurementsto DL use in statement of work for a contractor:
how much will you charge to provide
counting services with this MDA? usein
planning. usein advertizing

When? a posteriori: after the a priori: before the measurement is made
measurement is made

Defined in HPS/ANSI N13.30 HPS/ANSI N13.30

Turner’ s name “minimum significant measured  “minimum detectable true activity”
activity”

Strom’s name “fdsedarm level” “advertizing level”

compared to the MDA, the lesslikely it isto result in a number of counts above the DL.

Never compare a sample result to
the MDA. Sample results should only be
compared to adecision level. A
< D I_ < M DA statement that a result was “less than
MDA” is statistical nonsense that
originates with the poor choice of name
for the MDA. The MDA isredlly the “if-
Figure 3. Never Compare a Measurement Result with  it's-in-the-sample-you're-likely-to-detect-
the MDA; Compare It with the DL it” level, while the DL is the “if-you-got-
arresult-above-this-it's-probably-real”
level. A result above the DL is probably not a“false aarm.”

One may want to evaluate the detection capability of a radioactivity measurement program.
Toward this end, one may want to establish “action levels.” An action level isavalue of count
rate (e.g., cps), concentration (e.g., Bq-m3), or concentration x time (e.g., DAC-h) at or above
which one chooses to take some action and below which that action is not deemed to be
necessary. The simplest “action” one can take isto state, “Activity was (or was not) detected
above background.”
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For operational purposes, the statistical concept of “decision level” is the lowest useable action
level. Results of individual or pooled measurements are compared with the decision level. The
decision level isavalue chosen so that results above it are unlikely to be false darms. Thus, the
one chooses the decision level to be far enough above zero so that there is an acceptably low rate
of false alarms due to random statistical fluctuations in the counting process (known to
statisticians as “false positives’).

The two correct decisions and the two principal errors one can make in statistical inference are
shownin Table 2.

Table 2. Decisions based on measuring (“counting”) whether radioactivity is present, in the
presence of background.

Is anything there? (Isany activity present [above blank]?)
Yes No
. | made the correct . “fasedam’
Did | detect Yes decision (no error) . false positive
anything? (Was . I’ve committed a Type |
the result above error
the decision .
level?) . the alarm should have . | made the correct decision
sounded, but it didn’t (no error)
No | false negative
. I’ve committed a Type
[l error

A Type | error isfasaly concluding there’ s activity present when no activity is present.
A Type Il error isfalsely concluding there' s no activity present when activity is present.

The probability of aType| error iscalled o.
The probability of a Type Il error iscalled f3.

The number of standard deviations one must be above zero on the standard normal distribution to
have a probability of o or B of being higher is known as the “standard normal deviate,” k, or k.

For o = 0.05 (that is, a 5% chance of making a Type | error), k, = 1.645.
For p = 0.05 (that is, a 5% chance of making a Type Il error), k; = 1.645.

In many situations, the decision level iswell below alevel at which any action (other than
recording the result) is taken.
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Figure 8 shows the standard normal ' The Normal Distribution

distribution with mean () = 0 and 1.0
standard deviation o = 1. k, isthe 09l 2
value of the standard normal deviate z ol n@= \/1217 e %"
for which the corresponding ol
cumulative standard normal 06| Nm)= f n(@)dz
distribution hasavaueof (1-«). In  ™# g5 —o ;
the old days, one would look up Nz g4l mean, median, & mode =0 |
values of k, in atable; now, ina 03} w=0
Microsoft Excel spreadsheet, putting 02t o=t
=NORMSINV(1 - 0.05) returns 0.1}
1.645. 0.0

-3 -2 -1 0 1 2 3
Another concept one needs is that of .0013 .0233  .1587 .5(?00 .8413  .97v72  .9987
“minimum detectable activity” or Figure 4. The Standard Normal Distribution, and the
“minimum detectable concentration.”  cymulative standard normal distribution. The standard
Unlike the decision level or action normal deviate, z, is “the number of standard deviations

levels with which individual or pOOled from the mean.”

results are compared, the minimum

detectable quantities are performance gauges of a radioactivity measurement program that can be
compared with a performance goal.

Whether or not one decides that activity is present, one must convert the observed count rate and
its standard deviation into a result for the customer, such as activity, concentration, etc. One
may aso quote to the customer my degree of belief that the result is not background. A result
with a net count rate equal to the DL has only a 5% chance of being due to background alone.
34  Sendtivity and Specificity

The terms below are defined for a binary condition, e.g., one has the measles or one doesn't.

Sensgitivity: the proportion of correctly classified positives (the ability of atest to correctly
classify a subject as positive).

Specificity: the proportion of correctly classified negatives.

Positive Predictive Value: the proportion of classified positives who really had the positive
condition.

Negative Predictive Value: the proportion of those classified as negative who actualy were
negative.
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Table 3. Senditivity, specificity, positive predictive value, and negative predictive value

Actua State
+ —_
Classified +
State
- C D

Sensitivity = A/(A+C)
Specificity = D/(B+D)
PPV = A/(A+B)

NPV = D/(C+D)

For interpretation of radiobioassay results, one can easily extrapolate the sensitivity and specificity
to continuous variables which are afunction of the underlying background and sample count
rates, their respective counting times, and the value of the decision level. If one fixesthe
background count rate and the counting times, then pairs of sensitivity and specificity curves for
each value of decision level can be plotted as a function of the true sample count rate.

- beta)

o
\l

Specificity (1 - alpha)
Sensitivity (1

co Pk
(ocl(o iy 0N

0.6 |
0.5 ¥
0.4 |
0.3 |

0.2

0.1 |

Specificity
o’ - - - -Sensitivity

1 2 3 4

Decision Level (Standard Dewviations of
Background)

Figure 5. Specificity and Sengitivity as afunction of DL

For radiobioassay, the
proportions of valuesin each cell
in the table depend on the nature
of the population being tested.
For routine bioassay, typically (B
+ D) >> (A + C), that is, most
persons are truly unexposed.
The specificity is (1 - o) when
everyone is unexposed. The
minimum detectable amount
(MDA) or L isthat value of
underlying true count rate that
gives asengitivity of (1 - pB)
when the decision level is(DL) or
L. (Figure5).

3.5 Detection Capability:
Quantitative Treatment

3.5.1 Deciding Whether a Sample Is Above Background: The Decision L evel

Any net count rate greater than the decision level represents the presence of activity in the sample.
For significant number of background counts, the decision level for the net count rate is
approximately (Strom and Stansbury 1992)(Lochamy 1976; Health Physics Society (HPS)

1996):

DL(R,) in cps (or cpm) = 1.645 /R, (1/t, + 1/t), (8)
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where the 1.645 value corresponds to a 5% false alarm rate (i.e., 1 samplein 20 that has no
activity present will exceed this count rate ssmply due to random statistical fluctuations).

One may assume that no activity is present in sample if the net count rate is less than the decision
level; however, it isagood practice to record all counting results, whether above the decision
level or not.

Equations are available in NUREG-1400 (Hickey et a. 1993) for cases where radioactive decay
during sampling and counting may affect results. Equations are also provided in the appendix to
that work that may improve precision and detection capability.

3.5.2 Measuring Detection Capability for a Counting System: Minimum Detectable
Activity

A counting system may be characterized by a minimum detectable activity (MDA) for a specified
choice of parameters such as counting times. Once a decision level has been specified by the
choice of count times and the false alarm rate (here we adopt a 5% false alarm rate), it is possible
to determine a value of activity that would yield a count rate less than the decision level acertain
fraction of thetime. Thisvalue of activity is caled the MDA. The fraction of the time that an
activity equal to the MDA would actually result in a count rate less than the decision level is called
the false negative rate. Here we adopt a 5% false negative rate, i.e., 1 timein 20 a sample with
an activity equa to the minimum detectable activity would actually result in a count rate less than
the decision level. Under these assumptions, the MDA for the activity on the filter becomes

3 + 329 Rty (1 + tyt)

th

MDA in Bqg (or pCi) =

(9)

where the terms are defined above (Currie 1968, 1984; Brodsky 1984; NCRP 1985). The MDA
is a performance indicator for a counting system. Normally the MDA is compared with a
performance goa rather than with the result of a measurement. The MDA is an amount of
activity that yields aresult above the decision level most of the time (95% of the time for this
document). To contrast the decision level and the minimum detectable activity, consider the
following: the decision level represents a count rate large enough that it is unlikely to be a“false
alarm,” but the minimum detectable activity represents an activity large enough that it is unlikely
not to “set off the alarm,” that is, an activity at or above the minimum detectable activity is likely
to result in a count above the decision level (likely to “set off the alarm™). Note that it is quite
possible that an activity less than the minimum detectable activity will “set off the alarm” or result
in a count rate above the decision level.

For example, suppose that one has determined that 4 DAC-h are expected to result in an activity
of 1.5 Bq (4 x 10° uCi) on the filter of an air sampler run for 8 hours. Would the counting
system described in the examples (deleted to save space) have adequate detection capability to
detect a4 DAC-h exposure? The MDA becomes
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3 + 3.29 ,/0.11 x 100 (1 + 100/1000)
0.33x 100

MDA

0.438 Bq (10)

Thisis below the desired performance of 1.5 Bq (4E-5 uCi), so one can conclude that the
counting system is adequate. If the minimum detectable activity had been greater than 1.5 Bq
(4E-5 pCi), then one could have chosen to count the sample longer, used a more efficient
counter, or chosen a counter with alower background to reduce the minimum detectable activity
until it was less than the desired goal. For other options when the minimum detectable activity is
too high, refer to the section on “minimum average concentration.”

Normally, measurement results (in terms of count rates) are compared with the decision level or
other action levels. The minimum detectable activity, on the other hand, is normally compared
with performance goals.

Bioassay programs are designed to detect intakes that would result in He 5, values of 1 mSv or
more. Thereisagreat deal of inference between a radioactivity measurement in a bioassay
sample and the dose associated with it.

Similarly, because it is convenient to think of air-sampling programs (used for personnel
dosimetry) in terms of concentrations, not activities, and because there are several other variables
to be considered in determining concentrations, a more useful performance indicator for an air-
sampling program (as contrasted with a counting system that is only a part of the program) is the
minimum detectable concentration, described below.

3.5.3 Determining the Radioactivity Concentration

Anintegral part of an air-sampling program is the measurement of radioactivity and the
subsequent interpretation of the data. Counts in a radioactivity measurement system come from
both the background and samples. Under the assumption of constant concentration of
radioactivity in the air during the time the sampleis collected, and if sampling, decay, and
counting times are short with respect to the half-life, the activity concentration is given by

R

_ n
EFKtg (1D

where

concentration of radioactive materia in the air in Bq m (or uCi/cm?q)
net count rate in cps (or cpm)

fractiond filter efficiency (% efficiency/100)

airflow rate through the sampler in m* s* (or cm®min)

counting efficiency in cps Bg* (or cpm/uCi)

duration of sample collection in s (or min).

XTM®IO

—+

1]
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3.5.4 Measuring Detection Capability for an Air-Sampling Program: Minimum
Detectable Concentration

Suppose one wants to set a performance goal for an air-sampling program of being able to detect
0.1 x DAC. Such achoice would ensure that, for workers continuously present in the area, no
intakes would occur that would result in a committed effective dose equivalent in excess of 1
mSvly.

To determine if a program would meet this goal, one may cal culate the minimum detectable
concentration (MDC) of the equipment and procedures in the program. The MDC for any single
measurement is

3 + 329 /Ryt (1 + t,/t)

MDC in Bgm 2 (or uCi/cm?) =
am= (or u ) EFKtt,

(12)

where the symbols are as defined above. To have an air-sampling program that meets this
detection capability goal, one may select procedures and equipment with values of flow rate,
duration of sample collection, filter efficiency, counting efficiency, and gross and background
counting times so that the MDC in Equation (12) is less than or equal to 0.1 x DAC (unlessa
weighted average of sample results for intervals less than 40 hours is used; see below).

3.5.5 Measuring Detection Capability for a Bioassay Program: Minimum Detectable
Dose

The workplace scenario that one wishes to quantify begins with a worker who inhales a quantity
of airborne radioactive materials in the workplace. If this occurs once, over afinite period of
time, it istermed an acute intake. If it happens repeatedly or routinely, it is called a chronic
intake. For simplicity, consider the acute intake case. In either case, aroutine bioassay program
may collect samples of excretafor analysis periodicaly.

After intake, some radioactive material trandocates within the body, and is eliminated through
natural biological turnover and, for materials whose half-life is short compared to the interval
between bioassay samples, radioactive decay.

The fraction of the intake that remains in any bioassay compartment (e.g., atissue or organ, or in
excreta) is described by an intake retention function (IRF) for that compartment (I nternational
Commission on Radiological Protection (ICRP) 1979; Lessard et . 1987; Raabe 1994). The
IRF for urine or fecesis the expectation value of excretion for a calculational model known as
Reference Man (International Commission on Radiological Protection (ICRP) 1975). Bioassay
compartment |RFs may decrease monotonically with time, or they may be more complex.

For individuals, even those who are well-described on the average by Reference Man-based | RFs,

excretion rates are characterized by intra-subject variability. Inter-subject variability isseenin
individuals whose excretion rates differ systematically from those predicted by the Reference Man
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models. Such “biological variability,” denoted by V,,,, can occur in excretion rates and volumes.

If radiochemical separation of radioactive materiasis required, such asin preparation of samples
for spectroscopy of alpha emitters, the fraction of the nuclide of interest that is recovered from the
sample is known as the radiochemical yield, Ys.. Radiochemicd yield isvariable, but is usualy
measured.

Intakes of radioactive material are related to He 5, by “dose per unit intake” factors published by
various groups (Eckerman et al. 1988; International Commission on Radiological Protection
(ICRP) 1994) For workers, the 50-year committed effective dose per unit intake for inhalation,
e(50), isafunction of radionuclide, lung clearance type, and particle size (International
Commission on Radiological Protection (ICRP) 1994). Similar factors he 5, are available for
He 5 In the EPA Federal Guidance Report 11.

The minimum detectable dose MDD for a bioassay program is directly proportional to the
Minimum Detectable Intake, which isthe MDA as modified by several other factors:
MDA

MDD = (Minimum Detectable Intake) x he o) = YoV IRF.(A) x hg g
RC "bio u

(13)

A key difficulty isthat IRF (At) is a strongly-varying function of time At between intake and
bioassay measurement. When the time of intake is unknown (asis usually the case for routine
bioassay measurements, some reference value of time must be chosen for evaluating the MDD.
The ICRP has recommended the midpoint of the interval, but in general this gives biased results.
Another possibility isto assume that the intake occurred immediately after the previous bioassay
sample, but this aso leads to bias, usualy significantly overestimating doses.
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Table4. Summary of Symbols, Quantities, and Units

Symbol Quantity Sl Unit Traditional Unit
t, background counting time S min
ty gross counting time S min
At time between intake and bioassay sample d d
N, number of background counts observed - -
N, number of gross counts observed - -
N, number of net counts observed - -
R, background count rate; estimator of p,, st counts min
R, gross count rate st counts min™*
R, net count rate; estimator of p, st counts min'*
Ob population count rate due to background st counts min
On population count rate due to anayte st counts min
S, standard deviation of the net count rate st counts min'*
Yac radiochemical yield (recovery) - -
Viio biological variability - -
K counting efficiency stBqg? counts min* pCi*
p(A) unconditional probability - -
pP(A|E) conditional probability of A given E - -
A activity Bqg pCi
Sa standard deviation of the activity Bqg pCi
C activity concentration Bqm? uCi/cm?
S standard deviation of activity concentration Bqm? uCi/cm?
o, B probabilities of Type | and Typell errors
Ker Kg standard normal deviates corresponding to o and 3
DL(R) decision level for net count rate st counts min
MDA minimum detectable activity Bqm? uCi/cm?
MDC minimum detectable concentration Bqm? uCi/cm?
MDD minimum detectable dose Sv rem
he, 50 He, 50 per unit intake Sv/Bq rem/pCi
€.n(50) committed effective dose per unit intake Sv/Bq rem/pCi
~ logical “not” - -
o abar over asymbol denotes “average,” eg., - -

R, C,N, MDC
IRF intake retention function - -
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