MEASUREM

z o

H

TA

Δ.

С Ш

2

۵

0 B A

Global Precipitation Measurement

System Requirements Review – Core Spacecraft

June 4 - 5, 2002

John Durning 301/286-2508 John.durning@gsfc.nasa.gov Goddard Space Flight Center

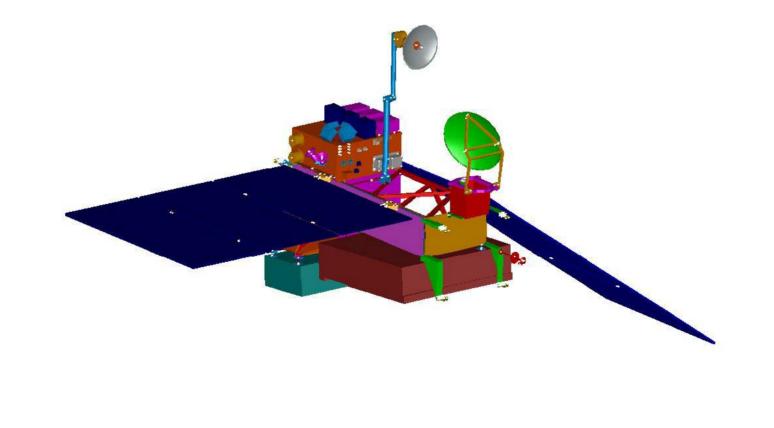
GODDARD SPACE FLIGHT CENTER

Σ

ш

MEASUR

z


۵

۳ ۳

0 B A

GPM Core Spacecraft

• The GPM core spacecraft has been identified as an in-house formulation effort here at GSFC.

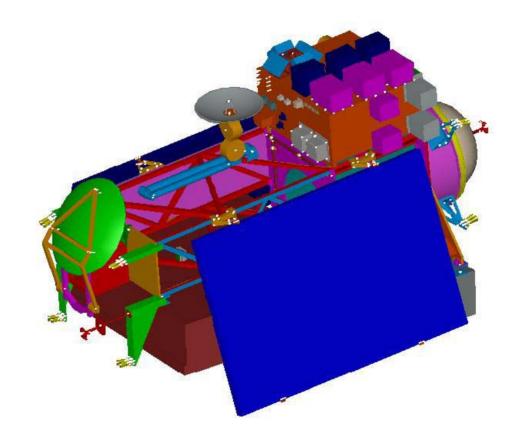
SRR June 4-5, 2002 – Core Spacecraft

MEASUREME

z o

TAT

۵.

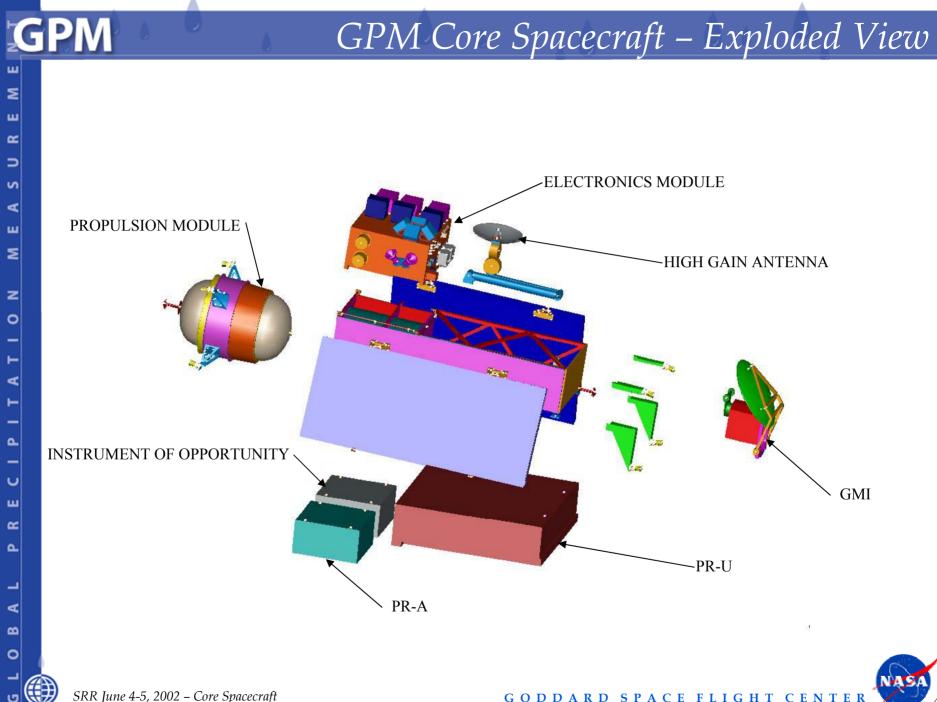

PREC

B A L

0

ט

GPM Core Spacecraft - stowed



Т

SRR June 4-5, 2002 – Core Spacecraft

GODDARD SPACE FLIGHT CENTER

GPM Core Team

• The in-house team is in place:

– From code 500:

GPN

œ

S

A

ш Х

z

0

۵.

80

- 16 Civil Servant FTEs
- 8 contractor FTEs
- *– From rest of the codes:*
 - 2 Civil Servant FTEs
 - 3 Contractor FTEs

• In discussions with the branches on the ramp up of support as we progress towards PDR in third quarter of CY03

ш Σ ш

æ

S

A

ш

Σ

z

0

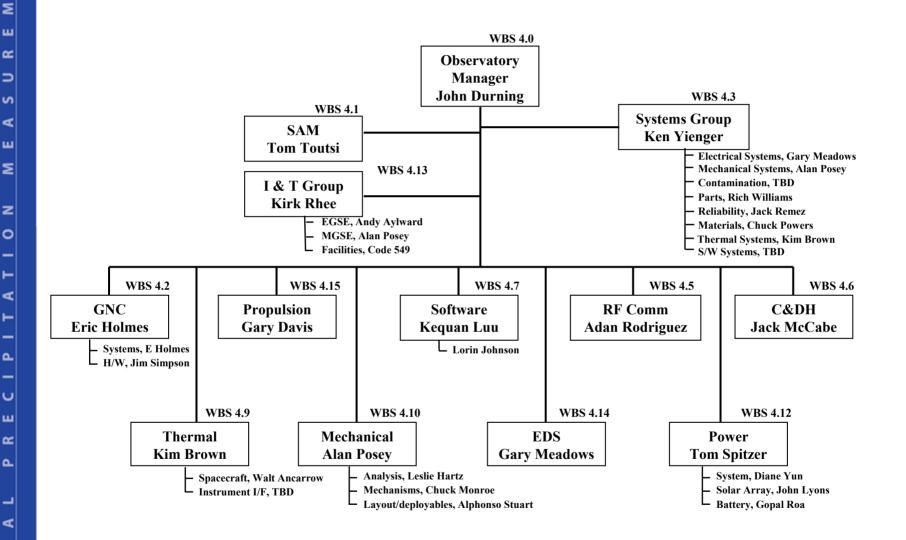
-H

F

—

۵.

U


ш

۵.

_

A 8 0

U

GPM Design Philosophy

• Technologies:

- GPM can fly new technologies but are not permitted to fund the development of said technologies working closely with ESTO and other codes (S, Q & M) to coordinate technology funding in the GPM time frame
- If new technology is baselined in the design the functionality must be demonstrated by subsystem PDR and GPM design breadboarded by subsystem CDR, e.g. LiOn Batteries or UltraFlex array
- *If baselined design is major modification of existing design the GPM design must be breadboarded by subsystem CDR, e.g. power supply electronics.*

Fault Tolerances:

- The Core spacecraft shall be single fault tolerant.
 - Implementation of this is that no single reasonable fault (only have 1 structure) in one subsystem shall bring down the overall spacecraft system
 - To ensure this work on Fault Tree Analyses and Probability Risk Assessments will begin concurrently with the design activities

IGPM

œ

A

ш Х

z o

۵

۳ ۳

0 B A

Design Philosophy (cont'd)

• Mission Lifetime:

- The only consumable identified on this design is the propellant.
- All subsystems and parts shall be designed for a minimum mission of 3 years save for the propellant budget. The propellant budget shall be designed for 5 years (mean solar flux).

Σ

ш

ж П

S

А Ш

Σ

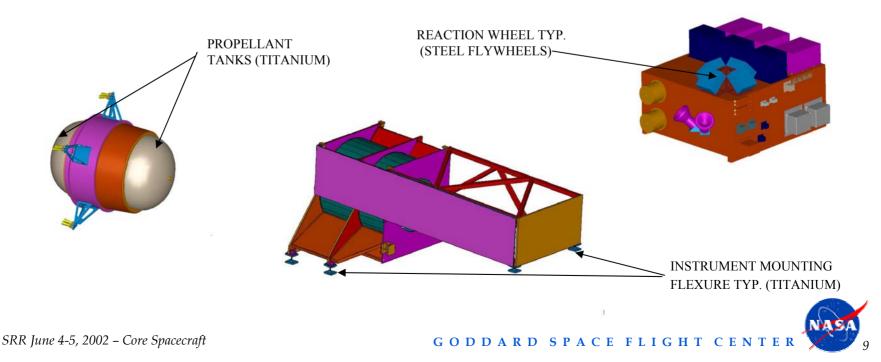
z

0

₫

۵

۳ ۳


◄

8

0

GPM Design Philosophy (cont'd)

- De-Orbit:
 - In order to meet the NASA end of mission disposal requirement without the need for controlled re-entry the GPM mission has instituted a "Design for Demise" philosophy.
 - What does this mean?
 - No pieces or parts of the spacecraft survives the de-orbit process in any substantial way to cause a risk to people or object on the ground or in the air (to be determined by ORSAT analysis).
 - Therefore, material selection is critical no Stainless Steel or Titanium or Beryllium of significant mass in the design

Σ

ш

л В

S

A A

Σ

z o

4

Δ.

ш

≃

۵

◄

8 0

• Pros:

- Inherently more reliable than controlled reentry
- Enables maximum use of spacecraft resources
 - No mass allocation for controlled reentry
 - No unique hardware for de-orbit
 - No early reentry due to reliability risk operate spacecraft to the bitter end as ACS components gracefully degrade unlike GRO.
- Avoids operations costs associated with controlled reentry (>\$1M for GRO)
- Cons:
 - Standard designs for prop tanks and reaction wheels utilize Ti and Stainless Steel, respectively
 - *Ti utilized in structural components alternatives are not as mass efficient*
 - *More extensive de-orbit analyses to ensure demise compliance*
- TRMM analysis shows the PR & TMI comply with this philosophy

Design for Demise

ш

Schedule

Spacecraft Integration and Test

CY		2002			2003				2004			2005				2006				2007		
5	. 2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3 4
Major Milestones																	PSR Launch					
Bus Integration and Test		IX.				I DI				ODIX												Eduno
Electrical Module																						
Schedule Reserve																						
Propulsion Module																						
Schedule Reserve																						
Module Integration																						
Instrument Delivery														Jı	une 1	, 200)6 <u>_</u>					
Instrument Integration and Test]				
Schedule Reserve																						
Observatory Mechanical Testing																						
Observatory Thermal Vac Testing																			V			
Observatory Close-outs, Alignment & Mass Properties																						
Schedule Reserve																						
Launch Site Operations																						