
Reference Data Cookbook
for the “Who Spoke When” Diarization Task

(Version 2.4 March 17, 2003)

Introduction
This document specifies the process by which NIST will create the reference data used for
“who spoke when” diarization. This document is the requirements specification for the
programs to convert the .aif data from the LDC into .ctm .mdtm and .uem files. The .uem file
discussed in this document is a “scoring .uem file”.

Main tasks to be performed
The LDC will provide a force-aligned initial version of the data, as an .aif file.

The .ctm file
Produce a .ctm file with the tokens. The “speaker ID” and “speaker type” in the .ctm file must
exactly match the corresponding speaker ID and speaker type in the .mdtm file.

The .uem and .mdtm files
Produce a .uem file that specifies the region(s) that are to be scored in the audio file. We will
not score any regions that were not transcribed—for example, in the case of broadcast news or
similar material, the LDC does not transcribe commercials, reporter chit-chat outside the
context of a story, station identifications, public-service announcements, promotions for
upcoming broadcasts, and long musical interludes. Start with a .uem file that excludes these.

In step two below, we will modify the .uem file to exclude noscore regions around tokens of
type vocalNoise.

FIRST STEP (TENTATIVE SEGMENT BOUNDARIES FOR THE .MDTM FILE):
Silence of at least 0.3 seconds will force a segment boundary. For purposes of this calculation,
tokens of type nonvocalNoise and those of type vocalNoise will count as silence. Generate this
list of segment boundaries as an .mdtm file. The start time for each segment will be the start
time of the first token in it that is not of type vocalNoise. The end time of the segment will be
the end time of the last token in it that is not of type vocalNoise. The start and end times will
not be padded (no collars).

The .mdtm file will have two comment lines at the top, and the comment line that lists the input
files (normally the second of the two comment lines) should include the name of the .ctm file.

 2

SECOND STEP (NO-SCORE ZONES IN THE .UEM FILE):
Then, for the 5 speaker-created vocal noises (breath, cough, laugh, lip-smack, sneeze), define a
"no-score" zone that extends from the vocal noise to the edge of the closest segment boundary
or word (by any speaker), whichever is closer, in both directions. Forced alignment time marks
will be used for words. The segment boundary time marks are from the first step.

The result will be like this:

 <----NO-SCORE ZONE---->
 [word]<-------noise--------->[word]
 [word]<-------noise--------->|segment boundary
 segment boundary|<-------noise--------->[word]
 segment boundary|<-------noise--------->|segment boundary

Process the .aif tokens as follows
Any token in the .aif file with tokenContent type of vocalNoise should be translated to token
type non-lex in the .ctm file.

Any token in the .aif file with tokenContent type of nonvocalNoise should be translated to
token type non-lex in the .ctm file, and the speaker field in the .ctm file should be null.

Any token in the .aif file with tokenContent type of empty string (“ ”), mispronounced,
acronym, spokenLetter, interjection or properName should be translated to token type lex in the
.ctm file.

Any token in the .aif file with tokenContent type of misspelled should be translated to token
type noscore in the .ctm file. We hope misspelled will not occur in the reference data, and we
may try to fix the data if it does. It would be a good idea to have the data conversion program
throw an exception if this token type occurs (so we can find and fix the problem in the data).

Any token in the .aif file with tokenContent type of foreign should be translated to token type
for-lex in the .ctm file.

Any token in the .aif file with tokenContent type of preFragment should be translated to token
type frag in the .ctm file.

Any token in the .aif file with tokenContent type of postFragment should be translated to token
type frag in the .ctm file.

Any token in the .aif file with tokenContent type of idiosyncratic should be translated to token
type un-lex in the .ctm file.

 3

Any token in the .aif file with tokenContent type of filledPause should be translated to token
type fp in the .ctm file.

Any tokens in the .aif file that are children of an annotation of type questionableTranscription
should be translated to token type noscore in the .ctm file.

Any tokens in the .aif file that are children of an annotation of type unclear should be translated
to token type un-lex in the .ctm file.

Any tokens in the .aif file that span the range of annotations of type noscore should be
translated to token type noscore in the .ctm file.

Note about the treatment of overlaps
Although the presence of overlap is explicitly marked in .aif files, overlap will be implicit in
the .mdtm and .ctm files — as multiple words or segments with overlapping times.

