Predicting Relapse in Methamphetamine Dependent Individuals

Martin P Paulus
Department of Psychiatry
University of California San Diego
mpaulus@ucsd.edu

Stimulant Dependence

- Stimulants
 - Cocaine
 - Methamphetamine
 - Amphetamine
- 12 15% ever tried stimulants
- 1-3% have stimulant dependence
- 50% of sober stimulant dependent individuals relapse within a year.

Relapse

- An important public health problem.
- Predicting relapse may help to deliver targeted interventions to those individuals at risk.
- Current methods to predict relapse have
 - Low specificity (many false positives)
 - Moderate sensitivity (frequent false negatives)

Decision Making and Relapse

- Decision-making:
 - Person has to select among several options.
 - Each option can be associated with positive or negative outcomes, which may be uncertain.
 - Key elements of decision situations:
 - Probability of an outcome associated with an option.
 - The positive or negative consequence.
 - The magnitude of the consequence

Study Goals

- Neurobiology of decision-making dysfunctions in stimulant dependent subjects.
- Can functional magnetic resonance imaging be used as a tool to predict relapse?

Subjects

46 methamphetamine dependent subjects sober for a median of 25 days

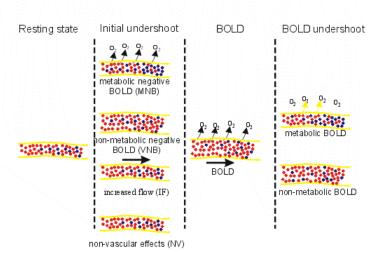
6 lost to follow up

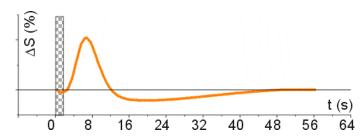
40 subjects followed up a median of 370 days

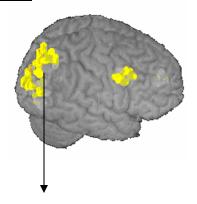
NO RELAPSE:

22

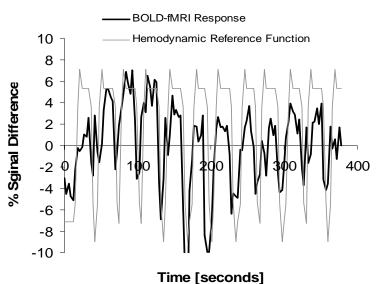
RELAPSE:


18


279 days median sober time

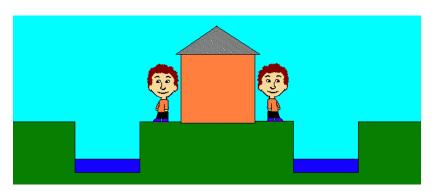

BOLD-fMRI

Hemoglobin is **diamagnetic** when <u>oxygenated</u> but **paramagnetic** when <u>deoxygenated</u>.

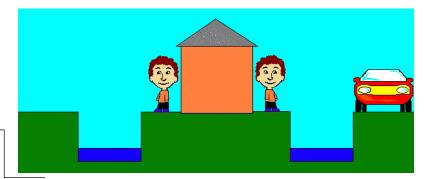

Physiology of tri-phasic response

Right parietal cortex voxel

Assessment Protocol


Baseline Assessment:

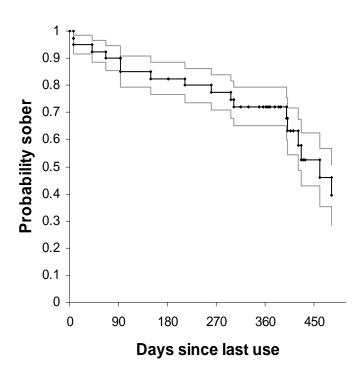
Diagnostic: SCID Symptom: BPRS / HDRS / YMRS Neuropsychology: DKEFS Decision-making: Two-choice Prediction task, Iowa Gambling Task


fMRI:

Block Design
Two-choice Prediction Task
versus
Two-choice Response Task

Two-Choice Prediction Task

Two-Choice Response Task


Sobriety Survival Function

Sobriety assessment:

Semi Structured
 Assessment for the
 Genetics of Alcoholism.

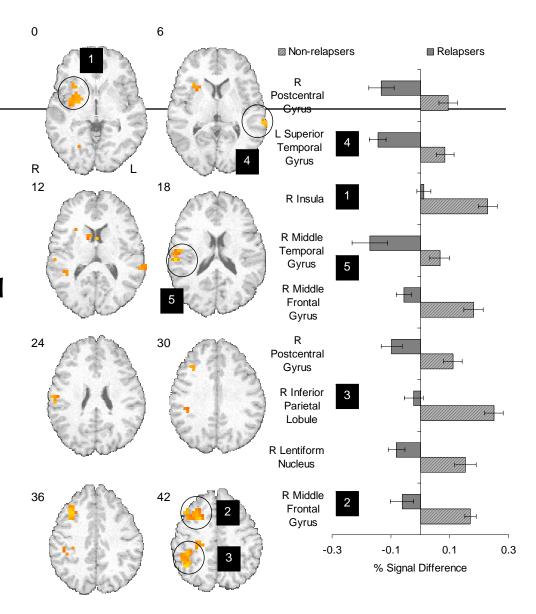
Relapse:

 any use of methamphetamine during any time after discharge.

Subjects' Socio-demographics

	Non-relap	Relapsers		
N	22	18		
Age (years)	40.3 8.8		41.9	9.0
Race/Ethnicity (n):				
Caucasian	15		12	
Other	7		6	
Marital Status (n)				
Married	1		2	
Divorced/Separated	17		10	
Never Married	4		6	
Education (years)	12.9	1.2	13.5	1.0

Subjects' Use Characteristics

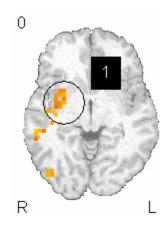

	Non-relapsers		Relapsers	
Use Characteristics	Mean	SD	Mean	SD
Years of use	14.9	10.0	17.3	8.0
Sober days before imaging	27.4	8.3	27.8	11.0
Current Alcohol / Marijuana abuse (n)	5		7	
Follow up Characteristics				
Follow up duration [days]	437	165	440	304
Marijuana use during follow up (n)	1		2	
Cocaine use during follow up (n)	1		0	
Symptom Ratings				
HDRS 21	7.1	7.8	10.2	7.6
BPRS	27.3	7.9	30.4	6.8
YMRS	1.7	2.7	5.4	6.9

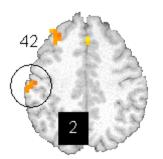
Behavioral Performance

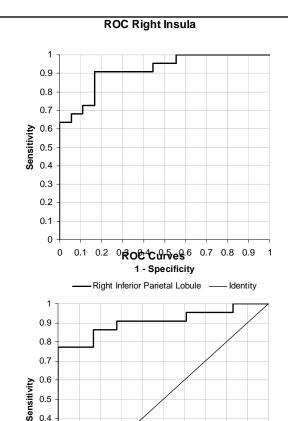
	Non-rela	psers	Relapsers	
Behavioral Measures	Mean	SD	Mean	SD
Response latency [msec]	808	361	794	794
Switching rate	0.50	0.12	0.49	0.10
Win-stay fraction	0.61	0.19	0.67	0.15
Lose-shift fraction	0.62	0.22	0.67	0.18

Nine brain areas differentiated relapsing and nonrelapsing subjects:

- prefrontal, parietal and insular cortex.
- Non-relapsing individuals showed more activation than relapsing individuals




Prediction Accuracy


	Relapse			
	YES	NO		
N (40 after a median of 370 days)	18	22		
Correctly Predicted by Imaging	17	20		
	Sensitivity 94.4%	Specificity 86.4%		

Receiver Operator Curves

- With a specificity of at least 83.3%
- Sensitivity ranged from 54.5% to 90.9%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 - Specificity

0.3

Neural Systems Predicting Time to Relapse

- Activation in three different brain areas predicted increased time to relapse:
 - low activation in these areas at baseline was highly predictive of time to relapse (χ 2 = 23.9, df=3, p < .01)

Area	Coeffici	ent (SE)	Wald	р	Exp(B)	95% CI
R Middle Frontal Gyrus	-4.36	1.82	5.68	.017	.013	0.00 - 0.46
R Middle Temporal Gyrus	-3.38	1.66	4.10	.043	.034	0.001 - 0.89
R Posterior Cingulate	-5.960	2.22	7.18	.007	.003	0.000- 0.20

Summary & Conclusions

- Functional Magnetic Resonance Imaging results predict relapse.
- Relapse = less activation in structures that are critical for decision-making
- Poor decision-making: "setting the stage" for relapse.

Candidate Processes

Insular cortex:

- Altered interoceptive processing during decision-making
- Internal feeling states have less influence on predicting optimal behavior
- Inferior parietal lobule:
 - Poor assessment of the decision-making situation and subsequent reliance on habitual behavior.

Take Home Message

- Methamphetamine dependent subjects
 - Show brain patterns that can be used to predict whether and when relapse may occur.
 - Future studies:
 - What are the specific cognitive processes?
 - O Do interventions have an impact on relapse?
 - Opes this apply to other addictions?