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Non-clinical human radiation exposure events such as the
Hiroshima and Nagasaki bombings or the Chernobyl accident
are often coupled with other forms of injury, such as wounds,
burns, blunt trauma, and infection. Radiation combined in-
jury would also be expected after a radiological or nuclear
attack. Few animal models of radiation combined injury exist,
and mechanisms underlying the high mortality associated
with complex radiation injuries are poorly understood. Med-
ical countermeasures are currently available for management
of the non-radiation components of radiation combined inju-
ry, but it is not known whether treatments for other insults
will be effective when the injury is combined with radiation
exposure. Further research is needed to elucidate mechanisms
behind the synergistic lethality of radiation combined injury
and to identify targets for medical countermeasures. To ad-
dress these issues, the National Institute of Allergy and Infec-
tious Diseases convened a workshop to make recommenda-
tions on the development of animal models of radiation com-
bined injury, possible mechanisms of radiation combined in-
jury, and future directions for countermeasure research,
including target identification and end points to evaluate
treatment efficacy. � 2008 by Radiation Research Society

INTRODUCTION

The White House Office of Science and Technology Pol-
icy’s Radiological/Nuclear Threat Countermeasures Work-
ing Group rates radiation combined injury as a high-priority

1 Address for correspondence: DAIT, NIAID, NIH, 6610 Rockledge
Drive, Room 4056, Bethesda, MD 20892; e-mail: cohena@niaid.nih.
gov.

research area (1). A significant percentage of people ex-
posed to radiation from radiological or nuclear terrorism
are expected to sustain other injuries, including wounds,
blunt trauma from blast overpressure, and burns, all of
which may be complicated by microbial infections. Radi-
ation exposure in animal models often worsens the devel-
opment and progression of other injuries (2). To build on
existing studies of countermeasures for other injuries, the
Division of Allergy, Immunology and Transplantation, Na-
tional Institute of Allergy and Infectious Diseases (NIAID),
National Institutes of Health, held a workshop on March
26–27, 2007 to address medical countermeasures for radi-
ation combined injury. Investigators in the areas of radia-
tion, burn, blast, trauma and sepsis were convened to iden-
tify research gaps and promote collaborations to understand
mechanisms, discover targets, and develop medical coun-
termeasures for radiation combined injury (Table 1).

Meeting presentations on the first day focused on poten-
tial scenarios for radiation combined injury, mechanistic
studies, basic animal models, and overviews of historical
and current research in the treatment of sepsis, burns, trau-
mas and radiation combined injury. On day two, partici-
pants explored therapeutic agents for burns, wounds, infec-
tion and scarring and defined potential targets for drug de-
velopment. After the presentations, an open discussion ad-
dressed animal models, assays and study end points for
radiation combined injury that would move countermea-
sures toward Food and Drug Administration (FDA) licen-
sure. Complementing several excellent overviews of radi-
ation combined injury (3–5), this report reviews meeting
outcomes to provide guidance on animal model develop-
ment, possible physiological mechanisms of mortality of
radiation combined injury, and the challenges of developing
and licensing mitigators and treatments. Meeting slides can
be viewed at http://www3.niaid.nih.gov/research/topics/
radnuc/Meeting�Slides.htm.
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TABLE 1
Invited Workshop Speakers and Areas of Expertisea

Name Affiliation Expertise

Darrell Carney, Ph.D.
Carl Curling, Sc.D.

University of Texas Medical Branch
Institute for Defense Analyses

Thrombin peptides, wound healing
Nuclear scenario modeling, threat analysis

Harald Dorr, M.D. Bundeswehr Institute of Radiobiology, Munich,
Germany

Radiation accident medical management, late effects

Mark Ferguson, Ph.D. University of Manchester Skin injury, mechanisms of scar-free healing
John Fike, Ph.D. University of California, San Francisco Traumatic brain injury, radiation exposure, cognitive

impairment
Martin Hauer-Jensen, M.D., Ph.D. University of Arkansas for Medical Sciences Radiation mechanisms and countermeasures for gas-

trointestinal injury
Erwin Hirsch, M.D. Boston University School of Medicine Trauma surgery, patient care
G. David Ledney, Ph.D. Armed Forces Radiobiology Research Institute Mechanisms of radiation combined injury, counter-

measures
Paul Okunieff, M.D. University of Rochester Medical Center Radiation oncology, radiation skin damage, inflamma-

tory responses
Terry C. Pellmar, Ph.D. Armed Forces Radiobiology Research Institute Radiation biology, countermeasure development, mili-

tary response
Martin G. Schwacha, Ph.D. University of Alabama at Birmingham �� T cells, burn injury, inflammatory responses
Alla Shapiro, M.D., Ph.D. Office of Counter-Terrorism and Emergency

Coordination, Food and Drug Administration
Clinical effects of radiation exposure, Chernobyl, FDA

licensure pathways
Daniela Stricklin, Ph.D. Swedish Defense Research Agency Radiation gene expression, proteomics
Yongping Su, M.D., Ph.D. Institute of Combined Radiation Injury,

Chongqing, China
Radiation combined injury mechanisms, countermea-

sures
Peter Ward, M.D. University of Michigan Health Systems Microbiology, mechanisms of sepsis
Zhongmin Zou, M.D., Ph.D. Institute of Combined Radiation Injury,

Chongqing, China
Radiation combined injury mechanisms, countermea-

sures

a Invited speakers were given the opportunity to comment on the meeting report before its submission.

TABLE 2
Varying Severity of Skin Damage in Chernobyl

Patients with Acute Radiation Syndrome

Severity
(grade)

No. of
patients

Percentage skin involvement in patients

50 11–49 1–10 Total

IV 20 9 10 1 20
III 21 3 15 3 21
II 43 1 9 2 12
I 31 0 1 2 3

Total 115 13 35 8 56

Note. Table provided by A. Shapiro, FDA, Silver Spring, MD. Origi-
nally published in UNSCEAR 1988 Report (10).

BACKGROUND

Human Radiation Exposures

A large number of events, including intentional bomb-
ings (Hiroshima and Nagasaki) and radiation accidents (e.g.
Chernobyl and Goiania), have shown the importance of im-
proving the diagnosis and management of radiation com-
bined injuries. After the bombings of Hiroshima and Na-
gasaki, 60% to 70% of victims had thermal burns concur-
rent with radiation exposure (6, 7), and after the Goiania
contamination (8) and the 1986 Chernobyl accident, the
cutaneous component (e.g. radiation skin burns) of acute
radiation sickness complicated clinical prognoses. For ex-
ample, 115 Chernobyl victims developed acute radiation
sickness, with 49% of these patients manifesting radiation

burns (9). Skin involvement ranged from 1% to 50% of
total body surface (Table 2) (10).

Of the 27 patients dying within 3 months of the Cher-
nobyl accident, 19 had �-particle radiation burns over at
least 40% of the body surface, and 22 died during a period
of profound leukopenia 14 to 34 days after exposure (A.
Shapiro). In 20 of these 22 patients, burns were the main
cause of death; patients with more extensive �-particle ra-
diation burns developed neutropenia earlier than other pa-
tients. Individuals with erythema and more than 40% body
surface burns developed high fever and other symptoms of
toxemia and hepatic and renal failure. The role of skin in-
jury in mortality resulting from acute radiation sickness was
also discussed (H. Dörr) with regard to analysis of the
SEARCH databank (System for Evaluation and Archiving
of Radiation Accidents based on Case Histories) (11). This
analysis focused on the time course and severity of radia-
tion-induced skin reactions and the extent of the skin sur-
face affected. Consistent with clinical findings after the
Chernobyl accident, the percentage of skin surface affected
and the grade of hematological injury each correlated well
with the clinical course of acute radiation sickness and were
independent predictors of mortality.

Modeling Radiation Combined Injury

In developing effective countermeasures for radiation
combined injury, it is imperative to understand the expo-
sure scenarios anticipated in the wake of a radiological or
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FIG. 1. The LD50/30 for � radiation is decreased by burn or skin-wound
trauma in the mouse. Figure provided by G. D. Ledney, AFRRI, Bethes-
da, MD, as published in ref. (18).

nuclear event. Nuclear detonation energy is partitioned into
ionizing radiation, thermal radiation, and blast pressure,
which may cause wounding and other trauma (C. Curling).
Different physical principles determine amount of energy
transmitted in each form; the relative percentages of total
energy absorbed by an individual from these three com-
ponents are dependent on the distance from the point of
detonation. An individual’s location and orientation to the
blast and shielding provided by buildings or other objects
affect the degree and type of injury sustained, making it
difficult to model human exposure precisely and to estimate
numbers of casualties.

TRAUMA (BURNS OR WOUNDS) � RADIATION

Animal Studies

In animal models of radiation combined injury such as
the rat (12, 13), guinea pig (14), dog (15), and swine (16),
burns or wounds usually increase mortality after non-lethal
radiation exposures. For example, rats exposed to 1, 2 or 5
Gy of X rays show significantly higher mortality when ra-
diation is combined with an LD50 skin burn (12). Data dem-
onstrating delayed wound closure after total-body irradia-
tion of mice were presented (G. D. Ledney) (17). Wounds
or burns also shifted the radiation survival curves for mice
to the left, with resulting dose modification factors (DMFs)
of 1.3 and 1.2, respectively (Fig. 1) (18). Animals exposed
to radiation with wounding are more susceptible to infec-
tion and experience delayed skin healing and decreased sur-
vival (19). Because radiation impairs immunity and repair,
addition of cutaneous injury increases the risk of infection,
enhancing morbidity and mortality compared to radiation
alone (20).

Other experiments confirmed these findings, showing
that the average wound healing time increases with radia-

tion doses greater than 4 Gy compared to unirradiated
wounds (21). Paradoxically, wounding of mice 24 h prior
to irradiation improved 30-day survival compared to un-
wounded animals (17), a finding attributed to an increase
in clonogenic myeloid elements. Wounding after irradiation
decreased survival, consistent with the previous study. For
this reason, it is imperative to evaluate wounding both prior
to and after radiation exposure in selected animal models
to determine whether similar mechanisms exist.

Ongoing animal research also includes the interaction of
radiation exposure with brain injury. Radiation-induced
cognitive impairment is thought to involve hippocampal
neurogenesis (22). For example, low doses of X rays reduce
new neuron production in a dose-dependent fashion (23).
Recent data suggest that when neurogenic microenviron-
ments are ‘‘primed’’ by pre-existing oxidative stress, the
deleterious effects of radiation on neurogenesis are blunted
(24). This effect may involve alterations in inflammatory
cell function, rendering them protective rather than dam-
aging. In preliminary studies, irradiation of mice induced a
modest reduction in hippocampal neurogenesis, while trau-
matic brain injury alone had a larger impact. Surprisingly,
when focal brain injury occurred 1 month after radiation
exposure, more newly born neurons survived than after
brain injury only (J. Fike, unpublished data), suggesting
that prior irradiation protected neurogenic cells. Under-
standing the mechanisms of this protection may lead to the
development of strategies to ameliorate the cognitive con-
sequences of exposure to radiation and/or traumatic brain
injury.

Skin Wounds and Radiation

Normal wound healing is categorized into four processes:
hemostasis, inflammation, proliferation and remodeling.
Chronic wounds or pathological scarring may develop if
these events are impaired by confounding injuries such as
radiation exposure or infection. The pathological mecha-
nisms of impaired and delayed wound healing after irradi-
ation are complex and depend on the radiation dose, energy
and type (e.g., photons or neutrons) as well as on the extent
of the body surface affected. Total-body irradiation fol-
lowed by wounding reduces acute inflammatory responses,
as manifested by decreased inflammatory cells and im-
paired cellular function compared with wounding alone (5).
Radiation also inhibits the proliferation phase by reducing
the number and function of fibroblasts and vascular endo-
thelial cells, delaying re-epithelialization, and affecting re-
modeling. Thus, in the acute phase, radiation exposure can
prevent healing, resulting in chronic wounds (25). Late ra-
diation skin effects such as fibrosis are attributable in part
to endothelial cell death and to loss of dermal vasculature.

Mechanisms

Studies on molecular mechanisms of skin radiation dam-
age suggest a role for cytokine feedback (P. Okunieff). Cy-
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FIG. 2. Model showing how interactions between epithelial and en-
dothelial radiation injury in the intestine causes endothelial dysfunction,
exacerbates acute intestinal radiation toxicity, and subsequently sustains
the cycle of chronicity of intestinal radiation fibrosis. Figure provided by
M. Hauer-Jensen, from ref. (39) with permission from Nova Science Pub-
lishers, Inc.

tokine homeostasis and cross-talk are controlled in a com-
plex manner, and imbalances in feedback mechanisms after
radiation exposure can occur. In fact, radiation exposures
alter levels of multiple cytokines compared to unexposed
controls (D. Stricklin, unpublished data). To further com-
plicate matters, cytokines may be deleterious or beneficial
depending on the context (tissue cytokine concentration,
phase of wound healing, etc.). Radiation-induced increases
in IL1 and TGF�1 expression are predictive of fibrovas-
cular changes after high doses of radiation (26), as shown
in several mouse strains (27) and in human patients (28).
Different strains of mice or knockout mice show differing
radiation sensitivities based on their TGF� levels. IL6 is
also enhanced in mice exposed to radiation and thermal
burns (29). These data suggest that therapies that reduce
IL1, IL6 and/or TGF� expression might alter the late fi-
brovascular effects of radiation exposure, enhancing short-
term survival. Consistent with these findings, COX2 inhib-
itors reduce IL1 and macrophage chemotaxis into tissues
and minimize short- and long-term inflammatory effects in
irradiated skin (30). Pentoxifylline (31), curcumin (26) and
esculentoside A (32) also reduce levels of IL1�, TGF� and
other inflammatory cytokines, resulting in radiation protec-
tion of soft tissue.

Major thermal injury induces an immuno-pathogenic re-
sponse, leading to delayed wound healing, increased sus-
ceptibility to sepsis, and multi-organ failure (M. Schwacha)
(33). Although many mediators and cells regulate inflam-
matory processes after injury, the balance between inflam-
matory and anti-inflammatory responses is disrupted after
burning (34). Recent studies implicate �� T cells in the
induction of organ injury after burning (35). These cells are
part of the innate immune system and are important in early
inflammatory/immune responses. In a mouse model of ther-
mal injury, cytokine induction by �� T cells is important
in neutrophil-mediated damage in the lung and gastrointes-
tinal (GI) tract (36). Conversely, �� T cells are also im-
portant in wound healing processes through immune sur-
veillance and tissue repair. Severe injuries such as burns
initiate an exaggerated inflammatory response and induce
multi-organ failure, particularly if other inflammatory stim-
uli are encountered. Based on burn severity, additional in-
juries may exacerbate immunological complications.

Multi-organ Injury, Endothelial Dysfunction and
Radiation Combined Injury

Recent attention has been focused on the radiation-in-
duced multi-organ dysfunction syndrome. Diffuse vascular
injury and endothelial dysfunction may be important con-
necting factors in this complex condition. High doses of
radiation cause an immediate increase in capillary perme-
ability (37). Endothelial dysfunction is important in the
pathophysiology of many aspects of radiation combined in-
jury, including radiation, burns, shock, blunt and penetrat-
ing trauma, multiple organ dysfunction, and sepsis (38) (M.

Hauer-Jensen). Endothelial dysfunction is also implicated
in radiation damage to the GI tract and is responsible for
depletion of epithelial cells, breakdown of the mucosal bar-
rier, and decreased crypt cell proliferation (Fig. 2) (39). In
early work on the time of death from radiation and skin
burn, GI injury, not hematopoietic syndrome, led to mor-
tality, even though combined injuries did not affect the mu-
cosal mass or crypt cell numbers beyond the damage ob-
served for radiation alone (40). Paris et al. suggested that
radiation-induced apoptosis of endothelial cells may be the
primary cause of GI damage (41); however, other results
contradict this finding (42).

General Countermeasures for Radiation Combined Injury

Prior administration of WR-151327, an aminothioate
known to be an effective radioprotector, increased survival
in mouse models of radiation combined injury (43). WR-
151327 protected animals given radiation alone (DMF �
1.53) as well as animals subjected to radiation combined
injury (DMF � 1.51). Other compounds such as pentoxi-
fylline, glycine and gadolinium chloride had no effect on
survival of mice and rats given 7 Gy radiation plus a full-
thickness (10% in mice or 15% in rats) total-body surface
burn (44). In contrast, anti-IL6 antibodies in the same
mouse model enhanced survival by up to 60% over that of
nontreated controls (29).

1. Treatments for skin damage from radiation combined
injury

After skin injury, major medical challenges include the
acceleration of healing and minimization of scarring. Treat-
ments evaluated for radiation skin damage include linoleic
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FIG. 3. Radiation exposure decreases the survival of mice injected
with 1.1 � 105 Klebsiella pneumoniae (K.p.) cells. Figure provided by
T. Pellmar, AFRRI, Bethesda, MD (T. B. Elliott, unpublished data).

acid, topical/systemic steroids, systemic pentoxifylline and
�-tocopherol, hydrocolloid dressings, and thrombocytic
growth factors (45). In the absence of other countermea-
sures, these compounds, in conjunction with supportive
care, are expected to be the first therapies used; however,
several new compounds in preclinical and clinical devel-
opment for treatment of non-radiation skin injuries might
also be appropriate for treating radiation combined injury.
For example, estradiol treatment markedly accelerates heal-
ing of punch biopsy wounds in animal models and humans
(46), and studies in mouse and rat embryos have identified
cellular and molecular mechanisms that differ in embryonic
(scar-free) and adult (scar-forming) healing (47). This re-
search has led to the identification of novel therapeutics
such as human recombinant TGF�3, which when adminis-
tered by intradermal injection at the time of injury, prevents
scarring (now in clinical trials, according to M. Ferguson).
Two other drugs in clinical trials for scar reduction include
a small molecule antagonist of TGF�1 and �2 and a for-
mulation of human recombinant IL10, which acts as an
inflammatory modulator.

Another potential treatment for radiation-induced skin
damage is TP508, a non-proteolytic peptide from the hu-
man thrombin receptor binding domain (48). In addition to
its effects on coagulation, thrombin increases vascular per-
meability and stimulates inflammatory processes (49).
TP508 accelerates repair and revascularization of wounds
in irradiated rats, suggesting effects on circulating progen-
itor and inflammatory cell recruitment (50). In pilot clinical
trials in diabetic ulcers, TP508 improved wound closure
and nearly doubled healing rates relative to placebo treat-
ments (51). This compound also induces angiogenesis and
enlists other reparative factors, an action important for
wound healing, since endothelial dysfunction associated
with chronic wounds often limits the angiogenic and pro-
liferative effects of growth factors. TP508 activity affects
nitric oxide signaling pathways, reducing endothelial dys-
function (D. Carney). Reversal of endothelial dysfunction
is a common thread among the seemingly diverse beneficial
effects noted for TP508 treatment, including enhanced bone
regeneration (52) and amelioration of heart damage after
ischemia (53).

2. Treatment of GI dysfunction from radiation combined
injury

Radiation also causes endothelial dysfunction by reduc-
ing expression of endothelial thrombomodulin, a trans-
membrane protein receptor that regulates inflammation and
is found on endothelial cells (54). Statins increase levels of
endothelial thrombomodulin (55), thus reducing radiation
effects and decreasing GI injury (56). Statin use is also
linked to reduced mortality after major operations (57),
minimization of postoperative inflammation (58), reduction
of E-selectin levels in patients with severe burns (59), and
decreased mortality in sepsis (60). Other agents to prevent

and treat GI injury were discussed, including somatostatin
analogs (56) and glucagon-like peptide-2 (61), which en-
hance crypt cell proliferation and reduce GI infection after
radiation exposure.

INFECTION � RADIATION

Bacterial sepsis in humans is a major cause of morbidity
and mortality, affecting about 600,000 patients in the Unit-
ed States each year (P. Ward). Aside from standard sup-
portive therapies such as ventilators and vasopressors, the
only currently approved specific therapy for sepsis is acti-
vated protein C (62). The microorganisms chiefly respon-
sible for sepsis in humans are gram-positive and gram-neg-
ative bacteria and fungi (63). Radiation-exposed individuals
are more susceptible to these pathogens, fewer microbes
are needed to establish an infection, and clinical manifes-
tations are more severe. In addition, even weeks and
months after radiation exposure, latent infections are more
prevalent in radiation-exposed animals than in unirradiated
controls (64).

Ionizing radiation substantially increases sepsis risk by
suppressing the hematopoietic system, leading to decreased
survival. As shown in Fig. 3, mice irradiated concurrent
with Klebsiella pneumoniae injection exhibited 0% surviv-
al, while 100% of mice exposed to radiation alone and 95%
with infection alone survived. Dr. Peter Ward discussed
how abdominal irradiation of mice reduces normal flora
while greatly increasing the numbers of Enterobacteriaceae
associated with lethal sepsis (65). This increased risk of
sepsis likely reflects a combination of apoptosis of lym-
phoid tissues and the resulting immunosuppression, a sys-
temic inflammatory response syndrome with high levels of
pro-inflammatory mediators, complement-induced multi-
organ dysfunction, and loss of innate neutrophil functions.
Streptomycin (16, 66), ceftriaxone (67), ofloxacin and ox-
acillin (68) treatments in animal models of radiation com-
bined injury increase survival after radiation combined in-
jury, as do silvadene (69) and gentamicin antibiotic creams
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alone or in combination with the immunomodulator syn-
thetic trehalose dimycolate (43, 68). Some testing in models
of radiation combined injury has been done with current
anti-bacterial agents such as quinolones (70), and cipro-
floxacin and levofloxacin are available from the strategic
national stockpile for treatments in a mass casualty setting.
However, more work must be done, and new anti-viral and
anti-fungal agents should also be explored.

As demonstrated by the data presented above, immuno-
modulatory and pro-inflammatory effects are important in
the effects of radiation combined injury. Activation of sim-
ilar systemic responses to different types of injury may lead
to an amplification of host response, producing the syner-
gistic lethality associated with radiation combined injury.
For example, trauma activates changes in pro- and anti-
inflammatory cytokine concentrations similar to those trig-
gered by sepsis, suggesting a universal response to systemic
inflammatory conditions (71).

CONSENSUS DISCUSSION

After completion of formal presentations, panelists and
meeting participants discussed the selection of animal mod-
els for radiation combined injury and the induction of ra-
diation combined injuries. Their recommendations are out-
lined below.

Selection of Animal Models

Participants agreed that the first species for testing a
countermeasure should be a genetically defined small ani-
mal, preferably the mouse. Mouse strains discussed during
the workshop included B6D2F1 and C57BL6, with the lat-
ter strain emphasized due to its well-established genetic
background and the availability of knockout and transgenic
animals of this genetic background. The parental strains of
hybrid B6D2F1 mice are the genetically defined DBA/2
mouse and the C57BL/6 mouse. Animals should be main-
tained in a clean facility and should be free of disease;
however, microbe-free environments might not be realistic
in the wake of a nuclear or radiological incident. Pre-ex-
isting disease states in animals, such as herpes, cytomega-
lovirus infection, diabetes and autoimmunities, need to be
explored because similar syndromes would be expected in
exposed human populations. The panel emphasized that
several animal models would be needed, with some models
lending themselves more readily to particular studies and
outcomes.

With regard to large animal models, participants felt that
swine are the most appropriate, given the similarity of their
skin to human skin. Although there are swine data available
from field studies (e.g., nuclear detonations carried out by
the military) and very early laboratory work (72–74), there
is little current research on the effects of radiation alone in
this animal model. These studies would require updating,
taking into account new supportive care measures, before

appropriate swine models, particularly miniature swine
strains, could be validated.

In establishing animal models of radiation combined in-
jury, researchers should start with established models for
the confounding injury (e.g. burn, blast, wound, trauma or
sepsis), observing how that specific injury is modified by
radiation. Radiation plus chemical exposure is another pos-
sible scenario of radiation combined injury for which prior
animal research is available (75–78). Participants also dis-
cussed potential research complications from pre-existing
genetic conditions in certain animal models, for example,
endothelial dysfunction in Yucatan hyper-cholesterol pigs.

Supportive Care

Considerable discussion focused on the importance of
supportive care in animal models of radiation combined
injury. Basic supportive care, even provided in a limited
fashion, after a mass casualty event would be an effective
first approach to treating radiation injuries (T. MacVittie).
Many aspects of basic support may not need to be admin-
istered immediately (e.g., antibiotics and blood products
can be administered when indicated clinically). Although
intensive care is unlikely to be feasible for mass casualty
care after a radiological or nuclear disaster, basic supportive
care is generally considered achievable. However, the de-
velopment of radiation countermeasures should take into
consideration the fact that supportive care may be unavail-
able; a drug that is effective without supportive care would
provide additional flexibility in a real event. Rodent studies
provide the opportunity to evaluate the efficacy of counter-
measures without additional support. Efficacy without sup-
port can then be compared to supportive care alone or the
drug with supportive care. In non-human primate or canine
models, supportive care (e.g., intravenous fluids, blood
products, anti-emetics and analgesics) may be required, pre-
cluding these types of analyses.

Consideration of Exposed Populations

Few data for acute high-dose radiation exposures in preg-
nant women, children and the elderly exist, and even less
information is available about radiation combined injury in
these populations. Although some animal models for chil-
dren exist, these populations present difficult treatment
challenges because they respond differently to radiation
than healthy adults (79). Gender and racial background also
influence responses to radiation and other co-morbidities.
For example, clinically, females experience increased mor-
tality after thermal injury (80); however, female rodents
(81) and humans (82, 83) are resistant to the development
of sepsis, possibly due to the engagement of estrogen re-
ceptors. In addition, the incidence of post-wound keloids
varies by race, with a 15-fold greater risk of keloid for-
mation in darker-skinned compared to lighter-skinned in-
dividuals (84). The impact of treatments on different pop-
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ulations therefore requires investigations in new animal
models.

Modeling Aspects of Radiation Combined Injuries in
Animals

With regard to creating different radiation combined in-
juries, meeting participants suggested the following guide-
lines.

1. Radiation exposure

Radiation dose–response curves should be established
for the selected animal model with appropriate supportive
care. Researchers should then select a radiation dose that
yields 70 to 80% mortality (LD70–LD80) to study counter-
measure efficacy. Radiation quality and dose rate should
also be considered, with exposures selected that would be
expected after a radiological or nuclear event. Prompt ra-
diation may include � rays or mixed neutrons-� rays, while
fallout exposures could also include � and � particles.

2. Infection

Klebsiella and Pseudomonas given as an airway chal-
lenge in mice should be used, since the doses, clearance
and lethalities of these agents are well established. Al-
though Klebsiella and Pseudomonas represent well-char-
acterized gram-negative strains, they might not represent
infections anticipated in the wake of a radiation event, spe-
cifically gram-positive Staphylococcus and Streptococcus
bacteria. For this reason, human databases for radiation ex-
posure such as SEARCH (11) should be explored to deter-
mine what infections would be expected.

3. Wounds

In separate experiments, incisions should be made before
and after radiation exposure to determine if effects are the
same, and the injury site should be colonized with defined
flora/bacteria to promote an infection, allowing standardi-
zation of treatment. However, researchers must be aware
that clean wounds might not affect radiation responses in
the same way as infected wounds. Treatment of acute
wounds in small and large animals show good correlation
with treatment of wounds in human patients; however,
models of chronic treatment of wound injuries (e.g., dia-
betic or venous ulcers and pressure sores) are less well
established, and these models may require additional vali-
dation.

4. Burns

Wet (hot water scalding) or dry (branding) methods are
appropriate to create burns. Flash burns inflicted by an arc
lamp to simulate the flash from a nuclear weapon represent
another option for creating burn injury. Clinically, partial-
and full-thickness burns would be expected after a nuclear
or radiological event; however, developing a partial-thick-

ness burn model acceptable under current Public Health
Service guidelines for the humane care and use of animals
(85) represents a challenge. In addition, because radiation
burns and thermal burns are different (thermal burns occur
in minutes, whereas radiation burns evolve over days to
weeks), both types of burns should be considered but
should be modeled separately.

Development of Countermeasures for Radiation
Combined Injury

In the absence of ethical human efficacy studies, coun-
termeasure studies must be done in animals with responses
similar to those of humans. Drugs should first be assessed
independently for each confounding injury (e.g. radiation,
burn, wound or infection alone) and then tested for radia-
tion combined injury in the same models. For FDA ap-
proval under the ‘‘animal rule’’ (86), any treatment effects
noted in a rodent must be linked to a larger animal, and
responses in both models must be further correlated to an
anticipated human response. Under certain circumstances,
however, a single non-rodent animal model might be suf-
ficient for approval. Although data may be available for the
use of countermeasures in humans, FDA animal rule path-
ways may still be required, because the localized, high-
dose, fractionated radiation given to humans during thera-
peutic irradiation and the subsequent responses of the pa-
tients to these treatments might not be predictive of what
would be expected in a terrorist event involving a healthy
population. In addition, moderate countermeasure toxicities
may not be acceptable in individuals who receive drugs in
error.

The FDA will likely require that countermeasure studies
demonstrate enhanced survival or increased mean survival
times as a primary end points. Secondary end points of
interest might include hematopoietic parameters, changes
in cytokine profiles (which may provide data about mech-
anisms), time of wound healing, bacterial clearance, and
physical signs and symptoms such as severity of diarrhea
and vomiting. Other relevant, injury-specific end points
might include time to wound closure, healing time of burns,
and bacterial clearance.

In summary, existing injury models and products to treat
burns, wounds, infections and trauma should be the foun-
dation for developing animal models of and countermea-
sures for radiation combined injury. Optimum treatments
for radiation combined injury may involve broad-spectrum
anti-microbials and agents that interact with pathways that
are shared between different forms of injury (e.g., those
that target endothelial dysfunction). No single countermea-
sure will likely suffice; instead, a cocktail of different com-
pounds may be necessary to address the complications of
radiation combined injury, including sepsis, with different
drug combinations possibly required for different forms of
radiation combined injury. Eventual FDA licensure of any
product for this indication will depend on understanding
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the pathways and synergy involved in generating radiation
combined injury and defining the mechanisms by which a
proposed countermeasure enhances survival.
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