

Disclosures

Companies supporting conferences: Amgen, Varian, Electa, BrainLAB (all unrestricted educational grants)

Collaborations or Advisory positions: BD inc, Raybiotech, Litron, Varian, BrainLAB, Amgen

No paid speaking engagements for industry
Grants: NCI, NIAID, DOD, ACS, BrainLAB, RTOG Foundation, Hope Foundation (SWOG), Wilmot Foundation, Breast Cancer Coalition

Significant Interest: patents related to extracranial SRS and drugs that are radiation protectors, Eva Pharmaceuticals LLC, Rtek Inc.

Molecular Mechanisms of Cutaneous Radiation Damage

Mitigation and Therapy of Radiation Cutaneous Syndromes

- Curcumin
- Celebrex
- Pentoxifylline
- EsA

CYTOKINE HOMEOSTATIC FEEDBACK IS ODDLY

Cell Types

- Fibroblasts IMBALANCE
- Macrophage

INFLAMMATORY
FACTORS IN SKIN AND OTHER SOFT TISSUES
TGFs
TNF
IL-1,2,3,6,8,11,12
MP
MCP
FGF1,2,7,10 (KGFs)
Cox-2

- Keratinocytes make IL-1
- Macrophage chemotaxis \& activation
- Local Macrophage make MCP-1

LL-1

\& TGF ß

- Fibroblasts proliferate and make more MCP-1 and TGFß
- Positive feedback with Keratinocytes to make moned
- Need CARS to stop cycrestitive Feedback

$$
\begin{aligned}
& \text { Self Maintainirg } \\
& \text { Over-expression }
\end{aligned}
$$

Inflammation with fibroblast proliferation and mononuclear infiltrate

Rubin Empirical Model

$$
\begin{gathered}
\text { Immunohistochemical Staining (ED1) of } \\
\text { Cutaneous Macrophage at } 20 \text { Days Post- } \\
\text { Radiation }
\end{gathered}
$$

Celebrex reduces IL-1 and macrophage chemotaxis to tissue

mRNA
 Detected by RNase Protection Assay

Mice followed for 1.5 to 2.5 years after 20 Gy irradiation had elevation of TGFß1 commensurate with their level of fibrovascular changes

Whole Body Irradiation $L_{50 / 30}$ Dose for Various Mouse Strains

Strain	Fibrosis Sensitivity	$L^{2} D_{50 / 30}$
C3H/HeN	low	$7.4 \pm 0.2 \mathrm{~Gy}$
Balb/C	intermediate	$7.0 \pm 0.1 \mathrm{~Gy}$
C57BL/6	high	$8.7 \pm 0.1 \mathrm{~Gy}$
TGF31[+/+]	high	$8.9 \pm 0.5 \mathrm{~Gy}$
TGF $\beta 1[+/-]$	low	$9.4 \pm 0.4 \mathrm{~Gy}$

Altered expression of TGF $\beta 1$, whether intrinsic or genetically defined by the knockout model, is predictive of susceptibility to late fibrovascular effects. Intrinsic radiation sensitivity as measured by LD 50/30 or cell survival curves was not helpful in distinguishing differential sensitivity to fibrovascular complications.

Radiation induced early and late skin toxicity in C57 wild type (WT) and
C57-IL-1R1-/- mice

$$
30 \text { Gy single fraction }
$$

C57BI/6 40 Gy day 19

C57BL/6 40 Gy day 90

MECHANISMS, PREVENTION, and MITIGATION Of RADIATION DERMATITIS

- A preventable and reversible component of cutaneous damage is mediated by a fast acting, dynamic feedback system controlling inflammation
- The system has many control points that can often
be re-regulated by chemical or genetic normalization
- Many of the critical control factors are known
- Optimal benefit is likely to be achieved when multiple interventions are combined and sequenced

Molecular Mechanisms of Cutaneous Radiation Damage

Mitigation and Therapy of Radiation
Cutaneous Syndromes

- Curcumin
- Celebrex
- Pentoxifylline
- EsA

Global Plan

Inflammatory Cascade and Target for Combined Agent IR Mitigation

Pentoxifylline

Inhibits CAMP phosphodiesterase and thereby increases cAMP and ATP in red blood cells.

It also improves flow by inhibiting ICAM expressing and thus reduces leukocyte adherence to endothelial cells.

It increases prostacyclin production and thus inhibits platelet aggregation.

Pentoxifylline inhibits IL-1ß and PDGF induced fibroblast proliferation invitro.

It reduces TNF expression
Pentoxifylline doesn't help if there isn't hypoxia and aberrant blood flow

Predilection of Acute and Late Toxicity

Patients with late fibrovascular complications of radiation have greatly elevated bFGF levels

Pentoxifylline reduced the bFGF and reduced complications.

None of the toxicity scores were from CTC, RTOG or EORTC.

Healing of chronic rectal ulcer years after prostate radiation

COX-2 INHIBITORS

Several Cox-2 inhibitors have been shown to have benefit for early and sometimes later radiation reactions

Because of a small risk of increased thromboembolic events Cox-2 inhibitors are less widely used

Cox-2 is produced indirectly through cellular interactions often initiated by IL-1 and MCP-1 with numerous cell types

Effects of Celebrex on normal soft tissues in irradiated C57BL/6 mice

SKIN SCORES	Early (14 d)	LATE (90 d)	
(Mean ± 1 SE)	60 Gy	30 Gy	60 Gy
Control	3.3 ± 0.3	3.0 ± 0.3	4.5 ± 0.2
Celebrex t = 4ht	$1.4 \pm 0.1 *$	$1.8 \pm 0.1^{*}$	2.3 ± 0.5 *
Celebrex t = 7d+	$2.8 \pm 0.3^{*}$	$2.2 \pm 0.1^{*}$	4.2 ± 0.4

Effects of Celebrex on soft tissue damage in three mouse strains

Curcumin \& COX2

Curcumin inhibits phorbol esterinduced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and

NF-kB activation

Chun KS etal Carcinogenesis. 2003 Sep;24(9):1515-24. Slides from Aggarwal Natural analogs of curcumin

$\varliminf_{\text {curcumin }}^{i n}$	nowisn ta2-Paradot		Inoeugenol
${ }^{n} \underline{x}^{i d}{ }^{2}$	4orriny		o^{x+0}
Demethoxycurcumin	Dihydrocapeaki n	Casaumunin 8 D	Dibenzoyimethane (Licorice
$\operatorname{mon}^{3 \pi} \alpha_{\infty}$	$x+\frac{1}{2}$	$\operatorname{qu}_{\infty} 0$	$\mathrm{m}_{2}+1 \mathrm{coc}$
Blademethoxycurcumin	Capasichn	Yakuchinone A	Roumarinic acld
		σ_{∞}^{i}	
Tetrahydrocurcuml n	[0] Gingerol	Yakuchinone $\mathrm{B}^{\text {a }}$	2. Hydroxydibenzoyimethane

Radioprotective effects of Curcumin

Radioprotective action of curcumin extracted from Curcuma longa
LINN: inhibitory effect on formation of urinary 8-hydroxy-2'. deoxyguanosine, tumorigenesis, but not mortality, induced by γ-ray irradiation
Inano M. Onoda M. Int J Padiat Oncol Blol Phya. 2002;83:736-43.
Prevention of radiation-induced mammary tumors inano H. Onoda M. int J Hadlar oncel Biol Phya. 2002:52:212-23

Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats

Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with gamma-rays. Inano H. Onoda M, Inatuku N. Kuboth it Kamaag Y. Otawa T, Koboyaeht H. Wakaboyachi K. Carchogeneola. 1008:20:1011-4
Protective effect of curcumin, ellagic acid and bixin on radiation induced genoloxicity.
Threalamma KC, George J, Kutuan R. JExp Clin Cancer Res. 1000;17:431-4.

Synthetic analogs of curcumin

NF-кB and sunburn

A role for NF-kB-dependent gene transactivation in sunburn

Abeyama K, et al. Journal of Clinical Investigation

2000;105:1751-9.

Structure of curcumin

Curcumin \& Wound-healing

Dermal wound healing processes with curcumin incorporated collagen films. Gopinath D. etal Blomaterials. 2004 May:26(10):191 1-7.
Protective effects of curcumin against oxidative damage on skin cells in vitro: its implication for wound healing. Phan TT etal A Trauma. 2001 Nov-51(5):927-31.

Enhancement of wound healing by curcumin in animals. Sldhu GS ctal, Wound Ficpalr Regen. 1093 Mor-Apr; ${ }^{(2)}$:167-77.

Inhibitory effect of curcumin on PMA-induced increase in ODC mRNA in mouse epidermis.

$$
\text { Lu YP...Conney AH, Carcinogeneala. } 1993 \text { Feb;14(2):203-7. }
$$

Inhibitory effect of dietary curcumin on skin carcinogenesis in mice. LImrakul P., Cancer Ler. 1907 Jun 24:116(2):197-203.

Turmeric and curcumin as topical agents in cancer therapy. Kuttan R., Tumorl. 1987 Feb 28;73(1):29-31.

[^0]

Key people in lab since 2005

October 21st 2005 First CBARMFI Retreat

FUTURE PLANS

- Pentoxifylline: This agent is available off patent and will not be needed urgently after an event. It is therefore not needed for the stockpile.
Physicians can and do already offer it with success. We need only better understand it to make it of public health value.
- Celebrex: This agent is available and was most effective when given for several weeks around the time of the exposure. Clinical trials in cancer patients are being proposed at RTOG, SWOG, and CURED to determine utility and schedule in humans. At best studies will open in about 2 years.
- Curcumin: CCOP studies are being held up for need of an IND at the FDA for the past 2 years. The plan is to use it in breast cancer patients.
- EsA: The phase I STTR is complete. The agent has been licensed.

The Phase II STTR will be submitted later this week.

[^0]: *: $\mathrm{p}<0.05,{ }^{* *}: \mathrm{p}<0.01$, compared with 50Gy radiation. Mean \pm SD.
 Mice in 50 Gy group represent the combination of I.g and I.p. vehicle controls

