
Characterizing Software Quality Assurance Methods:
Impact on the Verification of Learning Systems

Frederick Sheldon, CSE, ORNL∗

Oak Ridge, TN 37831
SheldonFT@ornl.gov

Ali Mili, CCS, NJIT
Newark, NJ 07102
mili@cis.njit.edu

October 20, 2004

1 Introduction: Taking Stock

While learning systems offer great promise in reducing cost
and improving quality of control applications [12, 11], they
also raise thorny issues in terms of the mismatch between
the quality standards that these systems must achieve [10]
and the available technology. There is widespread agreement
[7, 8, 9, 12, 11] that current verification technology does not
apply to online learning (i.e., adaptive) systems, whose func-
tion evolves over time, and cannot be inferred from static
analysis.

Yet, we claim that one can still use insights from tradi-
tional verification technology to better develop verification
techniques for adaptive systems. In this short paper, we wish
to explore this possibility by:

• Characterizing traditional verification techniques, and
using further dimensions of such to propose a classifi-
cation scheme for assurance (i.e., verification) methods.

• Using the proposed classification scheme to characterize
methods that have been or are being developed for online
learning systems.

• Perhaps most importantly, showing how the classifica-
tion/ characterization scheme can be used as a tool to
formulate coherent conclusions from an eclectic verifi-
cation effort (i.e. a verification effort that uses more than
one method (e.g., see [5]).

2 A Classification Scheme

We submit the premise that traditional verification methods
can be characterized by the following features:

• Goal. Property that the method attempts to prove: this
can be correctness (e.g., completeness, consistency), but
can also be recoverability preservation (an implicit as-
sumption for fault tolerance), or non-functional proper-
ties (e.g. reliability, response time).

∗This manuscript has been co-authored by a contractor of the U.S. Gov-
ernment (USG) under DOE Contract DE-AC05-00OR22725. The USG re-
tains a non-exclusive, royalty-free license to publish or reproduce the pub-
lished form of this contribution, or allow others to do so, for USG Purposes.

• Reference. Specification against which we are trying
to prove the property; very often, we find that what is
thought of as different properties are really the same
property (correctness) proven againstdifferentspecifica-
tions.

• Assumption. The condition assumed by the verification
method; all verification methods are based on a set of as-
sumptions, and are valid only to the extent that these as-
sumptions hold. For example, testing techniques assume
that the testing environment includes (i.e., subsumes) the
operating environment; proving techniques assume that
the operating environment includes (i.e., subsumes) the
assumed semantics of the verification method; fault tol-
erance techniques assume that the error detection and er-
ror recovery logic is fault free, etc.

• Certainty . Probability of the claim that is made. Cor-
rectness verification claims correctness with probability
one; certification testing claims reliability or safety with
some lower probability [6].

• Method. This dimension includes the well known clas-
sification into static(e.g., deductive reasoning, and state-
based approaches such as Z, and model checking) versus
dynamic(e.g., approaches based on simulation, testing
and run-time monitoring); it is possible to imagine oth-
ers.

This classification is illustrated in table 1. In this table, we
show the dimensions ofGoalandReference; the other dimen-
sions can be used to fill out the entries of the table for each
method. The goals are ranked in order of logical implication.
The specifications are ranked in partial refinement order: the
strongest specification to which we may match a program is
the function that it is expected to compute, according to how
it is written; the next level is the specification that it was writ-
ten to satisfy, which is typically much less refined than the
expected function; the next level down is a specification of a
safety property, typically a minimal condition that we want
the program to satisfy even if it is not correct. A test oracle
is typically less refined than the requirements specification,
and represents the specification against which the program is
matched in a test; the sub-test oracle is the restriction of the
test oracle to the test data on which the program ran success-
fully.

Frederick Sheldon
Text Box
Workshop on Verification, Validation and Testing of Learning Systems in conjunction with the Eighteenth Annual Conference on Neural Information Processing Systems Conference, Whistler, BC, CA, Dec. 16-18, 2004.

Table 1: Two Dimensions: Goals and Specification

Goals Correctness Recoverability
Preservation

Specifications
Expected
Function
Requirements
Specification
Safety
Property
Test
Oracle
Sub- (Test
Oracle)

To illustrate this table, we consider some well known ver-
ification methods or properties and discuss how we see them
fit in the proposed classification.

• Certification Testing. If we submit program P to a test in-
volving test oracleΩ and test dataT and we letΩ′ be the
restriction ofΩ to the test data on which the program ex-
ecution was successful, the certification test establishes
the correctness of the program to the (usually very small)
specificationΩ′. This conclusion is conditional on the
test environment subsuming (being as demanding as or
more demanding) than the operating environment.

Perhaps more significantly, we have also established the
probable correctness of the program with respect to spec-
ification Ω, conditional on the test data being represen-
tative of the overall input domain (usually a doubtful
proposition).

• Static Verification. This establishes the correctness of the
program with respect to the requirements specification,
with probability one (at least in principle), conditional
on the operating environment subsuming the semantics
inherent in the verification method.

• Reliability. Establishes the correctness of the program
with respect to the requirements specification with some
probability p (over some period of time), which can be
used to compute such metrics as MTTF by integrating
factors such as frequency of invocation.

• Safety. Safety is nothing more than correctness with
respect to a given safety property (e.g., safety critical
programs have the requirement, that no single point of
failure will cause (the control program) loss of vehi-
cle/sability).

• Fault Tolerance. Fault tolerance is a system’s ability to
avoid failure after faults have caused errors; it is based
on the premise that errors are detected before failure oc-
curs, and is possible only to the extent that recoverability

is preserved. Fault tolerance achieves failure avoidance
with probability 1, assuming that the fault tolerance in-
frastructure (code for error detection, error recovery, etc)
is trustworthy/ correct.

• Fail Safety. Fail safety provides that the program can
preserve a safe behavior even when it fails; this requires
recoverability preservation with respect to the safety
property at hand.

• Symbolic Execution. This technique establishes the cor-
rectness of a program with respect to its expected func-
tion, with probability one, under the same condition as
correctness verification.

3 A Calculus of Verification Results

The classification presented above allows us to cast verifica-
tion results in a uniform manner, by providing the goal, ref-
erence, assumption and certainty of each result. If the goal
is represented by predicate≥, the reference is represented by
specificationR, the assumption is represented by predicate
A and the certainty is represented by probabilityp, then the
result has the form

P (S ≥ R|A) = p.

We introduce two forms for≥, for the purposes of this dis-
cussion:

• Correctness:S w R, i.e. S refinesR in the sense of
programming calculi [1, 2, 3, 4, 13, 14].

• Recoverability Preservation:S ⊇ R, i.e. S preserves
recoverability with respect toR.

By introducing this notation we can now derive a wide range
of identities, that can be used to compose verification results
obtained from heterogeneous methods, with respect to dis-
tinct specifications, established with distinct probabilities, etc.
These identities are cast in terms of our notation results that
stem from probability calculus, programming calculi, refine-
ment semantics, etc. A discussion of these identities is be-
yond the scope of this paper, though we will present one for
the sake of illustration:

P (S w (R1 tR2)|A) = P (S w R1|A)× P (S w R2|A),

where (R1 t R2) is the join ofR1 andR2 in the refinement
calculus, and we assume that the events (S w R1) and (S w
R2) are statistically independent.

Example of application of this calculus:We have tested a
program on test dataT using oracleΩ and have established
its safety with respect to specificationΣ and have established
that it preserves recoverability with respect to specification
V . Given these preliminary representations, what can we in-
fer overall about the correctness/safety/or other properties of
adaptive programs?

4 Verification of Adaptive Systems

The methods available for verifying a program depend on
whether the program is deterministic (i.e., traditional) or
adaptive. Furthermore, the interpretation of the verification
results using such methods, in terms of the notation presented
above, depend on the same distinction. However, the iden-
tities of the verification results apply equally to any type of
program. Consequently, we expect to analyze a range of ex-
isting methods for verifying adaptive systems and cast them
in terms of our representation to determine if and how our
calculus can be used to:

• Cumulate verification results obtained from distinct
methods,

• Identify redundancies and complementariness between
distinct methods, and

• Infer new verification results from existing results.

References

[1] R.J. Back and J. von Wright.Refinement Calculus: A
Systematic Introduction. Graduate Texts in Computer
Science. Springer Verlag, 1998.

[2] P. Gardiner and C.C. Morgan. Data refinement of
predicate transformers.Theoretical Computer Science,
87:143–162, 1991.

[3] E.C.R. Hehner. A Practical Theory of Programming.
Springer-Verlag, 1993.

[4] C.A.R. Hoare and et al. Laws of programming.Com-
munications of the ACM, 30(8):672–686, 1987.

[5] H.Y. Kim and F. Sheldon. Testing Software Require-
ments with Zed and Statecharts Applied to an Embed-
ded Control System, Software Quality Journal, Kluwer,
Dordrecht Netherlands, pp. 232-266, Vol.12, Issue 3,
Aug. 2004.

[6] A. Mili, F. Sheldon, F. Mili, M. Shereshevsky and J. De-
sharnais. Perspectives on Redundancy: Applications to
Software Certification, IEEE Proc. HICSS, (Testing and
Certification of Trustworthy Systems Minitrack), Big Is-
land, HI, Jan. 3-6, 2005.

[7] A. Mili, B. Cukic, Y. Liu, and R. Ben Ayed. Towards
the verification and validation of online learning adap-
tive systems. In Taghi Khoshgoftaar, editor,Computa-
tional Methods in Software Engineering. Kluwer Scien-
tific Publishing, 2003.

[8] Ali Mili, GuanJie Jiang, Bojan Cukic, Yan Liu, and
Rahma Ben Ayed. Towards the verification and vali-
dation of online learning systems: General framework
and pllications. InProceedings, Hawaii International
Conference on Systems Sciences, Big Island, HI, 2004.

[9] Orna Raz. Validation of online artificial neural networks
—an informal classification of related approaches.
Technical report, NASA Ames Research Ctr, Moffet
Field, CA, 2000.

[10] SC-167. Do-178b: Software considerations in airborne
systems and equipment cerification. Technical report,
Radio Technical Commission for Aeronautics, 1992.

[11] J. Schumann. Vericonn: Verification of controllers based
on adaptive neural networks. Technical report, NASA
Ames Research Center, Automated Software Engineer-
ing Group, 2002.

[12] J. Schumann, P. Gupta, and S. Nelson. On verification
and validation of neural network based controllers. In
Proceedings, International Conference on Engineering
Applications of Neural Networks, 2003.

[13] E. Sekerinski. A calculus for predicative programming.
In R.S. Bird, C.C. Morgan, and J.C.P. Woodcock, edi-
tors,Mathematics of program construction : second in-
ternational conference, number 669 in Lecture Notes in
Computer Science, Oxford, UK, 1992. Springer-Verlag.

[14] J. Von Wright. A lattice theoretical basis for program re-
finement. Technical report, Dept. of Computer Science,
Ȧbo Akademi, Finland, 1990.

