## **Genetic Effects of Asbestos Fibers**

Tom K. Hei, Ph.D. Center for Radiological Research, College of Physicians & Surgeons, and Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York.

# Known Carcinogens for Human Lung Cancers

- Tobacco Smoke
- Polycyclic aromatic hydrocarbons
- Radon
- Asbestos fibers
- Inorganic Arsenic, Nickel, and Chromium
- Mustard gas



|           |        |         | Jung       | Lymn     | h Nodes    |
|-----------|--------|---------|------------|----------|------------|
|           |        | Smokers | Nonsmokers | Smokers  | Nonsmokers |
|           |        |         | X          | x        | X          |
|           |        |         | XXXX       |          |            |
|           |        | XXXX    | XX         |          |            |
|           |        | XX      |            | XX       | X          |
|           | .005 - |         |            |          | X          |
|           | 0.05   |         |            | <b>A</b> |            |
|           |        |         |            | XX       | X          |
|           | 0      |         |            | X        |            |
|           | -01 -  | XX      |            | X        | X          |
| ē         | 01     | X       |            | XXXXX    |            |
| nt        |        | XX      |            | XX       |            |
| ration    | .015-  |         |            | X        |            |
|           |        |         |            | XX       |            |
|           |        | X       |            |          | X          |
|           | .020-  | x       |            | <b>x</b> |            |
| Pic       |        |         |            | XX       |            |
| ocuries/g | .025-  | x       |            |          |            |
|           | .030 - |         |            |          |            |
| <b>E</b>  |        |         |            | X        |            |
|           |        |         |            |          |            |







#### **Tumor Induction in Spraque-Dawley Rats by Radon Gas and Various Fibers**

| <b>Treatment</b>                         | No. of Broncho-<br>pulmonary Tumors | No. of Pleural<br><u>Tumors</u> | Fractions of Animal<br>with Tumors |
|------------------------------------------|-------------------------------------|---------------------------------|------------------------------------|
| Radon 600 WLM                            | 17                                  | 0                               | 17/60                              |
| Radon plus<br>Chrysotile<br>Acid leached | 2<br>14                             | 4<br>2                          | 6/9<br>16/18                       |
| Crocidolite<br>Acid leached              | 5<br>3                              | 3<br>4                          | 8/10<br>7/10                       |
| Glass fibers                             | 4                                   | 2                               | 6/10                               |

Data from: Bignon *et. al., Carcinogenesis* **4**: 621, 1983. Monchaux *et al., IARC Sci Pub.* **90**: 161. 1989.

## **Morphological Transformation in Rodent Cells (I)**

| Model                  | Fibers                                                     | <b>Foci Formation</b>                                                                             | Reference                   |
|------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------|
| C <sub>3</sub> H10T1/2 | uicc Crocidolite                                           | - $2.3 \mu g/cm^2 \ge 2  days$                                                                    | Brown et al. '83            |
|                        | Amosite<br>uicc Crocidolite<br>Amosite                     | <ul> <li>- 1.2 μg/cm<sup>2</sup></li> <li>- 1 μg/cm<sup>2</sup> x 1 day</li> <li>-</li> </ul>     | Hei et al. '84              |
| SHE                    | uicc Crocidolite<br>Chrysotile<br>Amosite<br>Anthophyllite | <ul> <li>4 μg/cm<sup>2</sup> x 6 days</li> <li>2 μg/cm<sup>2</sup> x 6 days</li> <li>-</li> </ul> | DiPaolo et al. '83          |
| SHE                    | ucc Chrysotile<br>Crocidolite<br>GF100<br>GF110            | + 2.0 µg/cm <sup>2</sup> x 7 days <sup>à</sup><br>+<br>+<br>+/-                                   | Hesterberg &<br>Barrett '84 |

## **Morphological Transformation in Rodent Cells (II)**

| Model | Fibers                         | <b>Foci Formation</b>                                                                                                              | Reference              |
|-------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| SHE   | uicc Chrysotile                | + 0.1 $\mu$ g/cm <sup>2</sup> x 5 days x 2 <sup>*</sup>                                                                            | Mikalsen et al. '85    |
|       | Crocidolite                    | $+5 \mu g/cm^2$                                                                                                                    |                        |
|       | Amosite                        | +                                                                                                                                  |                        |
|       | Anthophyllite                  | +                                                                                                                                  |                        |
|       | GF100                          | $+ + 5 \mu g/cm^2$                                                                                                                 |                        |
|       | GF100                          | - 20 μg/cm <sup>2</sup>                                                                                                            |                        |
| RMC   | uicc Chrysotile                | <ul> <li>1 µg/cm<sup>2</sup> x 27 passage<sup>à</sup></li> </ul>                                                                   | Paterour et al. '85    |
| RMC   | Chrysotile                     | ± 5 μg/cm <sup>2</sup> x3 days<br>from P <sub>4</sub> to P <sub>30</sub> *                                                         | Kravchenko et al.'98   |
| RME   | uicc Chrysotile<br>Crocidolite | + 0.4 μg/cm <sup>2</sup> x 45 passages<br>- 1 μg/cm <sup>2</sup> x 60 passages<br>(controls give rise to<br>tumor in mice as well) | St. Etienne et al. '93 |

*In vitro* morphologic transformation of mineral fibers depends on:

- fiber dimension
- treatment time
- cell model system
- glass fibers tend to give positive data as well



## *In vitro* Mutagenesis ~ Mammalian Genes

| Cell                 | Fiber tested                                                                               | Mutagenicity       | Reference                       |
|----------------------|--------------------------------------------------------------------------------------------|--------------------|---------------------------------|
| V79-hprt             | UICC Chrysotile<br>Crocidolite<br>(10mg/cm <sup>2</sup> x                                  | +/-<br>_<br>24hr ) | Hung <i>et al</i> . 1978        |
| CHO-hprt             | Crocidolite<br>Amosite<br>( 0.9mg/cm² x                                                    | -<br>-<br>24hr )   | Kenne <i>et al</i> .1986        |
| A <sub>L</sub> -hprt | Chrysotile<br>Crocidolite<br>(4mg/cm <sup>2</sup> x 2                                      | _<br>_<br>24hr )   | Hei <i>et al</i> . 1992<br>1990 |
| ARL(6)- <i>hprt</i>  | Chrysotile<br>(10mg/cm <sup>2</sup> x<br>Crocidolite<br>(26mg/cm <sup>2</sup> )<br>Amosite | –<br>6 days )<br>– | <b>Reiss <i>et al</i>. 1982</b> |
| SHE-hprt             | Chrysotile<br>( 2mg/cm <sup>2</sup> x                                                      | –<br>48hr )        | Oshimura <i>et al</i> . 1984    |
| -оиа                 | Crocidolite                                                                                | <u> </u>           |                                 |

Observation: The negative gene mutation data suggest either: 1) asbestos is a non-genotoxic carcinogen; 2) mutants induced at these loci are non-viable.

Given the strong evidence that fibers induce chromosomal alterations, it is likely that asbestos induces mostly large multilocus deletions that are non-compatible with survival of the mutants. The human hamster hybrid A<sub>L</sub> cells contain a single human chromosome 11 and a gene at 11p13.1 encodes the cell surface CD59 antigen that forms the basis of the mutagenic assay









#### Data in support of asbestos-induced multilocus deletions

| System                                                              | Fiber                                                        | Mutagenicity | Reference                  |
|---------------------------------------------------------------------|--------------------------------------------------------------|--------------|----------------------------|
| Human                                                               | uicc Crocidolite                                             | +            | Both et al. 1994           |
| lymphocyts                                                          | Chrysotile                                                   | +/-          |                            |
| (LOH at <i>Hla-A</i> locus)                                         | Frionite                                                     | +            |                            |
|                                                                     | <mark>(400µg/ml x 72 hr)</mark>                              |              |                            |
| <b>Rat 2λ-</b><br><i>lacI</i> gene<br>(Homologous<br>recombination) | Calidria <b>Chrysotile</b><br>(6.7µg/cm <sup>2</sup> x 3 hr) | +            | Lezon-Geyda et al.<br>1996 |
| V79 <i>gpt</i> gene                                                 | ыенз <b>Crocidolite</b><br>(6µg/cm <sup>2</sup> x 24 hr)     | +            | Park & Aust 1998           |
|                                                                     | <b>Chrysotile</b><br>(30µg/cm²)                              | +            |                            |

## In Vivo Mutagenesis in Transgenic Animals

Inhalation studies in *LacI* transgenic mice (Rihn *et al.*, 2000):

5.75 mg South African crocidolites: 6 hr/day for 5 days;

- Mutation induction factor of 1.96 was obtained (13.5 versus 6.9  $\times 10^{-5}$ )
- No specific mutant spectrum identified.

**IP** injection studies in *LacI* transgenic rats (Unfried *et al.*, **2002**):

2 and 5 mg single injection of UICC crocidolites:

Mutation induction factors range from 1.1 to 3.2 in the omenta of animals were obtained

 $G \rightarrow T$  transversion in 29% of mutants isolated



From Nohmi et al., Mutation Research 455: 191-215, 2000

## Proposed Mechanism for Asbestos Induced Genotoxicity



Quantification of reactive oxyradicals using CM-H<sub>2</sub>DCFDA





### Is phagocytosis a critical step in fiber/ particlemediated genotoxicity ?



Models available for Asbestos Carcinogenesis Studies







Gavin J. Gordon, Roderick V. Jensen, et. al.; Cancer Research 62:4963-7, September 1, 2002

# Molecular alterations in asbestos induced mesotheliomas:

#### **Oncogenes and growth factors:**

no mutations in K-*ras* oncogene
↑ PDGF (human and mouse only, not in rat)
↑ TGF<sub>β1</sub> (not specific for tumor development)
↑ TNF<sub>α</sub>
↑ Cyclin D1 (?)

#### **Tumor suppressor genes:**

No changes in *Rb, WT,* and *Pten* genes *p53* gene mutation is rare, p53 protein can often be detected Allelic loss in chromosomes 3p (*FHIT*), 6q, 9p, 13q, 17q (*NF1*), and 22q (*NF2*) reported

## Transformation in Human Cells

No primary human epithelial cells of any histological origins have ever been shown to be malignantly transformed by either single or multiple doses of chemical carcinogens including asbestos fibers. It is estimated that the neoplastic incidence is  $\sim 10^{-15}$  (Hei *et al.* 1994).

## **Immortalized Human Bronchial Epithelial Cells**



## Nude mice bearing BEP2D tumors

H & E stain of tumor showing carcinoma: consistent with their epithelial cell origin



#### **Detection of ras mutations in asbestos induced tumorigenic lung cells**



From Hei et al., Environ. Hlth. Persp. 105: 1085, 1997; Oncogene 20: 7301, 2001

# **Suppression of malignancy**









List of differentially expressed genes between tumorigenic and control BEP2D cells based on mRNA values

| DCC                       | $\downarrow$ 2.9 $\pm$ 0.6 |
|---------------------------|----------------------------|
| <i>DNA-PK   KU</i> 70     | $\downarrow$ 2.4 $\pm$ 0.3 |
| BigH3                     | $\downarrow$ 7.5 ± 0.5     |
| HSP 70                    | $\downarrow$ 2.6 $\pm$ 0.5 |
| Cytokeratin 14            | $\downarrow$ 3.0 $\pm$ 0.4 |
| $DNKN1A (p21^{C1P1})$     | $\downarrow$ 2.7 $\pm$ 0.3 |
| CDC 25B (M-phase inducer) | $\downarrow$ 2.6 $\pm$ 0.5 |
| c-fos                     | $\uparrow$ 4.8 ± 1.5       |
| ΝΓκβ                      | $\uparrow 3.8 \pm 0.4$     |
| Insulin receptor pathway  |                            |
| Insulin receptor          | $\uparrow$ 2.2 $\pm$ 0.3   |
| Grb2                      | <b>↑ 1.9 ± 0.1</b>         |
| Shb2                      | $\uparrow$ 3.7 ± 0.4       |
| ErK-2                     | $\uparrow$ 2.3 $\pm$ 0.2   |

## Differentially expressed genes in tumorigenic human bronchial epithelial cells induced by chrysotiles



Zhao *et al. Carcinogenesis*, **21**:2005, 2000 Piao *et al. Oncogene*, **20**:7301, 2001 Zhao *et al.Oncogene* **21**: 7471, 2002 mRNA (top) and protein levels (bottom) of *Big-h3* gene in normal NHBE, control BEP2D, TL1 tumor cells and *Big-h3* -transfected tumor cells



## Inhibition of tumor growth by *Betaig-h3* transfection relative to vector alone and parental TL1 tumor cells



From Zhao et al., Oncogene 21: 7471, 2002

## S U M M A R Y

- Asbestos is genotoxic to mammalian cells based on several predicative endpoints;
- Reactive oxygen species plays an important role in mediating this effect;
- Carcinogenicity of fibers/particles is a complex interplay of many factors: Dose,

Fiber characteristic

**Fiber-cell interaction** 

Cell and tissue response to foreign particles

- Tissue inflammation is a necessary but insufficient condition for asbestos carcinogenesis
- *Big-H3* gene appears to be causally-linked to the carcinogenic mechanisms of asbestos fibers.

#### **Acknowledgement/Collaborators**

• Hei's Laboratory **Gloria Calaf Marni Hall Peng He** Su X. Liu **Ravi Persaud Chang Q. Piao** Hong N. Zhou Yong L. Zhao Vladimir Ivanov

 Colorado State University Charles Waldren Diane Vannais

- Columbia University-Neurology Mercy Davidson
- Columbia University-Dermatology Mohammad Athar

NIH-Japan
 Takehiko Nohmi