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ABSTRACT
Can an instrument tell whether a process “feels right?”  No such instrument has
ever been constructed.  Nevertheless, there is no fundamental reason to suppose
that it cannot be done.  It is expected that cognition will be one of the
breakthroughs in computer science in the near future.

INTRODUCTION:  PATTERN RECOGNITION VS. COGNITION
It is expected that man-made cognitive systems will be one of the major technological

breakthroughs in the next 10 to 20 years.  Indeed, instrumentation systems based on
cognitive principles would lead to a revolution in sensing and control.  Such an instrument
would tell whether or not a process “feels right.”  This is a capability that would dramatically
exceed the conventionally accepted fundamental limits on instrumentation.

Imagine the application of cognitive systems to the monitoring of manufacturing
processes.  They would enable the implementation of anticipatory maintenance, allowing
defective components in production systems to be replaced just before they fail.  Their sense
of “not feeling right” would anticipate catastrophic occurrences, such as breakouts in
continuous casting, and provide sufficient warning to enable action to avert the catastrophe.
They would be able to make on-line real-time observations of physical states not currently
accessible, such as the time-evolution of interacting phases in solidifying molten metal.

Making conventional measurements with conventional instruments is fundamentally
limited, because these instruments are intended for strictly reductionistic (occurrences
projected onto a list of lists of numbers) observations. In fact, we go to great cost and effort
to make instruments (and the processes that they monitor) behave in a reductionistic manner.
Thus, a fundamental limit on conventional measurement is that any entailment in any natural
system that cannot be reduced to vectors of numbers will go completely unnoticed and
unreported.

The fundamental problem is the generic problem of pattern recognition, or
classification (Rosen, 2000, pp. 136-140, Bateson, 2000).  Is the exemplar, x, a member of
the class, X?  To qualify as a member of the class X, the exemplar, x, must possess the
distinguishing features of class, X.  But, what are the distinguishing features?  As both a
practical and philosophical matter, how do we know whether or not x has them?

The logical question is “Is P(x) true?” where P(x) is the proposition x∈ X.  We try to
answer this question by building a feature detector, Q, that recognizes P, and determines
whether or not P(x) is true.  However, the reading, Q(y), produced by the feature detector
is yet another proposition, and we must validate Q(y) before we can say Q(y) → P(x).
Suppose we do this with a feature-detector detector, R, in the hope that R(z) → Q(y) → P(x).
Unfortunately, we always need one more detector to validate the next one back in the
progression; total validation would require an infinite regress.
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One way out of this predicament is to have a model of y constructed from independent
information.  From the model we could test the truth of Q(y), and evade the infinite regress.
However, suppose there is no independent source of information about y? If it requires an
infinite regress to validate P(x), it would still require an infinite regress to validate Q(y). 
Short of mystical revelation, we will encounter this problem every time we try to construct
any system (abstract model or physical instrument) to measure any other system.

The only other way out of the dilemma is to make the regress finite by folding it back
on itself. We can limit ourselves to two stages of regression by forcing z = x. Then we could
say R(x) → Q(y) → P(x).  However, under this constraint of self-reference, propositions
about x and y cannot be separated.  We have formed an impredicative loop. As is widely
recognized in computer science, the cost of using an impredicative loop to break the infinite
regress is that no algorithm can be devised to implement it.  As in Rosen’s equation 8.6, x
↔ y, or x maps to y maps to x.  There exist incomputable models of x and y with semantic
meanings not captured by syntax (a list of symbols and manipulation rules).

Faced with the apparent Hobson’s choice between a predicative infinite regress and an
impredicative (and incomputable) loop, conventional pattern recognition opts for the
predicative regress.  Immediately recognizing that a real-world computer cannot count to
infinity, this regress has to be truncated, typically right after the first step.  In other words,
R(z) or Q(y) are validated by assuming them to be true, whether explicitly or (more often)
implicitly.  However, we typically have no warning as to when the assumption will break
down. The assumption of validity in the absence of supporting observations is one reason
for the notorious brittleness of neural nets. This brittleness is reflected in the fact that a
classifier will work with a very large data set and make very few errors, but then fail
miserably when confronted with a new, but seemingly similar data set. This type of failure
can be reproduced at will; it happens consistently whenever the system is first demonstrated
to the customer.

What about the other alternative, the self-referential loop?  As will be seen in
subsequent sections of this paper, impredicatives are at the foundation of cognition.  This
is the way that nature has solved the classification problem in living minds.  But aren’t
impredicative loops irreducible and incomputable?  They are, but that does not mean that
they are intractable.  There exists a whole realm of irreductionist mathematics that is no less
logical than the reductionist branch of mathematics familiar to engineers.  Self-referential
behavior such as cognition, being irreducible, is bizarre.  However, it is logically tractable,
and therefore not absurd.

In exploring the concepts of bizarre systems, two explicit but unprovable assumptions
are made at the foundation.  One is causality, the notion that events in reality are caused by
other events.  The other is logic, the notion that propositions in a formal system are implied
by other propositions.

CONGRUENCY OF FORMAL AND NATURAL BIZARRE SYSTEMS
Faced with two unattractive alternatives, infinite regress or impredicative loop, we ask,

“How did nature solve the problem?”  A considerable body of experimental evidence in both
neurology and psychology suggests that nature’s solution to the classification problem is
model-based (Freeman, 2000, 1999, Damasio, 1999, Dilts, et al., 1980, Caulfield et al.,
2000, 1999).

But then, what is a model?  In describing the properties of the Modeling Relation,
Rosen tells us that modeling “is the art of bringing entailment structures into congruence”
(Rosen, 1991, p. 152).  However this statement leaves us wondering what he really means.
How does art enter into the picture; are we not instead supposed to be scientific?  What is
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an entailment, much less an entailment structure?  What does it mean that two different
entailment structures are congruent?  In what sense are they not identical?  If they are not
identical, what similarity between them causes us to declare them congruent?  Why do these
questions matter?  If they do matter, then what should we do about them?

The first point to appreciate is that the Modeling Relation is a relation in the formal
mathematical sense (Rosen, 1999, p. 374).  Suppose that A and B are sets, and that there
exists a set, R, of ordered pairs, where the first element of each pair in R is an element of A,
and the second element of each pair in R is an element of B.  In mathematical notation: a∈ A,
b∈ B, (a,b) ∈ R<=>aRb.  In Rosen’s Modeling Relation, the members a and b of each ordered
pair in R are entailments from two different systems.

Entailments are the consequences of the order or organization of a system.  There are
two sorts of systems that might provide entailments to the Modeling Relation, natural
systems and formal systems.  Natural systems are systems in physical reality that have causal
linkages; if certain causative events impinge upon a natural system, then the system will
behave in a certain way, or produce certain events in effect.  This consequential linkage of
cause and effect in a natural system is a causal entailment.  Formal systems are conceptual
systems that have inferential linkages; if certain hypothetical propositions impinge upon a
formal system, then they will produce certain consequential propositions in conclusion.  This
consequential linkage of hypothesis and conclusion in a formal system is an inferential
entailment. Entailment structures are inherent within a system; they are the distinguishing
features that characterize the system (Rosen, 1991, p. 98).  They do not cross over from one
system to another. 

This is represented in Fig. 1, where we see a natural system, N, distinguished by its
structure of causal entailments, a, and a formal system, F, distinguished by its structure of
inferential entailments, b.  The entailment structures of two distinct systems are distinct from
one another; causes or hypotheses in one do not produce effects or conclusions in the other.
In fact, this provides the answer to one of the questions posed above.  Its self-contained
entailment structure is what provides identity to a system and distinguishes it from other
systems.  This is the urgently sought-after distinguishing feature of the classification
problem.

N atural
System  (N )

Form al
System  (F)a c

b

d

M R ={(a,c) | a  = b  + c +  d}

Figure 1.  The Modeling Relation

The fact that distinct systems are non-identical does not preclude them from being
regarded as being in some sense similar.  Similar systems should have distinguishing features
that closely correspond to each other.  Dissimilar systems should have distinguishing
features that do not closely correspond to each other.  As already noted, the distinguishing
feature of a system is its entailment structure.  Thus, we would expect similar systems to
have entailment structures in which there is some degree of correspondence between the
entailments.

To establish this correspondence, consider a system of encodings and decodings
(Rosen, 1991, p. 59).  For example, we might have a system of encodings that encodes a set
of events in the natural system, N, in Fig. 1, into a set of propositions in the formal system,
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F.  We might also have a system of decodings that decodes a set of propositions in the formal
system, F, into a set of phenomena in the natural system, N.  Although the two systems
remain independent in the sense that causes or hypotheses in one do not produce effects or
conclusions in the other, the two systems can be linked by encodings and decodings.

This linkage between entailment structures provides the means of determining the
similarity between two systems.  Suppose that an event, e1, in N can be encoded to a
proposition, p1, in F; we can think of the encoding arrow, b, in Fig. 1 as a measurement on
a natural system.  Suppose further that the proposition, p1, when applied as a hypothesis in
the inferential structure in F entails another proposition, p2, in F as a conclusion.  In other
words, the two propositions are entailed as an implication, c = (p1 → p2), in F.  Suppose that
this entailed proposition, p2, in F can be decoded into an event, e2, in N; we can think of the
decoding arrow, d, in Fig. 1 as a prediction by a formal system.

Rosen defines congruency between the entailment structures in the following way
(Rosen, 1991, p. 61).  Suppose that in the underlying reality, the event e1 in N causes event
e2 in N.  In other words, the two events are entailed as a causal linkage, a = (e1 → e2), in N.
Suppose further that the linkages commute.  Event e1 is encoded by b to proposition p1,
which implies proposition p2, which decodes to event e2, and that there is exact
correspondence between the predicted event e2, and the caused event e2.  The commutation
is also described as a = b+c+d. (Note: In this context, + is the symbol for concatenation.) If
there exists no such entailment c in F, having a commutative relationship with some
entailment a in N, then the two systems do not have congruent entailment structures. 
Entailment structures are congruent to the extent that such correspondences between
entailments exist. If such correspondences between the entailments in the two systems do
exist, then we can learn something about one entailment structure by observing the other.
This is the essence of Rosen’s Modeling Relation.  When it is applied to a formal system to
obtain predictions about a natural system, the inferential entailments in the formal system
correspond to the causal entailments in the natural system.  Where the relationship holds up
and where it breaks down are both understood.  This is where the Modeling Relation differs
from “black box” approaches.  Construction of a “black box” makes no claims about the
causal links in underlying reality, offers no understanding of the natural system it purports
to describe, and offers no warning as to when the description will break down.

In contrast, for any valid Modeling Relation, the identification of the encodings and
decodings between two systems is an act of discovery based on insight or understanding. The
benefit of this understanding is the awareness of the specific entailments so described, and
a clear indication of the scope of applicability (or non-applicability) of the formal system as
a model.  The cost of this understanding is that it is an art and not a science in the
reductionist sense; there is no automatic or algorithmic method for determining either the
encodings or decodings.  In fact, there is not even any necessity or assurance that the system
of decodings can be obtained from some straightforward inversion of the encodings. 

Both the cost and benefit of Rosen’s formalism go to the question of why it matters. We
attempt to use formal systems to learn about natural systems because simply observing the
natural system is too slow, too costly, too dangerous, or too inaccessible.  Formalism without
understanding of the underlying reality is seductive.  At a fraction of the cost of the real
thing, it offers the illusion of understanding.  However, pretending that a modeling relation
exists between a formal system and a natural system when there is no congruency of
entailment (sometimes called an “as if” model) gives us results that we cannot trust, and on
which we cannot afford to risk lives, safety, or vast sums of money.

Rosen draws a distinction between modeling and simulation. Modeling involves the
discovery of congruent entailments.  Simulacra, or “black box” algorithms, find coincidences
in observations and proceed from the hope that they are extrapolatable.  The distinction is
important because in real-world settings models are far more trustworthy than simulations.
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In describing the models constructed by consciousness, what Rosen calls a model, Dilts calls
an “elegant model,” one whose elements, or entailments are causally important (Dilts, et al.,
1980).

What does the modeling relation tell us about instrumentation?  Suppose the left-hand
box in Fig. 1 is the abstraction of some natural system.  Further suppose that the entailment
structure, a, includes some causal entailment of the natural system that we would like to
observe.  Then the instrument is abstracted by the right-hand box, and the entailment
structure, c, includes some entailment of the instrument that is congruent with the causal
entailment that we would like to observe.  To the present day, for every instrument ever
built, the only entailments actually used for measurements are those that are also congruent
with some entailment within a vector space of real numbers. 

However, there are several facts that are seldom called to the attention of
instrumentation engineers.  First is the fact that there exist non-denumerable entailments in
natural systems.  Second is the fact that there are formal systems that have inferential
entailments that are irreducible to vectors of numbers, but are nevertheless congruent with
causal entailments and are amenable to logical manipulation.  Because these things exist, it
is possible to make predictions about non-denumerable processes in natural systems without
recourse to mysticism. 

There remains the inconvenient technological issue that irreducible mathematical
constructs cannot be run on a conventional computer using algorithmic programs; irreducible
entailments are not Turing computable.  However, there are two possible ways to evade this
limitation.  One, suggested by Landauer, is not to assume that Turing had the last word on
computing; perhaps an irreducible model of the digital computer, more universal than the
Universal Turing Machine can be discovered (Landauer and Bellman, 1999).  Alternatively,
a number of researchers are investigating physical effects that include causal entailments that
are irreducible (Dress, 1999).  These effects may lead to a different type of functional
component that could be used in the right-hand box of the modeling relation to manipulate
entailments that are congruent to the irreducible entailments in natural systems that the
present generation of instruments completely fails to capture.  Man-made functional
components do not presently exist, but they may be coming soon (in years rather than
decades). 

THE PHYSIOLOGICAL FEELING OF KNOWING
Whether physicists eventually cobble up a quantum- entangled functional component,

or biologists concoct an artificial wetware structure that behaves something like a brain, the
substrate is necessary but not sufficient for cognition.  Refining our question about how
nature does it, what we really want to know is how nature organizes the activity of such a
functional component to produce cognition.

From the perspective of neurophysiology, cognitive behavior is irreducible to a list of
lists of numbers.  This being the case, no list of lists of numbers, no matter how big, can
model intelligent behavior.  To discuss cognition on any level deeper than merely tabulating
empirical observations, some logical description of it must be found that is not limited by
the mathematical laws of vector spaces.

The evidence of neurologists such as Walter Freeman and Antonio Damasio suggests
that the mind is more than a direct sum of a set of parts, or has a nature along the lines of the
Gestalt (Freeman, 2000, 1999, Damasio, 1999, p. 88).  A formal model (as in Rosen's
Modeling Relation) of the brain/mind natural system based on the claim that the mind is a
direct sum of a set of parts would ignore the key features of the operation of the mind.  In
other words, consciousness is irreducible.
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Biological consciousness is a million times slower than computer operations.  Neural
firing rates are on the order of milliseconds; recently available desktop computers perform
operations on the order of nanoseconds.  This extreme slowness has two practical
consequences.  First, the animal avoids conscious direction of action wherever possible. 
Second, the only way for such a slow system to provide useful direction is to be anticipatory
(Caulfield, et al., 1999).  In other words, consciousness is driven by final cause (Dilts, 1994,
p.26).  Reductionism ignores (or more often militantly denies) the existence of final cause.

Rather than the old cliche “Seeing is believing” the process actually works the other
way around, “Believing is seeing.”  The brain sees what it believes it sees. In fact, if the
brain cannot construct a meaningful model from sensory input, it often ignores it (Caulfield,
et al., 1999).  For example, victims of blindsight are quite insistent that they cannot see an
object, but can correctly point to its location, and have no notion as to why they know
(Damasio, 1999, p. 268).

What do brains do that other functional components do not?  They provide to their
owner an answer to the question, “what do I do next?”  In particular, consciousness provides
its owner with a useful approach to unforeseen circumstances (Caulfield, et al., 1999).  The
limbic system ultimately conveys this to our awareness as how we feel about a given
situation.  Similarly, an engineered conscious artifact would evaluate its situation in terms
of an overall feeling.

Intentionality is active, and seeks guidance for future action (Freeman, 1999).  In
particular it has three distinguishing features, intent, wholeness, and unity.  It differs from
classical physical systems in all three particulars.  Intent produces effects from final cause;
classical systems ignore final cause.  A whole system is irreducible to parts; a classical
system is the direct sum of its parts.  A unified system is context dependent, and retains its
identity even though it changes in response to changes in the ambience; a classical system
is context independent.  By the classical concepts of science, intentionality is wholly
unscientific.  Do we ignore intentionality because it is “unscientific,” or do we expand the
scope of science to examine phenomena previously ignored?

Freeman shows that the limbic system is the organ of intentionality (Freeman, 1999).
A macroscopic brain state is formed by a system of interacting neurons.  The limbic system
uses these brain states to generate self-organized spatio-temporal patterns.  These lead to
goal formation and the direction of behavior to meet goals.  Awareness results from an
ongoing cycle of preafference (preparing sensory cortices for the consequences of motor
actions), perception (abstraction of sensations), and update (integration in the hippocampus
of preafference and percepts into the mental state).

From the perspective of neurophysiology, the state of a brain is the description of what
it is doing in some specified time period (Freeman, 1999).  From the perspective of
psychology, state is “the total ongoing mental and physical conditions from which a person
is acting” (Dilts, 1994, p. 314). It is noteworthy that these descriptions of state are very
similar, and are not restricted to the concept of the “state vector” of classical physics.  Short-
term brain states as characterized by patterns of populations of neurons are irregular both in
space and time.  They resemble a hurricane more than a march of symbols in a Turing
machine.

As Freeman notes, “Brain systems operate on many levels of organization, each with
its own scales of time and space.  Dynamics is applicable to every level, from the atomic to
the molecular, and from macromolecular organelles to the neurons into which they are
incorporated.  In turn the neurons form populations and systems, and so on up to embodied
brains interacting purposively with their environments.  Each level is "macroscopic" to the
one below it and "microscopic" to the one above it.  Among the most difficult tasks are those
of conceiving and describing the exchanges between levels, seeing that the measures of time
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and distance are incommensurate, and that causal inference is far more ambiguous between
than within levels” (Freeman, 2000).

But, how do we exchange meaning between levels?  Freeman says that we must
“conceive, identify and model an intervening ‘mesoscopic’ level, which is the self-
organizing neural population.”  However, this model has some rather peculiar properties. As
Freeman says, “the main contribution of mesoscopic neurodynamics is to the self-organizing
chaotic patterns of gamma activity in primary sensory areas and the limbic system, which
make perception a creative act of neural masses.”  However, this chaos through which
meaning is exchanged is much more complex than the “deterministic chaos” of reducible
non-linear systems driven at chaotic operating points.  It is a self-referential chaos, and
hence, irreducible and non-Turing computable.

It is fairly widely recognized that organisms with brains relate to one another through
their limbic systems (Caulfield, 2000).  The relationship might be hierarchical or operate
among entities on the same level.  Caulfield argues that in control problems for distributed
systems (as might be used in conventionally engineered systems), the hierarchical model is
more appropriate.  However, this is not how natural intelligence operates.  Instead “they pass
summaries of the world and themselves (emphasis added) to the next level.  Those
summaries are the world of the next level.  In the simplest hierarchical system, only the
bottom layer interacts with the real world.  Same-level interaction can be arranged in the
same way.  Global control comes from the top layer in terms of global concerns.  All other
levels are involved in implementation.”

The bottom layer is directly stimulated by physical causes, and in resulting effect,
produces a stream of chemical and electrical markers.  Through various levels of the
hierarchy, the data in the markers are abstracted, until at the highest level, the abstraction
conveys meaning.  What is it that confirms this meaning to the mind doing the abstracting?
The confirmation comes when it feels right, emotively (Damasio, 1999, pp. 312-315).

THE PSYCHOLOGICAL FEELING OF KNOWING
Perception is based on interacting models of ourselves and of our ambience (Caulfield,

et al., 1999).  The patterns of sensory input assimilated at the unconscious level of the
biological mind can be externally observed and expressed concisely (but not reducibly) in
representational models, in three interacting basic representation systems, auditory, visual
and kinesthetic (Brown-VanHoozer, et al, 2000). 

In functioning human minds, sensory information is abstracted into percepts via an
elegant automatic process at the unconscious level.  We can, by a willed choice, consciously
abstract these percepts into concepts, and use them to manipulate learning, memory,
language, knowledge belief systems and willed behavior (Brown-VanHoozer, 2000).  The
strategies and patterns assimilated at the unconscious level can be externally observed and
expressed concisely as models for application. 

At this level of abstraction, we transform content into processes that can be expressed
in terms of the three basic representation systems and the entangled interactions between
them.  These are the foundation for how effective choices and belief systems are generated
through sensory derived processes.  They provide the means by which learning strategies are
constructed, how memory is accessed, stored, retrieved or recalled, and how knowledge is
actualized at the conscious and unconscious level. 

This actualization of knowledge is accomplished through a feedback process
characterized as test-operate-test-exit (TOTE) as originally formulated by Miller, Galanter,
and Pribram (Dilts, 1994, pp. 290-291).  The “operate” consists of applying the sensation(s)
to various combinations of the representational models.  The “test” is the question of
whether or not the knowledge feels right, and updating the models if it feels wrong.  The
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kinesthetic-emotive representation system performs the test, and it keeps feeding back into
the TOTE process until it either feels right or quits (Brown-VanHoozer, 1999).  To “exit”
the TOTE loop means to use the newly abstracted knowledge to proceed toward some
internally defined goal or final cause (Dilts, 1994, pp. 41-44).  We perceive the result of the
final test of the TOTE process as a comforting and satisfying feeling of knowing (Damasio,
1999).

Disruption of these representation systems causes terrible emotional distress.  For
example, chronically blind people whose sight is suddenly restored by medical intervention
typically find themselves overwhelmed by a jumble of sensation that is meaningless to the
auditory/kinesthetic representation system that their mind has constructed to survive in a
sightless world.  The distress is so great that few survive the catastrophe of acquiring sight
in adulthood for more than a few years (Sacks, 1995, pp. 142-151). 

In autism, the sensory wetware is present and produces the right markers, but due to a
neurological malfunction, the representation systems do not construct sensible percepts from
them; as a result the typical autistic child lives a life of unremitting terror (Sacks, 1995, pp.
253-255).  Autistic adults often exclusively “think in pictures,” and verbal language is a pure
abstraction into which high-functioning autistics have learned to translate their visual
concepts.  They have enormous difficulty imagining that other people do not think in
pictures, and find it difficult or impossible to relate to people who do not.  Their highly
developed visual representation systems overstimulate the neurological “fight or flight”
response, and the other representation systems are easily overwhelmed by sounds, touches,
tastes and smells.  As a result, the daily life of the autistic adult is only slightly less
frightening than that of the autistic child (Sacks, 1995, pp. 269-271).  It is not surprising that
if the abstraction of sensations into “knowing” feels right, then a meaningless jumble of
sensations feels terribly wrong.

CONCLUSION:  THE CONSTRUCTION OF IRREDUCIBLE KNOWING
There are seven important issues in the implementation of intelligent systems.  First,

how do you implement self-reference?  This involves developing either a computing
component that includes self-referential behavior, or a self-referential model of computation
that does not suffer from the limitations of the Turing machine.  Second, how do you extend
a mathematical structure to incorporate information about its context?  Third, how do you
move mathematical structures to a new context and assess their validity?  Fourth, how do
you define structures before you define the elements of the structures?  Fifth, how do you
capture the modeling process in a mathematical structure?  Sixth, how do you decide when
your notational system is inadequate?  Seventh, how do you fix the inadequacy?  It does not
appear that any of these seven questions can be addressed within the bounds of reductionist
mathematics.  Remarkably, this does not appear to be a fundamental problem; all these
questions appear to be tractable with irreducible mathematics (Landauer and Bellman, 1999).

Intelligent behavior is bizarre, requiring among other things that the intelligence be able
to recognize whether or not its own self-referred sense of a process “feels right.”  However,
it is not absurd.  Absurd behavior is unconstrained by any laws of natural systems and not
amenable to description by a logical formal system.  In contrast, bizarre behavior is merely
counterintuitive.  It remains congruent with causality, and can be modeled with logically
tractable, albeit impredicative mathematics.  The bizarreness is reflected in the fact that
intelligence cannot be subsumed in an algorithmic program.  Given a substrate that has the
potential to support consciousness, the task of artificially imposing that consciousness upon
it is a something new in the art of engineering.  Nevertheless engineers do have guidance as
to how to set about it.  The mathematical description of the self-referential processes in
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naturally occurring wetware should provide the necessary insight into how a practical man-
made mind could be made and operated.
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