3rd QUARTER 2006 AIR QUALITY AND METEOROLOGICAL MONITORING AUDIT REPORT

PREPARED FOR:

JIM SICKLES US ENVIRONMENTAL PROTECTION AGENCY REGION 9 REMEDIAL PROJECT MANAGER

YERINGTON/ANACONDA MINE SITE YERINGTON, NEVADA

Prepared by

Tetra Tech EM Inc. 135 Main St., Suite 1800 San Francisco, California 94105

August 3, 2006

TABLE OF CONTENTS

Secti	<u>on</u>	Page
1.0	Oversight and Audit Summary	1
2.0	PM ₁₀ TSP, and Meteorological Audit Methods	4
3.0	Audit Equipment Reference Standards	9
4.0	Meteorological and Air Quality Audit Summary of Results and	
	Recommendations	10

LIST OF TABLES

<u>Table</u>

Page 1

1-1	Air Quality and Meteorological Monitoring Parameters Verington Mine Site1
2-1	Summary of PM_{10} Audit Results Yerington Mine Site July 11, 20065
2-2	Summary of TSP Audit Results Yerington Mine Site July 11, 20066
2-3	PSD Quality Assurance Audit Methods, Accuracy Requirements, and Results Yerington Meteorological Tower Audit July 10, 2006
3-1	Quality Assurance Audit Equipment Yerington PM ₁₀ , TSP, and Meteorological Tower Audit July 10-11, 20069

LIST OF APPENDICES

Appendix A	Quality Assurance Audit Data Tables
Appendix B	Audit Equipment Standards Certifications and Field Logbook Notes
Appendix C	Copy of E-mail Correspondence from Brown & Caldwell Regarding Air Sampler Programming Error

i

1.0 Oversight and Audit Summary

On behalf of the US Environmental Protection Agency (EPA), Tetra Tech EM Inc. (Tetra Tech) personnel are providing ongoing regulatory support for the Yerington Mine air quality and meteorological monitoring program. Atlantic Richfield Company's (ARC) environmental contractor, Brown and Caldwell (B & C), are currently performing all aspects of this program. Tetra Tech reviewed and provided comments and feedback on the Air Quality Monitoring Work Plan for the Yerington Mine Site (AQMWP), Authored by B & C.

The AQMWP provides details on proposed actions for air quality and meteorological monitoring at the Yerington site. The air quality-monitoring component of the AQMWP included the installation and operation of seven Hi-Volume (Hi-Vol) particulate matter less than 10 microns (PM_{10}) samplers and six Hi-Vol total suspended particulate (TSP) samplers at sample locations approved by ARC, B&C, EPA, and Tetra Tech. The meteorological monitoring component of the AQMWP includes the continued operation of an existing 10-foot meteorological tower.

On June 16, 2006, EPA approved an ARC request to modify and reduce the air monitoring program at the Yerington site. The reduction consisted of eliminating PM₁₀ sampling at sites AM-2, AM-4, and AM-5 and eliminating TSP sampling at sites AM-1, AM-2, AM-3, AM-4, and AM-5 beginning July 1, 2006 and eliminating specific metals and radio chemicals from the analyte list. The revised air quality and meteorological monitoring parameters and instrumentation for the Yerington Mine Site are summarized in Table 1-1.

	Instrument	
Parameter	Description-Model	Instrument Location
	RM Young Model 05305	
Wind Speed	AQ	10 feetAGL
	RM Young Model 05305	
Wind Direction	AQ	10 feet AGL
	Vaisala	
	Temperature/Humidity	
Ambient Temperature	Probe	7 feet AGL
	Vaisala	
	Temperature/Humidity	
Relative Humidity	Probe	7 feet AGL
Solar Radiation	Licor Model LI200X	9 feet AGL

 Table 1-1

 Air Quality and Meteorological Monitoring Parameters for Yerington Mine Site

Station Barometric	Vaisala Barometric	Meteorological Tower
Pressure Sensor	Pressure Sensor	Enclosure Cabinet
Meteorological	Campbell Scientific	Meteorological Tower
Tower Datalogger	CR10X	Enclosure Cabinet
PM ₁₀ Hi-Volume	Tisch Environmental, Inc.	4 Total samplers at 3
FRM Sampler	Model TE-6070D	locations
TSP Hi-Volume	Tisch Environmental, Inc.	
FRM Sampler	Model TE-5170D	1 Total sampler at 1 location

Table 1-1 (Continued)

Notes:

AGL	Above ground level
FRM	Federal Reference Method
PM_{10}	Particulate matter less than 10 microns in diameter
TSP	Total suspended particulate

Tetra Tech personnel coordinated with B&C personnel to meet at the site and perform EPA-reference method audit procedures on four PM_{10} samplers, one TSP sampler, and the on-site meteorological tower. PM_{10} and TSP Audits were performed using a certified Hi-flow audit orifice and the meteorological tower was audited using certified reference sensors where required.

Mr. Doug Herlocker of Tetra Tech conducted the audit procedures at the Yerington site on July 10 through 11, 2006. The following tasks were performed:

- EPA and manufacturer-approved audit of four PM₁₀ Hi-Vol samplers and one TSP Hi-Vol sampler using certified audit orifice (Completed July 11, 2006)
- Prevention of Significant Deterioration (PSD)-quality audit of 10-foot meteorological tower (Completed July 10, 2006)

All PM_{10} and TSP samplers audited on July 11, 2006, successfully passed all audit criteria. No equipment failures, leaks, or anomalies were observed during the audit procedure.

At the time of the meteorological tower audit on July 10, 2006, all sensors were operating within PSD-audit criteria. However, the left tipping bucket mechanism on the precipitation sensor was tipping prematurely at approximately 7.6 milliliters (mL). The sensor is in need of adjustment so that the left bucket will tip at the designed rate of 8.3 mL per tip, but the audit criteria for accuracy of plus/minus 10 percent or from 7.5 to 9.1 mL was not exceeded.

While on-site performing the meteorological tower audit on July 10, 2006, Mr. Herlocker observed that the PM_{10} samplers were not operating. However, July 10, 2006 was a designated air sample day and PM_{10} samplers at AM-1, AM-3, and AM-6 were expected to be operating.

Mr. Herlocker discussed this observation with B & C personnel on the morning of July 11, 2006 and was told that apparently these samplers were incorrectly programmed to collect the PM_{10} samples on July 9, 2006. Mr. Guy Graening of B & C provided an e-mail response to this error and a copy of the e-mail correspondence is included in Appendix C.

Details of the quality oversight and audit summary are presented in the following sections and appendices:

- Section 2.0 PM₁₀, TSP, and Meteorological Audit Methods
- Section 3.0 Audit Equipment Reference Standards
- Section 4.0 Meteorological and Air Quality Audit Summary of Results and Comments
- Appendix A Quality Assurance Audit Data Tables
- Appendix B Audit Equipment Standards Certifications and Field Logbook Notes
- Appendix C Copy of E-mail Correspondence from Brown & Caldwell Regarding Air Sampler Programming Error

2.0 PM₁₀ TSP, and Meteorological Audit Methods

Based on the revised air monitoring program that was initiated by ARC on July 1, 2006, Tetra Tech personnel audited four PM_{10} samplers, one TSP sampler, and the 10-foot meteorological tower on July 10 through 11, 2006.

The Yerington 10-foot meteorological tower sensors were audited in their normal operating modes. The accuracy of all sensors was verified using National Institute of Standards and Technology (NIST) or Certified Reference Material (CRM) traceable transfer standard reference audit sensors.

A description of audit procedures and methods is presented below.

PM₁₀ Hi-Vol Audit Procedure

Four PM_{10} Hi-Vol samplers are installed at three locations at or near the perimeter of the Yerington mine site. The samplers operate by activation of a pump via a timer system. The audit device consists of a certified audit orifice (orifice) designed for PM_{10}/TSP samplers. The orifice consists of metal plate attached to a flow restriction cylinder, which allows the user to turn a knob and restrict flow to the sampler. In addition, the orifice is equipped with a manometer port to measure pressure drop through the orifice.

The orifice is designed to produce flow ranges of 1.02 to 1.24 cubic meters per minute (m^3/min) based on the design flow rate of the PM_{10} Hi-Vol samplers. Five different flow measurements are obtained using the orifice and resultant manometer readings are recorded. PM_{10} sampler flow readings are also recorded for the five different flow rates. In addition, ambient temperature and pressure are recorded. These site-specific parameters were obtained during the audit using NIST certified devices. A slope, intercept, and correlation coefficient are calculated using the least squares regression method and is based on the five orifice manometer and sampler flow readings. The audit criteria are based on a correlation coefficient of <u>0.990 or higher</u>. A summary of PM_{10} audit results is presented in Table 2-1. Quality assurance audit data tables are presented in Appendix A.

TABLE 2-1

SUMMARY OF PM₁₀ AUDIT RESULTS YERINGTON MINE SITE JULY 11, 2006

PM ₁₀ Sampler/ Location	Sampler Serial Number	Sampler Orifice Serial Number	Audit Orifice Serial Number	Ambient Temperature (°C)	Ambient Pressure (mm Hg)	Sampler/Audit Orifice Correlation Coefficient
AM1	613	1013	W43	24.5	644.1	0.9909
AM1-DUP	616	1022	W43	24.5	644.1	0.9990
AM3	618	1018	W43	28.1	646.9	0.9914
AM6	615	1020	W43	27.8	649.2	0.9973

Notes:

°C	Degree Celsius
DUP	Duplicate
mm Hg	Millimeter mercury
PM_{10}	Particulate matter less than 10 microns in diameter

TSP Hi-Vol Audit Procedure

One TSP Hi-Vol sampler is collocated with the PM_{10} sampler at air monitoring site AM-6. The sampler operates by the activation of a pump via a timer system, identical to the PM_{10} samplers. The audit device consists of a certified audit orifice (orifice) designed for PM_{10} /TSP samplers. The orifice consists of metal plate attached to a flow restriction cylinder, which allows the user to turn a knob and restrict flow to the sampler. In addition, the orifice is equipped with a manometer port to measure pressure drop through the orifice.

The orifice is designed to produce flow ranges of 1.10 to 1.70 m^3 /min based on the design flow rate of the TSP Hi-Vol samplers. Five different flow measurements are obtained using the orifice and resultant manometer readings are recorded. TSP sampler flow readings are also recorded for the five different flow rates. In addition, ambient temperature and pressure are recorded. These site-specific parameters were obtained during the audit using NIST certified devices. A slope, intercept, and correlation coefficient is calculated using the least squares regression method and is based on the five orifice manometer and sampler flow readings. The audit criteria are based on a correlation coefficient of <u>0.990 or higher</u>. A summary of TSP audit results is presented in Table 2-2. Quality assurance audit data tables are presented in Appendix A.

TABLE 2-2

SUMMARY OF TSP AUDIT RESULTS YERINGTON MINE SITE JULY 11, 2006

TSP Sampler/ Location	Sampler Serial Number	Sampler Orifice Serial Number	Audit Orifice Serial Number	Ambient Temperature (°C)	Ambient Pressure (mm Hg)	Sampler/Audit Orifice Correlation Coefficient
AM6	NA	1021	W43	27.8	649.2	0.9993

Notes:

°C	Degree Celsius
mm Hg	Millimeter mercury
NA	Not available
TSP	Total suspended particulate

Wind Vane Alignment Verification/Audit

The Yerington meteorological tower wind speed/direction sensor is mounted at the top of the tower (10-foot level) on a 1-meter cross arm fixture oriented in a north/south direction, equivalent to a value of zero degrees. The vane alignment audit was achieved using a calibrated compass set on a tripod and corrected for true north offset for the Yerington, Nevada area of approximately 15.3 degrees easterly. An additional audit was achieved using a handheld global positioning system (GPS), which automatically corrects for true north readings. Audit devices were aligned with the cross arm facing north. The orientation of the cross arm was then compared to the audit device reading. The results from the true north vane alignment audit are presented below:

- Audit compass (corrected 15.3 degrees easterly) = 1.3 degrees
- Audit GPS (automatically corrected for true north) = 2 degrees
- Wind direction sensor aligned facing north = 0.8 degrees

Wind Speed Audit

The wind speed audit was achieved using a R.M. Young Motor Drive (Model No. 18802) attached to the wind speed/direction sensor and was rotated at different speeds. The simulated wind speed was compared to datalogger readouts for wind speed accuracy.

In addition, a wind speed starting threshold torque audit was performed using a R.M. Young Torque Disc (Model No. 18310) to verify the sensitivity of the wind speed sensor to fluctuations in wind speed. Acceptance and accuracy criteria are presented in Table 2-3.

Wind Direction Audit

The wind direction audit was achieved using a R.M. Young Wind Direction Linearity Gauge (Model No. 18802) attached to the wind speed/direction sensor and was rotated between 0 and 360 degrees in 30-degree increments. The circular gauge has marks in 1-degree increments that were compared to the datalogger readouts for wind direction accuracy.

In addition, a wind direction starting torque audit was performed using a R.M. Young Wind Direction Torque Gauge (Model No. 18331) to verify the sensitivity of the wind direction sensor to fluctuations in wind speed. Acceptance and accuracy criteria are presented in Table 2-3.

Temperature Audit

The temperature audit was achieved using a NIST traceable reference temperature sensor collocated with the 7-foot temperature sensor. Ambient temperature readings were recorded for both sensors. The NIST traceable reference temperature sensor was compared to the 7-foot sensor for temperature accuracy. Acceptance and accuracy criteria are presented in Table 2-3.

Humidity Audit

The humidity audit was achieved using a NIST traceable reference humidity sensor (hygrometer) collocated with tower humidity sensor. Ambient humidity conditions were recorded for both sensors and dewpoint temperatures were calculated for the both sensors using ambient temperature and humidity readouts, and were compared for humidity accuracy. Acceptance and accuracy criteria are presented in Table 2-3.

Solar Radiation Audit

The solar radiation audit was achieved using a CRM traceable reference solar radiation sensor collocated with tower sensor. Four short-term solar radiation readouts were recorded for both sensors and were compared for solar radiation accuracy. Acceptance and accuracy criteria are presented in Table 2-3.

Precipitation Audit

The precipitation audit was achieved using a precise liquid dispensing tool to measure the amount of water required to initiate a tip for each tipping bucket mechanism. Three filling runs were performed for each bucket and compared to specified volume required for one tip. Acceptance and accuracy criteria are presented in Table 2-3.

Barometric Pressure Audit

The barometric pressure audit was achieved using a NIST traceable barometric pressure sensor collocated with tower sensor. Three readouts were recorded for both sensors and were compared for barometric pressure accuracy. Acceptance and accuracy criteria are presented in Table 2-3.

All quality assurance audit methods, accuracy requirements, and audit (pass/fail) results for the Yerington meteorological tower are summarized in Table 2-3. Quality assurance audit data tables are presented in Appendix A. Field logbook notes are presented in Appendix B.

Table 2-3

Parameter	Audit Method	Accuracy Requirements (difference between acceptable criteria and sensor response)	Within Acceptance Criteria
10-Foot Wind Speed	Active Rotation with Certified Drive Unit: ws<5m/s ws>5m/s	$\leq \pm 0.25 \text{ m/s} \\ \leq \pm 5.0\%$	Yes
To Toot while speed	Starting Threshold with Torque Disk	≤0.5 m/s (0.3 gm- cm)	Yes
	Alignment Verification	$\leq \pm 5^{\circ}$ of True North	Yes
10-Foot Wind Direction	Internal Check of Vane Linearity using Gauge	$\leq \pm 3^{\circ}$	Yes
	Starting Threshold with Torque Gauge	\leq 0.5 m/s (9 gm-cm)	Yes
7-Foot Ambient Temperature	Collocated Sensor Comparing Temperatures Using Three Water Baths	\leq ± 0.5 °C	Yes
7-Foot Relative Humidity	Collocated Sensor Comparing Dewpoint Temperatures (T _{dp})	$\leq \pm 1.5$ °C Error in T_{dp}	Yes
2-Meter Solar Radiation	Collocated Sensor Comparison	$\leq \pm 5.0\%$ Full Scale	Yes
Barometric Pressure	Collocated Sensor Comparison	$\leq \pm 10$ millibars Hg	Yes
Precipitation Comparison to Precipitation Gauge		<u>≤</u> ±10.0%	Yes

PSD Quality Assurance Audit Methods, Accuracy Requirements, and Results Verington Meteorological Tower Audit July 10, 2006

Notes:

0	Degree	WS	Wind speed
°C	Degree Celsius		
gm-cm	Gram-centimeter		
Hg	Mercury		
m/s	Meter per second		
PSD	Prevention of significant d	eterioration	
T_{dp}	Dewpoint temperature		

3.0 Audit Equipment Reference Standards

All audit equipment and reference standards were in current calibration and traceable to the NIST or other authoritative references. Table 3-1 lists specific equipment used and certification dates. Copies of standard certifications for the audit equipment are presented in Appendix B.

Table 3-1

Quality Assurance Audit Equipment Yerington PM₁₀, TSP, and Meteorological Tower Audit July 10-11, 2006

References/Device	Manufacturer	Model Number	Serial Number	Re-certification Date
	Tisch			
PM ₁₀ /TSP Audit Orifice	Environmental	TE-5028A	W43	4/10/2007
	Control			
Humidity	Company	11-661-18	41531319	4/13/2007
	Control			
Thermometer	Company	11-661-18	41531319	4/13/2007
Wind Speed Drive	RM Young	18802	CA02612	4/13/2007
Wind Direction				
Linearity Gauge	RM Young	18212	N/A	N/A
Wind Speed Starting				
Threshold Torque Disk	RM Young	18310	N/A	N/A
Wind Direction Starting				
Threshold Torque				
Gauge	RM Young	18331	N/A	N/A
Solar Radiation	Li-Cor	LI-200SZ	PY47392	4/17/2008
		Multi-Navigator	ACP	
Barometric Pressure	Brunton	V 2.16	010796	4/13/2007

Notes:

N/A Not available

PM₁₀ Particulate matter less than 10 microns in diameter

TSP Total suspended particulate

4.0 Meteorological and Air Quality Audit Summary of Results and Recommendations

PM₁₀ and TSP Audit Summary:

At the time of the PM_{10} and TSP audit on July 11, 2006, all samplers successfully passed audit parameters and were observed to be operating correctly.

While on-site performing the meteorological tower audit on July 10, 2006, Mr. Herlocker observed that the PM_{10} samplers were not operating. However, July 10, 2006 was a designated air sample day and PM_{10} samplers at AM-1, AM-3, and AM-6 were supposed to be operating.

Mr. Herlocker discussed this observation with B & C personnel on the morning on July 11, 2006 and was told that apparently these samplers were incorrectly programmed to collect the PM_{10} samples on July 9, 2006. Mr. Guy Graening of B & C provided an e-mail response to this error and a copy of the e-mail correspondence is included in Appendix C.

Meteorological Tower Audit:

At the time of the meteorological tower audit on July 10, 2006, all NIST and CRM reference sensors and meteorological tower sensors were compared to the accuracy requirements established in Table 2-3 and all sensors were observed to be operating within accuracy requirements. However, the left tipping bucket mechanism on the precipitation sensor was tipping prematurely at approximately 7.6 mL. The sensor is in need of adjustment so that the left bucket will tip at the designed rate 8.3 mL per tip, but the audit criteria for accuracy of plus/minus 10 percent or from 7.5 to 9.1 mL was not exceeded.

General Recommendations:

Tetra Tech recommends B&C Adjust the precipitation sensor left tipping bucket mechanism so that it will tip at approximately 8.3 mL. Tetra Tech also recommends that B & C continue to perform scheduled bi-weekly site visits to the meteorological tower to download data and visually inspect the sensors. In addition, downloaded data should be screened and evaluated within 48 hours to identify problems and minimize lost data. APPENDIX A

QUALITY ASSURANCE AUDIT DATA TABLES

		WINF	TA SPEED/DIREC	BLE 1	SPONSE ALL	DIT	
YERINGTON ME AUDIT DATE: Ju							
SITE: Yerington	Mine Site, Ye		M Inc. on behalf of	U.S. Enviro	nmental Prote	ction Agency (EPA]
w	IND SPEED: (MODEL: RM Y	oung 05305 AQ)			CTION: (MODEL: F	RM Young 05305 AQ)
R		Audit Device: el 18802 (Seria	l No. CA02415)		RM Yo	Audit Devic oung Model 18212 (
ws <u><</u>		eptable Differe 56 mph, ws >	nce: 11.0 mph = <u><</u> 5.0%			Acceptable Diffe +/- 3 degree	
	Clo	ckwise Rotatio	on			Clockwise Rota	ation
Calibration	Simulated	0			Calibration		
Calibration Device	Wind Speed	ws Sensor ^a as found			Calibration Device	wd Sensor as	
RPM	(mph)	(mph)	Difference	e ^{b,c}	(degrees)	found (degrees)	Difference (degrees)
0.0	0.00	0.00		mph	0.0	1.7	1.7
200.0	2.19	2.28	0.09	mph	30.0	30.3	0.3
400.0	4.38	4.56		mph	60.0	60.8	0.8
600.0	6.58	6.84		mph	90.0	91.4 121.0	1.4
800.0 1000.0	8.77 10.96	9.12 11.40		mph mph	120.0 150.0	121.0	1.0 0.7
1600.0	17.54	18.24	4.0		180.0	181.3	1.3
2200.0	24.11	25.08	4.0		210.0	210.1	0.1
2600.0	28.50	29.64	4.0	%	240.0	240.5	0.5
3000.0	32.88	34.20	4.0	%	270.0	271.8	1.8
		a met (yes/no)			300.0	301.2	1.2
	Adjustmen	t performed (y	es/no): NO		330.0	330.9	0.9
					360/0.0	1.40	1.4
					Adi	Criteria met (yes/n stment performed	
N/A RPM wd ws	Not available Revolutions Wind directi Wind speed	per minute					
	TABLE 2 WIND DIRECTION/SPEED STARTING THRESHOLD TORQUE AUDIT						
	YERINGTON METEOROLOGICAL TOWER AUDIT AUDIT DATE: <u>July 10. 2006</u> SITE: <u>Yerington Mine Site, Yerington, NV</u> AUDITED BY: Doug Herlocker, Tetra Tech EM Inc. on behalf of U.S. EPA						
	WIND SPEED STARTING TORQUE WIND DIRECTION STARTING TORQUE THRESHOLD: (MODEL: RM Young 05305 THRESHOLD: (MODEL: RM Young 05305 AQ) AQ)						
	Audit Device: RM Young Model 18310 (Serial No. N/A) RM You				Audit Dev ng Model 18331	ice: (Serial No. N/A)	
	Acceptable Difference: <u><</u> 0.3 g-cm				Acceptable Dif <u>></u> 9 g-cr		
	Sensor 10 meter	ws Sensor	<i>as found</i> (g-cm) 0.3	Sensor 10 meter	wd Sensor	<i>as found (</i> g-cm) N/A	
	ws Sensor	We Sonco	r as left (g-cm)	wd Sensor	wd Sonce	r as left (g-cm)	
	10 meter ws	w5 361150	0.3	10 meter wd	wa Senso	n/A	
		teria met (yes/	no): YES I (yes/no): NO		ia met (yes/no) ment performe	: YES d (yes/no): NO	
	Notes: g-cm N/A	Gram-centime Not available Wind speed					U
	ws wd	Wind speed Wind direction	n				
<u> </u>	er of		-				

		HU	TABLE 3 MIDITY AUDIT		
RINGTON M	ETEOROLOGICAL T	-			
DIT DATE: J					
	n Mine Site, Yeringto oug Herlocker, Tetra		ehalf of U.S. Environme	ntal Protection Agency (E	PA
	HUMIDI	FY: Vaisala Model H	MP45C with Campbell C	R10X Datalogger	
			y Model No. 11-661-18 (: +/- 4.1 °F in Dewpoint 1		
			Audit device	•	Dewpoint
	Humidity Sensor	5.00	Dewpoint Temperature	Humidity Sensor	Difference Temperature
udit device % humidity)	as found (% humidity)	Difference (% humidity	(°F)	Dewpoint Temperature (°F)	(°F)
17.1	13.8	-3.3	57.30	53.50	-3.80
	Criteria met (yes/no):	YES	Adjustr	ment performed (yes/no):	NO
es:					
		National Institute o	f Standards and Techno	ology requirements	
	Percent				
	Fahrenheit				
			TABLE 4	т	
			EMPERATURE AUDI		
		OROLOGICAL TOW	ER AUDIT		
	AUDIT DATE: July 1 SITE: Yerington Mi		NV		
			ech EM Inc. on behalf of	U.S. EPA	
	TEMPERATU	JRE: Vaisala Model	HMP45C with Campbell	CR10X Datalogger	
			Model No. 11-661-18 (S		
	Audit Device	. Control Company	Wodel No. 11-001-18 (3	eriai No. 41551519)	
		•	table Difference: 0 °F Mean Error		
	Temperature	Audit Device Temperature	Ambient Temperature		
	Range	(°F)	as found (°F)	Difference (°F)	
	Ambient range	100.2	100.6	0.4	
	Ambient runge	100.2			
			Mean Error =	0.4	
	Criteria met (yes/no): YES	Adjustment perfe	ormed (yes/no): NC	J
	Notes:				
	_	Audit device meets	National Institute of Sta	ndards and Technology re	equirements
	°F	Fahrenheit			
			TABLE 5		
		so	DLAR RADIATION A	UDIT	
RINGTON M	ETEOROLOGICAL T	OWER AUDIT			
	<u>uly 10, 2006</u> n Mine Site, Verinett				
	n Mine Site, Yeringto Doug Herlocker, Tetra		ehalf of U.S. EPA		
	eag nerioeker, retr		AR RADIATION: Kipp 8	Zonen	
		witl	n Campbell CR10X Datal	logger	
			Licor Model Ll200SZ (Se table Difference: < 5% (F		
dit Device	Sensor Device	Accept Audit Device 1st.	Sensor Device 1st.	Audit Device 2nd.	Sensor Device
Zero ^b	Zero ^b	Reading	Reading	Reading	2nd. Reading
(W/m ²)	(W/m²)	(W/m²)	(W/m²)	(W/m²)	(W/m²)
0.0	0.0 s/no): YES	884.3 Adius	863.8 tment performed (yes/net	871.9 o): NC	840.5
ria mot his	ə/n0j. ⊺⊑ð	Adjus	ument performed (yes/h	UJ. NL	I
eria met (ye					
eria met (ye es:					
			f Standards and Techno		
		evices covered to s	f Standards and Techno imulate night time envir		

TABLE 6 BAROMETRIC PRESSURE AUDIT						
YERINGTON METEOF	ROLOGICAL TOWER AUDIT					
AUDIT DATE: July 10,	2006					
SITE: <u>Yerington Mine</u> AUDITED BY: <u>Doug H</u>	<u>e Site, Yerington, NV</u> erlocker, Tetra Tech EM Inc. on behalf o	f U.S. Environmental Protection Agency				
BARO	BAROMETRIC PRESSURE: Climatronics Model 102270 (Serial No. 1100) with Campbell CR510 Datalogger (Serial No. 18)					
Audit	Device ^a : Brunton Multi-Navigator, Versio	n 2.16 (Serial No. ACP 010796)				
	Acceptable Difference: +/- 0.	.3 inches Hg				
	Barometric Pressure Sensor					
Audit Device	as found	Difference				
(inches Hg)	(inches Hg)	(inches Hg)				
25.46	25.46 25.51 0.05					
Crite	eria met (yes/no): YES	Adjustment performed (yes/no): NO				

Notes:

Hg

Audit device meets National Institute of Standards and Technology requirements Mercury

TABLE 7 PRECIPITATION AUDIT					
YERINGTON METEOR	ROLOGICAL TOWER AUDIT				
AUDIT DATE: July 10,	2006				
SITE: Yerington Mine	Site, Yerington, NV				
	erlocker, Tetra Tech EM Inc. on behalf of	U.S. Environmental Protection Agency			
I	PRECIPITATION: Climatronics Model 100 Campbell CR510 Datalogger (· · · · ·			
	Audit device: 10 mL syringe (S	Serial No. N/A)			
Accep	Acceptable Difference: +/- 10% (1 tip = 8.3 mL = 0.01 inches of precipitation), <8.0 mL, > 8.6 mL = adjustment recommended				
Volume Checks	Left Bucket	Right Bucket			
(number)	as found	as found			
1	7.7	8.6			
2	7.6	8.7			
3	7.5	8.5			
Average =	7.6	8.6			
Volume Checks (number)	Left Bucket as left	Right Bucket as left			
1	7.7	8.6			
2	7.6	8.7			
3	7.5	8.5			
Average =	7.6	8.6			
	Criteria met (yes/no): YES	Criteria met (yes/no): YES			
	Adjustment performed (yes/no): NO	Adjustment performed (yes/no): NO			

Notes:

%	Percent
mL	Milliliter
N/A	Not available

APPENDIX B

AUDIT EQUIPMENT STANDARDS CERTIFICATIONS AND FIELD LOGBOOK NOTES

-weather Conditions: Nothing Unusual -weather Conditions: Portly Roudy Shish wind gustsport of ETNE; high 90%1) 1434(PDT)/1336(PST) Met tower of Flime for Audit Procedure Indus diffato.05" Hg Z. Humichty Audit: (2 point Ave) Auditsensor = 16.4/17.8 Ave = 17.1 "10 min diff = + 1013 mm Hg . Borometric Pressure Audit: (1 Point) No d: ff= -3.3 % Humidity
→ Dempoint tenp to the colordated for Audit Lemps 100.5 / 100.5(+F) Tower temps 100.5/100.7(*F) Templerature Audit: (2 peint Aug) Audit Sensor = 100.3/100.5(*F) PDT) Knine a Tomer Densar = 100.5/100.7(°F) Tenpolognees diff = 0.2("> "empleators Towersensor = 13.3/14.3 Ave= 13.8 Carl 70 wer Sensor - 863. 11 mb=647.87 mm Hy Audit sensor = 25.46" = 641.68 milig SENSOR Verinsten, Met Tower Hudit 5. Wind Speed Audit Dub on Excelshed 6. Wind Direction Audit Dub on Excelshed 7. Wind Direction Starting tongue Audit Tower Sensor = T.g/cum (Assed) 8. Salar Radiation Audit: Audit Consists of 3 Readings plus Zeno) Reading #1 Audit = 88.4.3 Tholos Verinsten Met Tower Huditant) 4. Wind Vone Alignment Veritication - wind vone Red placed on wind Sansor Mount & oriented on wind North position - Readings taken wind 1. Sighting Compass = 1.0 (Converted) 2. Correcting Compass = 1.0 (Converted) 3. GPS onit = 20 (corrected) Precipitation hid it 3 fills of each Reading # 4 (law) And + 20.0 Realing #3 Rad: 1 # 2 Sen 30- 2863.8 Sensor = 840, 5 Audit = 820, 5 Audit = 871.9 Sensor = 801.2

-Audit criteria 7.5 ml = 8.6 - Audit criteria met but adjustment - Audit Criteria met but adjustment budlet close to failing 1640 (PDT)/1540 (PST) Audit Completed Met tower bud online - 111/11 Samplers 0745 Arrive at AM-1 and Audit AM-1 & AM-1 Dup (PM,0) -> Data on Excel Sheet -> Data on Excel Sheet AM-3 (PM,0) -> (Data on Excel Sheet) AM-3 (PM,0) -> (Data on Excel Sheet) AM-3 (PM,0) -> (Data on Excel Sheet) and Am-6 TSR (Data on Excel Sheet) 1015 Leave Site 1/11/06 0720 Arrive at Site to meet B34 Air personnel 3 Audit Punidisp Tholad Veries but Methomen Audit (Com) Fill #2 left=7.7 fight= 8.6 Fill #2 left=7.6 Right= 8.7 Fill #2 Left=7.5 Right= 8.5 Auc = 7.6 = 8.6 D. Hill Page ; •*** 10

....

TISCH ENVIROMENTAL, INC. 143 SOUTH MIAMI AVE, VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLE FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5028A

Date - Ap Operator		5 Rootsmeter Orifice I.I	•	833620 #43	Ta (K) - Pa (mm) -	293 - 756.92
PLATE OR VDC #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.2670 0.9780 0.8940 0.8240 0.8250	4.4 7.3 8.7 10.2 17.3	1.50 2.50 3.00 3.50 6.00

DATA TABULATION

Vatd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0070 1.0031 1.0013 0.9993 0.9898	0.7948 1.0257 1.1200 1.2127 1.5837	1.2326 1.5913 1.7432 1.8829 2.4653		0.9942 0.9903 0.9885 0.9865 0.9771	0.7846 1.0126 1.1057 1.1972 1.5634	0.7620 0.9837 1.0776 1.1640 1.5240
Qstd slop intercept coefficie y axis =	= (b) = ent (r) =	1.56257 -0.00986 0.99998 Pa/760)(298/2	 (a)]	Qa slope intercept coefficie y axis =	= (b) =	0.97846 -0.00610 0.99998 fa/Pa)l

CALCULATIONS

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))\} - b \}$ Qa = $1/m\{ [SQRT(H2O(Ta/Pa)] - b \}$

	· · · · · · · · · · · · · · · · · · ·	Certifico	rte of Accur	acy		
Transfer Sta	Transfer Standard Type: Barometric Pressure/Altimeter Certificate No: B 041306.01					
	r standard modei: Serial number: bmitted by/owner;	ACP 010796	eet			
Model number: Certified accura	to Precision Abso 355-Al0900 icy of ± 0.007"Hg to Ruska Deadwe		Serial number:	913930-M1		
Date:	04/13/0 6		Lab temperature Lab pressure	77.5 656.2	°F mm Hg	
	Reference barometer ("Hg)	Transfer Standard ("Hg)	Difference from Reference ("Hg)	Transfer Standard Correction* ("Hg)		
	25.00	24.98	-0.02	0.02		
	26.00	25.98 26.98	-0.02	0.02	!	
	28.00	27.98	-0.02	0.02	i i	
	Note: If no sign is given on the correction, the true pressure is higher than the indicated pressure. If the sign is negative, the true pressure is tower than the indicated pressure. Transfer Standard adjustments made? YES I NOX Post-calibration measurements:					
	Reference barometer ("Hg)	Transfer Standard ("Hg)	Difference from Reference ("Hg)	Transfer Standard Correction* ("Hg)	1	
				!		
Reviewed:	Rdd		Date: 4-1	3-06		
Roger L. Sande	rs, PE					
	Roger L. Sanders, PE <i>Chinook Engineering</i> a division of Inter-Mountain Laboratories, Inc. 555 Absaraka Street Sheridan, Wyoming 82801 USA (307) 672-7790					
 	chinook@imlinc.com					

R.M. Young Company 2801 Aero Park Drive Traverse City, Michigan 49686 USA

Certificate of Calibration and Testing

Test Unit:		· · · · · · · · · · · · · · · · · · ·	
Model:	18802	Serial Number:	CA02612
Description:	Anemometer Drive - 2	200 to 15,000 RPM	
	- Comprised of Models	18820A Control Unit & 18830A Motor	Assembly

R.M. Young Company certifies that the above equipment has been inspected and calibrated using standards whose accuracies are traceable to the National Institute of Standards and Technologies (NIST).

Nominal Motor Rpm	27106D Output Frequency Hz (1)	Calculated Rpm (2)	Indicated Rpm (3)
300	50	300	300
2700	450	2700	2700
5100	850	5100	5100
7500	1250	7500	7500
10,200	1700	10200	10200
12,600	2100	12600	12600
15,000	2500	15000	15000

(1) Measured frequency output of RM Young Model 27106D standard anemometer attached to motor shaft

(2) (3) 27106D produces 10 pulses per revolution of the anemometer shaft

Indicated on the Control Unit LCD display

*Indicates out of tolerance

No Calibration Adjustments Required

🗌 As I	Found
--------	-------

🗌 As Left

Traceable frequency meter used in calibration DP4863

Date of inspection 13 April 2006

Ex Tested By

Tel: 231-946-3980 Fax: 231-946-4772 Email: met.sales@youngusa.com Website: www.youngusa.com

CERTIFICATE of CALIBRATION for LI-COR SENSOR

Model Number: LI-200SZ

Serial Number: P147392 Calibration Date: April 17, 2006

Output:

5.00 millivolts per 1000 watts m^{-2} **5.12** Ω resistor installed in cable.

IMPORTANT: Read the appropriate instruction manual before using this sensor. **IMPORTANT:** It is recommended that sensors be recalibrated every two years.

Calibration Technician:

Caron Deschance

LI-COR, inc. • Environmental • 4421 Superior Street • P.O. Box 4425 • Lincoln, NE 68504 Phone: 402-467-3576 • FAX: 402-467-2819 • Toll-free 1-800-447-3576 (U.S. & Canada) E-mail: envsales@licor.com • www.licor.com

Transfer Standa	ard Type: El	ectronic Hy	grometer	Certificate No: H	0 41306
			ny Traceable Hygroi	meter	
-	erial number: 4		_		
submit		Tetra Tech EM			
		106 N 6th Stree Suite 202	t		
		Soite 202 Boise, ID 8370	2		
	·	50100, 18 0010	-		
Was compared to S					
Standard Practice for	or Maintaining (Constant Relativ	ve Humidity by Mea	ns of Aqueous So	olutions,
using Temperature		ndard Streamlin	e'''' Pro MultiCal''''	System Remote	Temperature
Probe S/N T030301	•				
Date: 4/11/2006 -	04/13/06		Lab temperature:	varies	٩F
	5 11 15,000	Ba	rometric Pressure:	varies	mmHG
			Lab %RH:	varies	
					Transfer
Reference	Reference	Reference	Transfer	Difference	Standard
Salt	Temperature	Standard	Standard	from Reference	Correction
Standard Potassium Acetate	°C 21.5	(%RH) 22.9	(%RH) 24.9	(%RH) 2.0	(%RH) -2.0
Magnesium Nitrate		53.6	52.3	-1.3	: 1.3
Sodium Chloride	22.7	75.4	73.3	-2.1	2.1
				· · · · · ·	
		Tananatura			Transfer
		Temperature Reference	Transfer	Difference	Standard
		Standard	Standard	from Reference	Correction
		(°C)	(°C)	(°C)	(°C)
	Г	21.5	21.7	0.2	-0.2
		22.6	23.0	0.4	-0.4
		22 .7	23.1	0.4	-0.4
	Ĺ			· · ·	
	2.16				
Reviewed: 📈	$X \downarrow$		Date: 4-1:	3-06	_
Pagari Sandara D	• □⊏				
Roger L. Sanders, F	- <u>C</u>				
		Chinook El	naineerina		
	a divis	• •	ntain Laboratories, Ind	C.	
			aka Street		
	S	iheridan, Wyom	i ng 828 01 USA		
			72-7790		
		chinook@i	imlinc.com		

Project: Yerington/ARC AQ AM1 PM10 Site

Monitor: Tisch Environmental PM10 Hi-Vol Sampler Model No. TE-6070D

Sampler Serial No.	613	Ta	Temp C	24.5	Orifice Serial No.	w43	
Orifice Serial No.	1013	Ta	Temp K	297.65	W43 slope (m)	0.97381	
	ly 11, 2006	Pa Pa	Bp mm Hg Bp in Hg	644.144 25.36	W43 int. (b)	-0.00137	

	Orifice	Qa (Orifice)	Chart	IC		
Point	Press. Drop (" H2O)	(1.02-1.24)	Response	Corrected	Linear Regression	
1	3	1.2105	38	25.8	Slope=	28.3783432
2	2.8	1.1695	36	24.5	Intercept=	-8.6981
3	2.5	1.1051	33	22.4	Corr. Coeff.=	0.9909
4	2.4	1.0828	32	21.8	SFR=	1.2765
5	2.2	1.0368	31	21.1	SSP=	40.4957

Project: Yerington/ARC AQ AM1 PM10 DUP Site

Monitor: Tisch Environmental PM10 Hi-Vol Sampler Model No. TE-6070D

Sampler Serial No.
Orifice Serial No.

Date: July 11, 2006

616 1022 Ta Ta Pa Pa

Temp C	24.5	Orifice Serial No.	w43
Temp K	297.65	W43 slope (m)	0.97381
Bp mm Hg	644.144	W43 int. (b)	-0.00137
Bp in Hg	25.36		

	Orifice	Qa (Orifice)	Chart	IC		
Point	Press. Drop (" H2O)	(1.02-1.24)	Response	Corrected	Linear Regression	
1	2.1	1.0130	29	19.7	Slope=	28.46090472
2	2.2	1.0368	30	20.4	Intercept=	-9.0758
3	2.4	1.0828	32	21.8	Corr. Coeff.=	0.9990
4	2.7	1.1484	35	23.8	SFR=	1.2765
5	3.1	1.2305	38	25.8	SSP=	40.0951

Project: Yerington/ARC AQ AM3 PM10 site

Monitor: Tisch Environmental PM10 Hi-Vol Sampler Model No. TE-6070D

Sampler Serial No. Orifice Serial No.

erial No.	618	
erial No.	1018	
Date: Ju	ly 11, 2006	

Temp C	28.1	Orifice Serial No
Temp K	301.25	W43 slope (m)
Bp mm Hg	646.938	W43 int. (b)
Bp in Hg	25.47	

ifice Serial No.	w43
V43 slope (m)	0.97381
W43 int. (b)	-0.00137

	Orifice	Qa (Orifice)	Chart	IC		
Point	Press. Drop (" H2O)	(1.02-1.24)	Response	Corrected	Linear Regression	
1	3.0	1.2151	37	25.2	Slope=	20.19906
2	2.6	1.1313	35	23.9	Intercept=	0.7811
3	2.5	1.1094	34	23.2	Corr. Coeff.=	0.9914
4	2.4	1.0870	33	22.5	SFR=	1.2864
5	2.2	1.0408	32	21.8	SSP=	39.2224

Та

Та Ра

Ра

Project: Yerington/ARC AQ AM6 PM10 site

Monitor: Tisch Environmental PM10 Hi-Vol Sampler Model No. TE-6070D

Sampler Serial No.	615	Та	Temp C	27.8	Orifice Serial No.	w43
Orifice Serial No.	1020	Та	Temp K	300.95	W43 slope (m)	0.97381
-		Pa	Bp mm Hg	649.224	W43 int. (b)	-0.00137
Date: Ju	ly 11, 2006	Pa	Bp in Hg	25.56		

	Orifice	Qa (Orifice)	Chart	IC			
Point	Press. Drop (" H2O)	(1.02-1.24)	Response	Corrected	L	Linear Regression	
1	2.1	1.0146	31	21.1	Slope=	23.9473531	
2	2.5	1.1069	34	23.1	Intercept=	-3.2198	
3	2.7	1.1502	36	24.5	Corr. Coeff.=	0.9973	
4	2.9	1.1920	37	25.2	SFR=	1.2806	
5	3.0	1.2124	38	25.9	SSP=	40.3128	

Project: Yerington/ARC AQ AM6 TSP site

Date: July 11, 2006

Monitor: Tisch Environmental TSP Hi-Vol Sampler Model No. TE-5170D

Sampler Serial No. Orifice Serial No. NA 1021

Та	Т
Та	Т
Ра	BF
Pa	В

		_	
Гетр С	27.8	Orifice Serial No.	w43
Гетр К	300.95	W43 slope (m)	0.97381
P mm Hg	649.224	W43 int. (b)	-0.00137
3p in Ha	25.56		

	Orifice	Qa (Orifice)	Chart	IC		
Point	Press. Drop (" H2O)	(1.10-1.70)	Response	Corrected	L	inear Regression
1	3.0	1.2124	37	25.2	Slope=	18.13226513
2	3.8	1.3643	41	27.9	Intercept=	3.1548
3	4.3	1.4512	43	29.3	Corr. Coeff.=	0.9993
4	4.9	1.5491	46	31.3	SFR=	1.2806
5	5.4	1.6261	48	32.7	SSP=	38.7380

APPENDIX C

COPY OF E-MAIL CORRESPONDENCE FROM BROWN & CALDWELL REGARDING AIR SAMPLER PROGRAMMING ERROR

Herlocker, Douglas -- EMI

From:	Graening, Guy [GGraening@BrwnCald.com]	Sent: Wed 7/12/2006 3:06 PM		
То:	Herlocker, Douglas EMI			
Cc:	Jim Sickles (E-mail); Early, Victor EMI; Zimmerman, Chuck; Sherman, Marne			
Subject:	RE: Yerington Mine Site July 10 sample run day			
Attachment	s:			

Doug,

I looked into the issue and this was a timer programming error that affected Event 89 only. The samples for Event 89 should be considered valid although units AM-6-TSP ran one day later than units AM-1-PM10, AM-1-PM10-DUP, AM-3-PM10, and AM-6-PM10. Here are the events that led up to the error:

- June 12-13: Motor change out on all 13 units and re-calibration of all 13 units. All units were programmed correctly at this time.
- July 3: Turn off units AM-1-TSP, AM-2-PM10, AM-2-TSP, AM-4-PM10, AM-4-TSP, AM-5-PM10, and AM-5-TSP in preparation for new monitoring program beginning with Event 88 on July 4.
- July 4 (Event 88): Units AM-1-PM10, AM-3-PM10, AM-6-PM10, and AM-6-TSP ran on correct day (their timer programming was not changed).
- July 6: After reviewing the sample volumes for the events following the last calibration, the flow rate set points on units AM-1-PM10, AM-3-PM10, and AM-6-PM10 were adjusted slightly (this is a normal procedure and does not affect the calibration of the unit). Re-setting the flow rate set points is a manual adjustment of the set screw that involves turning off the timer and manually starting the unit with a dummy filter. At this point the units were reprogrammed incorrectly and the PM-10 units ran 1 day early. The reason the AM-6-TSP unit ran on the correct day is that normal operation of the TSP units does not involve adjusting the flow rate set point as part of the calibration procedure and the programming on this unit was not modified.
- July 9: Units AM-1-PM10, AM-1-PM10-DUP, AM-3-PM10, and AM-6-PM10 ran one day early for Event 89.
- July 10 (Event 89): Unit AM-6-TSP ran on correct day. The PM-10 units were programmed correctly for Event 90 on July 16.

This error and the explanation will be documented in the 3rd quarter report. I am sorry that this occurred and we will double check our timer programming in the future. For many events, we are on-site the day before or the day after an event runs and this error has not shown up. I do appreciate your audits and they make the air monitoring program that much better.

Sincerely,

Guy J. Graening, P.E.

Brown and Caldwell

10540 White Rock Road, Suite 180 Rancho Cordova, CA 95670 Office: 916-853-5385 Fax: 916-635-8801 Cell: 916-838-3572

From: Herlocker, Douglas -- EMI [mailto:Douglas.Herlocker@ttemi.com]
Sent: Wednesday, July 12, 2006 12:31 PM
To: Graening, Guy
Cc: Jim Sickles (E-mail); Early, Victor
Subject: Yerington Mine Site July 10 sample run day

Guy,

I bet you probably have already been informed of this, but when I was onsite Monday July 10, none of PM10 samplers (at AM1, AM1-Dup, AM3, and AM6) were sampling. The chart recorders showed that samples had already run. However, the TSP sampler at AM6 was running. I will formally address this and my audit findings in my upcoming audit report, but wanted to make you aware of this. My concern is that this may have occured on more than one occasion. If so, this will need to be identified and addressed. In addition, I spoke with Marnie (sp?) about the problem when I was accompanying her on-site yesterday.

Can you please check into this and let me know.

Regards,

Doug

Doug Herlocker Senior Air Quality Specialist/ Environmental Project Manager

Tetra Tech E.M. Inc. 106 N. 6th St. Suite 202 Boise, ID 83702 (208) 343-4085 (office) (208) 343-4756 (fax) (208) 484-9436 (cell)