1ST QUARTER 2006 AIR QUALITY AND METEOROLOGICAL MONITORING AUDIT REPORT

PREPARED FOR:

JIM SICKLES US ENVIRONMENTAL PROTECTION AGENCY REGION 9 REMEDIAL PROJECT MANAGER

YERINGTON/ANACONDA MINE SITE YERINGTON, NEVADA

Prepared by

Tetra Tech EM Inc. 135 Main St., Suite 1800 San Francisco, California 94105

May 8, 2006

TABLE OF CONTENTS

Secti	on	Page
1.0	Oversight and Audit Summary	
2.0	PM ₁₀ , TSP, and Meteorological Audit Methods	3
3.0	Meteorological Audit Equipment	9
4.0	Meteorological and Air Quality Audit Summary of Results and	
	Recommendations	10

LIST OF TABLES

<u>Table</u>

Page

- 1-1 Air Quality and Meteorological Monitoring Parameters Yerington Mine Site1
- 2-1 Summary of PM₁₀ Audit Results Yerington Mine Site January 9 -10, 20064
- 2-2 Summary of TSP Audit Results Yerington Mine Site January 9 -10, 20065
- **3-1** Quality Assurance Audit Equipment Yerington PM₁₀, TSP, and Meteorological Tower Audits January 9 -10, 2006

LIST OF APPENDICES

- Appendix A Quality Assurance Audit Data Tables
- Appendix B Audit Equipment Standards Certifications and Field Logbook Notes

i

1.0 Oversight and Audit Summary

On behalf of the US Environmental Protection Agency (EPA), Tetra Tech EM Inc. (Tetra Tech) personnel are providing ongoing regulatory support for the Yerington Mine air quality and meteorological monitoring program. Atlantic Richfield Company's (ARC) environmental contractor, Brown and Caldwell (B & C), are currently performing all aspects of this program. Tetra Tech reviewed and provided comments and feedback on the Air Quality Monitoring Work Plan for the Yerington Mine Site (AQMWP), Authored by B & C.

The AQMWP provides details on proposed actions for air quality and meteorological monitoring at the Yerington site. The air quality-monitoring component of the AQMWP includes the installation and operation of seven Hi-Volume (Hi-Vol) particulate matter less than 10 microns (PM_{10}) samplers and six Hi-Vol total suspended particulate (TSP) samplers at sample locations approved by ARC, B&C, EPA, and Tetra Tech. The meteorological monitoring component of the AQMWP includes the continued operation of an existing 10- foot meteorological tower. The air quality and meteorological monitoring parameters and instrumentation for the Yerington Mine Site are summarized in Table 1-1.

Table 1-1

Parameter	Instrument	Instrument Location
rarameter	Description-Model	Instrument Location
	RM Young Model 05305	
Wind Speed	AQ	10 feet AGL
	RM Young Model 05305	
Wind Direction	AQ	10 feet AGL
	Vaisala	
	Temperature/Humidity	
Ambient Temperature	Probe	7 feet AGL
	Vaisala	
	Temperature/Humidity	
Relative Humidity	Probe	7 feet AGL
Solar Radiation	Licor Model LI200X	9 feet AGL
Station Barometric	Vaisala Barometric	Meteorological Tower
Pressure Sensor	Pressure Sensor	Enclosure Cabinet
Meteorological	Campbell Scientific	Meteorological Tower
Tower Datalogger	CR10X	Enclosure Cabinet
PM ₁₀ Hi-Volume	Tisch Environmental, Inc.	7 Total samplers at 6
FRM Sampler	Model TE-6070D	locations
TSP Hi-Volume	Tisch Environmental, Inc.	6 Total samplers at 6
FRM Sampler	Model TE-5170D	locations

Air Quality and Meteorological Monitoring Parameters for Yerington Mine Site

Table 1-1 (continued)

Notes:

AGL	Above ground level
FRM	Federal Reference Method
PM_{10}	Particulate matter less than 10 microns in diameter
TSP	Total suspended particulate

Tetra Tech personnel coordinated with B&C personnel to meet at the site and perform EPA-reference method audit procedures on seven PM_{10} samplers, six TSP samplers, and the on-site meteorological tower. PM_{10} and TSP audits were performed using a certified Hi-flow audit orifice and the meteorological tower was audited using certified reference sensors.

Mr. Doug Herlocker of Tetra Tech conducted the audit procedures at the Yerington site on January 9 through 10, 2006. The following tasks were performed:

- EPA and manufacturer-approved audit of seven PM₁₀ Hi-Vol and six TSP Hi-Vol samplers using certified audit orifice (Completed January 9 through 10, 2006)
- Prevention of Significant Deterioration (PSD)-quality audit of 10-foot meteorological tower (Completed January 10, 2006)

All PM_{10} and TSP samplers audited on January 9 through 10, 2006, successfully passed all audit criteria. No equipment failures, leaks, or anomalies were observed during the audit procedure.

At the time of the meteorological tower audit on January 10, 2006, all sensors were operating within PSD-audit criteria. During the previous audit, a damaged precipitation gauge wire was identified. The damaged wire was observed to be replaced with a new wire and was operating correctly at the time of the audit.

Details of the quality oversight and audit summary are presented in the following sections and appendices:

- Section 2.0 PM₁₀, TSP, and Meteorological Audit Methods
- Section 3.0 Meteorological Audit Equipment
- Section 4.0 Meteorological and Air Quality Audit Summary of Results and Recommendations
- Appendix A Quality Assurance Audit Data Tables
- Appendix B Audit Equipment Standards Certifications and Field Logbook Notes

2.0 PM_{10,} TSP, and Meteorological Audit Methods

Tetra Tech personnel audited all seven PM_{10} samplers, all six TSP samplers, and the 10-foot meteorological tower on January 9-10, 2006.

The Yerington 10-foot meteorological tower sensors were audited in their normal operating modes. The accuracy of all sensors was verified using National Institute of Standards and Technology (NIST) or Certified Reference Material (CRM) traceable transfer standard reference audit sensors.

A description of audit procedures and methods is presented below.

PM₁₀ Hi-Vol Audit Procedure

Seven PM_{10} Hi-Vol samplers are installed at six locations at or near the perimeter of the Yerington mine site. The samplers operate by activation of a pump via a timer system. The audit device consists of a certified audit orifice (orifice) designed for PM_{10}/TSP samplers. The orifice consists of metal plate attached to a flow restriction cylinder, which allows the user to turn a knob and restrict flow to the sampler. In addition, the orifice is equipped with a manometer port to measure pressure drop through the orifice.

The orifice is designed to produce flow ranges of 1.02 to 1.24 cubic meters per minute (m^3/min) based on the design flow rate of the PM_{10} Hi-Vol samplers. Five different flow measurements are obtained using the orifice and resultant manometer readings are recorded. PM_{10} sampler flow readings are also recorded for the five different flow rates. In addition, ambient temperature and pressure are recorded. These site-specific parameters were obtained during the audit using NIST certified devices. A slope, intercept, and correlation coefficient is calculated using the least squares regression method and is based on the five orifice manometer and sampler flow readings. The audit criteria are based on a correlation coefficient of <u>0.990 or higher</u>. A summary of PM_{10} audit results is presented in Table 2-1. Quality assurance audit data tables are presented in Appendix A.

TABLE 2-1

SUMMARY OF PM 10 AUDIT RESULTS YERINGTON MINE SITE JANUARY 9 -10, 2006

PM ₁₀ Sampler/ Location	Sampler Serial Number	Sampler Orifice Serial Number	Audit Orifice Serial Number	Ambient Temperature (degrees C ⁰)	Ambient Pressure (mm Hg)	Sampler/Audit Orifice Correlation Coefficient
AM1	613	1013	W43	13.7	649.7	0.9967
AM1-DUP	616	1022	W43	12.9	649.7	0.9947
AM2	617	1016	W43	9.5	649.7	0.9966
AM3	618	1018	W43	9.1	653.0	0.9901
AM4	619	1012	W43	3.1	653.0	0.9943
AM5	614	1019	W43	7.7	653.0	0.9993
AM6	615	1020	W43	9.8	654.8	0.9930

Notes:

°C DUP	Degree Celsius Duplicate
mm Hg	Millimeter mercury
PM_{10}	Particulate matter less than 10 microns in diameter

TSP Hi-Vol Audit Procedure

Six TSP Hi-Vol samplers are collocated with the PM_{10} samplers and installed at six locations at or near the perimeter of the Yerington mine site. The samplers operate by the activation of a pump via a timer system, identical to the PM_{10} samplers. The audit device consists of a certified audit orifice (orifice) designed for PM_{10} /TSP samplers. The orifice consists of metal plate attached to a flow restriction cylinder, which allows the user to turn a knob and restrict flow to the sampler. In addition, the orifice is equipped with a manometer port to measure pressure drop through the orifice.

The orifice is designed to produce flow ranges of 1.10 to 1.70 cubic meters per minute (m^3/min) based on the design flow rate of the TSP Hi-Vol samplers. Five different flow measurements are obtained using the orifice and resultant manometer readings are recorded. TSP sampler flow readings are also recorded for the five different flow rates. In addition, ambient temperature and pressure are recorded. These site-specific parameters were obtained during the audit using NIST certified devices. A slope, intercept, and correlation coefficient is calculated using the least squares regression method and is based on the five orifice manometer and sampler flow readings. The audit criteria are based on a correlation coefficient of <u>0.990 or higher</u>. A summary of TSP audit results is presented in Table 2-2. Quality assurance audit data tables are presented in Appendix A.

TABLE 2-2

SUMMARY OF TSP AUDIT RESULTS YERINGTON MINE SITE JANUARY 9 -10, 2006

TSP Sampler/ Location	Sampler Serial Number	Sampler Orifice Serial Number	Audit Orifice Serial Number	Ambient Temperature (degrees C ⁰)	Ambient Pressure (mm Hg)	Sampler/Audit Orifice Correlation Coefficient
AM1	NA	1033	W43	9.8	649.7	0.9992
AM2	NA	1034	W43	9.5	649.7	0.9941
AM3	NA	1014	W43	9.4	653.0	0.9995
AM4	NA	1015	W43	3.1	653.0	0.9990
AM5	NA	1017	W43	7.7	653.0	0.9962
AM6	NA	1021	W43	9.8	654.8	0.9979

Notes:

С	Degree Celsius
NA	Not available
mm Hg	Millimeter mercury
TSP	Total suspended particulate

Vane Alignment Verification/Audit

The Yerington meteorological tower wind speed/direction sensor is mounted at the top of the tower (10-foot level) on a 1-meter cross arm fixture oriented in a north/south direction, equivalent to a value of zero degrees. The vane alignment audit was achieved using a calibrated compass set on a tripod and corrected for true north offset for the Yerington, Nevada area of approximately 15.3 degrees Easterly. An additional audit was achieved using a handheld global positioning system (GPS), which automatically corrects for true north readings. Audit devices were aligned with the cross arm facing north. The orientation of the cross arm was then compared to the audit device reading. The results from the true north vane alignment audit are presented below:

- Audit compass (corrected 15.3 degrees Easterly) = 359 degrees
- Audit GPS (automatically corrected for true north) = 0.6 degrees
- Wind direction sensor aligned north-facing = 1.8 degrees

Wind Speed Audit

The wind speed audit was achieved using a R.M. Young Motor Drive (Model No. 18802) attached to the wind speed/direction sensor and was rotated at different speeds. The simulated wind speed was compared to datalogger readouts for wind speed accuracy.

In addition, a wind speed starting threshold torque audit was performed using a R.M. Young Torque Disc (Model No. 18310) to verify the sensitivity of the wind speed sensor to fluctuations in wind speed. Acceptance and accuracy criteria are presented in Table 2-3.

Wind Direction Audit

The wind direction audit was achieved using a R.M. Young Wind Direction Linearity Gauge (Model No. 18802) attached to the wind speed/direction sensor and was rotated between 0 and 360 degrees in 30-degree increments. The circular gauge has marks in 1-degree increments that were compared to the datalogger readouts for wind direction accuracy.

In addition, a wind direction starting torque audit was performed using a R.M. Young Wind Direction Torque Gauge (Model No. 18331) to verify the sensitivity of the wind direction sensor to fluctuations in wind speed. Acceptance and accuracy criteria are presented in Table 2-3.

Tempera ture Audit

The temperature audit was achieved using a NIST traceable reference temperature sensor collocated with the 7-foot temperature sensor. Ambient temperature readings were recorded for both sensors. The NIST traceable reference temperature sensor was compared to the 7-foot sensor for temperature accuracy. Acceptance and accuracy criteria are presented in Table 2-3.

Humidity Audit

The humidity audit was achieved using a NIST traceable reference humidity sensor (hygrometer) collocated with tower humidity sensor. Ambient humidity conditions were recorded for both sensors and dewpoint temperatures were calculated for the both sensors using ambient temperature and humidity readouts, and were compared for humidity accuracy. Acceptance and accuracy criteria are presented in Table 2-3.

Solar Radiation Audit

The solar radiation audit was achieved using a CRM traceable reference solar radiation sensor collocated with tower sensor. Four short-term solar radiation readouts were recorded for both sensors and were compared for solar radiation accuracy. Acceptance and accuracy criteria are presented in Table 2-3.

Precipitation Audit

The precipitation audit was achieved using a precise liquid dispensing tool to measure the amount of water required to initiate a tip for each tipping bucket mechanism. Three filling runs were performed for each bucket and compared to specified volume required for one tip. Acceptance and accuracy criteria are presented in Table 2-3.

Barometric Pressure Audit

The barometric pressure audit was achieved using a NIST traceable barometric pressure sensor collocated with tower sensor. Three readouts were recorded for both sensors and were compared for barometric pressure accuracy. Acceptance and accuracy criteria are presented in Table 2-3.

All quality assurance audit methods, accuracy requirements, and audit (pass/fail) results for the Yerington meteorological tower are summarized in Table 2-3. Quality assurance audit data tables are presented in Appendix A. Field logbook notes are presented in Appendix B.

Table 2-3

PSD Quality Assurance Audit Methods, Accuracy Requirements, and Results Verington Meteorological Tower Audit January 10, 2006

Parameter	Audit Method	Accuracy Requirements (difference between acceptable criteria and sensor response)	Within Acceptance Criteria
10-Foot Wind Speed	Active Rotation with Certified Drive Unit: ws≤5m/s ws>5m/s	$\leq \pm 0.25 \text{ m/s} \\ \leq \pm 5.0\%$	Yes
To Foot while Speed	Starting Threshold with Torque Disk	≤0.5 m/s (0.3 gm- cm)	Yes
	Alignment Verification	$\leq \pm 5^{\circ}$ of True North	Yes
10-Foot Wind Direction	Internal Check of Vane Linearity using Gauge	$\leq \pm 3^{\circ}$	Yes
	Starting Threshold with Torque Gauge	\leq 0.5 m/s (9 gm-cm)	Yes
7-Foot Ambient Temperature	Collocated Sensor Comparing Temperatures Using Three Water Baths	\leq ± 0.5 °C	Yes
7-Foot Relative Humidity	Collocated Sensor Comparing Dewpoint	$\leq \pm 1.5$ °C Error in	Yes

	Temperatures (T _{dp})	T _{dp}	
2-Meter Solar	Collocated Sensor		Yes
Radiation	Comparison	$\leq \pm 5.0\%$ Full Scale	165
Barometric Pressure	Collocated Sensor	$< \pm 10$ millibars Hg	Yes
Darometric Fressure	Comparison	$\leq \pm 10$ minibals fig	
Precipitation	Comparison to	< ± 10.0%	Yes
Frecipitation	Precipitation Gauge	$\leq \pm 10.0\%$	105

Notes:

0	degree
°C	degree Celsius
gm-cm	gram-centimeter
m/s	meter per second
PSD	Prevention of significant deterioration
T _{dp}	dewpoint temperature
ws	wind speed
W 5	while speed

3.0 Meteorological Audit Equipment

All audit equipment and reference standards were in current calibration and traceable to the NIST or other authoritative references. Table 3-1 lists specific equipment used and certification dates. Copies of standard certifications for the audit equipment are presented in Appendix B.

Table 3-1

Quality Assurance Audit Equipment Yerington PM₁₀, TSP, and Meteorological Tower Audits January 9 - 10, 2006

References/Device	Manufacturer	Model Number	Serial Number	Recertification Date
	Tisch			
PM ₁₀ /TSP Audit Orifice	Environmental	TE-5028A	W43	4/06/3006
	Control			
Humidity	Company	11-661-18	41531319	1/28/2007
	Control			
Thermometer	Company	11-661-18	41531319	1/28/2007
Wind Speed Drive	RM Young	18802	CA02612	4/13/2006
Wind Direction Linearity				
Gauge	RM Young	18212	N/A	N/A
Wind Speed Starting				
Threshold Torque Disk	RM Young	18310	N/A	N/A
Wind Direction Starting				
Threshold Torque Gauge	RM Young	18331	N/A	N/A
Solar Radiation	Li-Cor	LI-200SZ	PY47392	8/13/2007
		Multi-		
		Navigator		
Barometric Pressure	Brunton	V 2.16	ACP 010796	4/13/2006

Notes:

N/A	Not available
PM_{10}	Particulate matter less than 10 microns in diameter
TSP	Total suspended particulate

4.0 Meteorological and Air Quality Audit Summary of Results and Recommendations

PM₁₀ and TSP Audit Summary:

At the time of the PM_{10} and TSP audit on January 9 through 10, 2006, all samplers successfully passed audit parameters and were observed to be operating correctly.

Meteorological Tower Audit:

At the time of the meteorological tower audit on January 10, 2006, all NIST and CRM reference sensors and meteorological tower sensors were compared to the accuracy requirements established in Table 2-3 and all sensors were observed to be operating within accuracy requirements.

General Recommendations:

Tetra Tech recommends that B&C continue to perform scheduled bi-weekly site visits to the meteorological tower to download data and visually inspect the sensors. In addition, downloaded data should be screened and evaluated within 48 hours to identify problems and minimize loss of data.

APPENDIX A

QUALITY ASSURANCE AUDIT DATA TABLES

			TA	BLE 1			
		WIND	SPEED/DIREC	TION RE	SPONSE AU	DIT	
YERINGTON MET AUDIT DATE: <u>Jar</u>	nuary 10, 200	<u>06</u>	AUDIT				
SITE: <u>Yerington</u> AUDITED BY: <u>Do</u>	Mine Site, Y ug Herlocke	erington, NV r, Tetra Tech	EM Inc. on behalf	of U.S. EP	<u>A</u>		
WIN			oung 05305 AQ)				RM Young 05305 AQ)
RM		Audit Device: al 18802 (Seria	al No. CA02415)		RM Yo	Audit Devic ung Model 18212 (
ws <u><</u> 11		eptable Differe 56 mph, ws >	nce: 11.0 mph = <u><</u> 5.0%	6		Acceptable Diffe +/- 3 degree	
		ckwise Rotati	on			Clockwise Rota	ation
Calibration	Simulated Wind	ws Sensor ^a			Calibration		
Device	Speed	as found			Device	wd Sensor as	
RPM	(mph)	(mph)	Difference		(degrees)	found (degrees)	Difference (degrees)
0.0 200.0	0.00 2.19	0.00 2.28		mph mph	0.0 30.0	1.8 31.8	1.8 1.8
400.0	4.38	4.56		mph	60.0	61.5	1.5
600.0	6.58	6.84		mph	90.0	90.8	0.8
800.0	8.77	9.12		mph	120.0	120.3	0.3
1000.0	10.96	11.40		mph	150.0	150.2	0.2
1600.0	17.54	18.24	4.0		180.0	179.7	-0.3
2200.0	24.11	25.08	4.0		210.0	210.0	0.0
2600.0	28.50	29.64	4.0	%	240.0	239.9	-0.1
3000.0	32.88	34.20	4.0	%	270.0	271.6	1.6
	Criteria	a met (yes/no)	: YES		300.0	301.2	1.2
	Adjustment	performed (ye	es/no): YES		330.0	330.9	0.9
					360/0.0	2.40	2.4
						Criteria met (yes/n tment performed (
m/s N/A RPM wd	Mile per ho meter per so Not availabl Revolutions Wind direct Wind speed	econd le s per minute ion					
			TABLE				
		IRECTION/	SPEED STARTI	NG THRE	SHOLD TOP		
	AUDIT DATI	E: <u>January 10</u>		AUDIT			
	SITE: <u>Yerin</u> AUDITED B	igton Mine Sit Y: <u>Doug Herlo</u>	e, Yerington, NV cker, Tetra Tech I	EM Inc. on I	behalf of U.S. I	EPA	
	-	LD: (MODEL: AQ)	ING TORQUE RM Young 05305		DLD: (MODEL: AQ)	RTING TORQUE RM Young 05305	
	RM Young	Audit Devi Model 18310	ce: (Serial No. N/A)	RM Youn	Audit Devi g Model 18331	ce: (Serial No. N/A)	
	A	cceptable Diff <u><</u> 0.3 g-ci		/	Acceptable Diff <u><</u> 9 g-cn		
	Sensor	ws Sensor	as found (g-cm)	Sensor	wd Sensor	as found (g-cm)	
	10 meter ws		0.1	10 meter wd		N/A	
	Sensor	ws Senso	r as left (g-cm)	Sensor	wd Sensor	r as left (g-cm)	
	10 meter ws		0.1	10 meter wd		N/A	
	Cri	teria met (yes			ia met (yes/no): NO	1
l I		ent performed	(yes/no): NO	Adjustn	nent performed	d (yes/no): NO	
			mental Protection		nent performed		
	Adjustm Notes: EPA g-cm N/A	U.S. Environ Gram-centim Not available	mental Protection		nent performed		
	Adjustm Notes: EPA g-cm	U.S. Environ Gram-centim	mental Protection eter		nent performed		

		HUI	TABLE 3 MIDITY AUDIT			
	ETEOROLOGICAL anuary 10, 2006	TOWER AUDIT				
SITE: Yeringto	n Mine Site, Yering					
AUDITED BY: L		ra Tech EM Inc. on Y: Vaisala Model HM	MP45C with Campbell	CR10X Datalogger		
			Model No. 11-661-18 +/- 4.1 °F in Dewpoint			
		Dewpoint				
Audit device	Humidity Sensor as found	Difference Temperature				
(% humidity)	(% humidity)	Difference (% humidity)	Temperature (°F)	 (°F)	(°F)	
40.1 C	40.4 riteria met (yes/no)	0.3 YES	35.40 Adiustr	35.10 nent performed (yes/no):	-0.30 NO	
Notes: a %	Percent	s National Institute	of Standards and Tech	nology requirements.		1
°F EPA	Fahrenheit U.S. Environmenta	Il Protection Agenc	y			
			TABLE 4			
		OROLOGICAL TOV	MPERATURE AUD	П	_	
		line Site, Yerington,	<u>. NV</u> ech EM Inc. on behalf	of U.S. EPA		
	TEMPERATU	RE: Vaisala Model H	HMP45C with Campbel	I CR10X Datalogger		
	Audit Device ^a	Control Company I	Model No. 11-661-18 (Serial No. 41531319)	1	
		•	able Difference:) °F Mean Error			
	Temperature Range	Audit Device Temperature (°F)	Ambient Temperature as found (°F)	Difference (°F)		
	Ambient range	53.1	52.6	-0.5		
			Mean Error =	-0.5		
	Criteria met	yes/no): YES		ormed (yes/no): NO		
L					4	
I		Fahrenheit	National Institute of S Protection Agency	tandards and Technolog	y requirements.	
			TABLE 5 LAR RADIATION A	UDIT		
AUDIT DATE: J	ETEOROLOGICAL lanuary 10, 2006 on Mine Site, Yering					
		ra Tech EM Inc. on				
			R RADIATION: Kipp & Campbell CR10X Data			
		Audit Device ^a :	Licor Model LI200SZ (serial #PY47392)		
Audit Device	Sensor Device	Accepta Audit Device 1st.	ble Difference: < 5% (I Sensor Device 1st.	Full Scale) Audit Device 2nd.	Sensor Device	
Zero ^b	Zero ^b	Reading	Reading	Reading	2nd. Reading	
(W/m ²) 0.0	(W/m ²) 0.0	(W/m ²) 419.0	(W/m ²) 434.0	(W/m ²) 418.0	(W/m ²) 432.0	
Criteria met (ye			ment performed (yes/n			
Notes:				nology requirements.		
⊳ EPA		devices covered to a Il Protection Agency	simulate night time en v	vironment.		
W/m²	Watts per meter so		,			
N/A	Not available					

TABLE 6 PRECIPITATION AUDIT								
YERINGTON METEOROLOGICAL TOWER AUDIT								
AUDIT DATE: January 10, 2006								
SITE: Yerington Mine	SITE: Yerington Mine Site, Yerington, NV							
AUDITED BY: Doug He	AUDITED BY: Doug Herlocker, Tetra Tech EM Inc. on behalf of U.S. EPA							
I	PRECIPITATION: Climatronics Model 100508 (Serial No. 935) with Campbell CR510 Datalogger (Serial No. 18)							
	Audit device: 10 mL syringe (S	Serial No. N/A)						
Acceptable Difference: +/- 10% (1 tip = 8.3 mL = 0.01 inches of precipitation),								
	<8.0 mL, > 8.6 mL = adjustment	recommended						
Volume Checks	Left Bucket	Right Bucket						
(number)	as found	as found						
1	8.6	8.0						
2	8.4	8.0						
3	8.3	8.1						
Average =	8.4	8.0						
Volume Checks	Left Bucket	Right Bucket						
(number)	as left	as left						
1	8.6	8.0						
2	8.4	8.0						
3	8.3	8.1						
Average =	8.4	8.0						
	Citeria met (yes/no): YES	Citeria met (yes/no): YES						
	Adjustment performed (yes/no): NO	Adjustment performed (yes/no): NO						

Notes:

%	Percent
EPA	U.S. Environmental Protection Agency
mL	Milliliter
N/A	Not available

APPENDIX B

AUDIT EQUIPMENT STANDARDS CERTIFICATIONS AND FIELD LOGBOOK NOTES

~.-.

.....

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.253.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLIUTION MONITORING EQUIPMENT

	ORIFICE	TRANSFER STAL	NDARD CERT.	IFICATION	WORKSHEET	TB-5028A
Operator	Tisch	5 Rootsmeter Orifice I.I	D 1	833620 W43	Ta (K) - Pa (mm) -	295 - 753.11
PLATE OR VDC #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFP Hg (Tam)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.2560 0.9750 0.8880 0.8200 0.6190	4.5 7.4 8.9 10.3 17.7	1.50 2.50 3.00 3.50 6.00

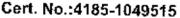
DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9950 0.9912 0.9892 0.9873 0.9774	0.7922 1.0166 1.1139 1.2040 1.5790	1.2254 1.5819 1.7329 1.8718 2.4507	 0.9940 0.9902 0.9882 0.9863 0.9764	0.7914 1.0155 1.1128 1.2028 1.5774	0.7665 0.9896 1.0840 1.1709 1.5331
Qstd slop intercept coefficie y axis =	(b) = ent $(r) =$	1.55515 -0.00218 0.99994 2a/760) (298/1	 Qa slope intercept coefficie y axis =	: (b) =	0.97381 -0.00137 0.99994

CALCULATIONS

.

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time


Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))\} - b \}$ Qa = $1/m\{ [SQRT(H2O(Ta/Pa)] - b \}$

Calibration complies with ISO 17025

Traceable® Certificate of Calibration for Digital Hygrometer/Thermometer

Instrument Identification:

Model	: 11-661-18	S/N	: 4153131	19 Ma	nufacturer :	Control Co	mpany			
Standards	s/Equipment									
Cartificate	Digital The Chilled Mino	<u>siption</u> ennometer r Hygrometer			al Number 977/41335007 	<u>Due</u> <u>Dal</u> 9/24/05 10/22/09	5		<u>able Refere</u> :542 1 81 200582-0}	<u>9000</u>
	Information									
Technician; Test Conditi		Procedure: 0°C 39.0		116 mBar	Ca	al Dato: 1/28	8/05	Cal D	ue: 1/28/0	7
Calibratio	n Data: (New	Instrumen							· ·	
Unit(s) 		As Found N.A. N.A. N.A. N.A.	in Tol 	Nominal 27.49 20.63 39.10 72.86	As Left 27.3 24.5 40.0 73.8	In Tol Y Y Y Y Y Y	Min 26.5 16.6 37.1 68.9	Max 28.5 24.6 41.1 76.9	±uc 0.09 0.88 0.88 0.88	TUR >4:1 >4:1 2.3:1 >4:1
This Instrum	ent was calibra	ted using Inst	ruments Tr	accable to N	ational Institu	te of Standa	T has she	achualaau	·	

A Test Uncervinity has called using intercements in account to reaction an institute of Standards and Technology. A Test Uncervinity has a standard with a maintained units of the was standard and is calculated using the expended researchment uncertainty. Uncertainty overcallon includes the instrument under lest and is calculated in accordance with the ISO Tourise to the Expression of Uncervinity in Messurement (GUV). The uncertainty is transmitted uncertainty using a coverage factor k=2 is capturated a SS% condence level. In toterance curditions are based on tost results facting within specified times with ne reproduced uncertainty using a coverage factor k=2 in effect uncertainty to the linkin calibrated: This contricted shall not be reproduced except to full.

Wallace Berry, Protocal Mediagor

Maintaining Accuracy:

In our upinion once calibration your Ulgital Hygromoter/Thermaniconshould intrintian its accuracy. There is no exact way to deterroine how long calibration will be monitalined. Digital Hygrometer/Thermonyters dvarge table, if any at all, out can be affected by aging, temperature, shuck, and contamination.

Recalibration:

For factory calibration and re-pertification traceable to National Institute of Standards and Technology contact Control Company

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is un ISO 17025 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750-01. Cuchol Company is ISO 9001 Guality Confried by (ONV) Dor Norske Verifax, Controlate No. CERT-01805-AQ 1000

R.M. Young Company 2801 Acro Park Drive Traverse City, Michigan 49686 USA

Certificate of Calibration and Testing

Test Unit:			
Model:	18802	Serial Number:	CA02612
Description:	Anemometer Drive - 2		
	 Comprised of Models 1 	18820A Control Unit & 18830A Motor	Assembly

R.M. Young Company certifies that the above equipment has been inspected and callbrated using standards whose accuracies are traceable to the National Institute of Standards and Technologies (NIST).

Nominal Motor Rpm	27106D Output Frequency Hz (1)	Calculated Rpm (2)	Indicated Rpm (3)
300	50	300	300
2700	450	2700	2700
5100	850	5100	5100
7500	1250	7500	7500
10,200	1700	10200	10200
12,600	2100	12600	12600
15,000	2500	15000	15000
	ise and Counterclockwise	e rotation verified	

(1)Measured frequency output of RM Young Model 27106D standard anemometer attached to motor shaft

27106D produces 10 pulses per revolution of the anomometer shaft (2) (3)

Indicated on the Control Unit LCD display

*Indicates out of tolerance

X No Calibration Adjustments Required

🛄 As Found

🗋 As Left

Traceable frequency meter used in calibration DP4863

Date of inspection 13 April 2005

Tested By EL.

Tel: 231-946-3980 Fax: 231-946-4772 Email: met.sales@youngusa.com Website: www.youngusa.com

.

Transfer Star	adard Tupor P		Due		<i></i>
Transfer	standard model	Brunton Mult	Pressure/Altim i-Navigator, Version	leter	
	Serial number:	ACP 010796	Phangator, version	2.10	-
subi	mitted by/owner;				-
				· · · ·	-
Was compared to		lute Referenc			
Model number: Certified accurac	355-A(0900		Serial number:	913930-M1	
NIST traceable to		iaht Testar SI	N 36343/0 0g		
		ight rester of	N 3034210-0D		
Date:	4/13/2005		Lab temperature	73.5	٦°
			Lab pressure	657.6	mm Hg
					U
	Reference	Transfer		Transfer Standard	ł
	barometer (in. Hg)	Standard (in Ha)	from Reference	Correction*	
Г	25.89	(in. Hg) 25.87	<u>(in. Hg)</u> ! -0.02	<u>(in. Hg)</u>	1
Ļ.	26.50	26.49	-0.02	0.02 0.01	-
	26.75	26.74	-0.01	0.01	
	27.00	26.99	-0.01	0.01	
Ĺ					F
	Vote:				_
1) -	f no sign is given o	in the correctio	n, the true pressure		
	e <i>himhor thoa t</i> ha ù	ndicated names	ura (Etha alam in an ar	tiller	
	s higher than the ii ha tara processor is			uve,	
ti	he true pressure is	lower than the	indicated pressure.	шve,	
Transfer Standard	he true pressure is d adjustments m	lower than the	indicated pressure.	<u> </u>	
ti	he true pressure is d adjustments m	lower than the	indicated pressure.		
Transfer Standard	he true pressure is d adjustments m neasurements:	iower than the ade? YES	NOX		· · · · · · · · · · · · · · · · · · ·
Transfer Standard	he true pressure is d adjustments m	iower than the ade? YES Transfer	Difference	Transfer Standard	
Transfer Standard	<i>he true pressure is</i> d adjustments m neasurements: Reference	iower than the ade? YES	Difference from Reference	Transfer Standard Correction*	
Transfer Standard	he true pressure is d'adjustments m neasurements: Reference barometer	iower than the ade? YES Transfer Standard	Difference	Transfer Standard	1
Transfer Standard	he true pressure is d'adjustments m neasurements: Reference barometer	iower than the ade? YES Transfer Standard	Difference from Reference	Transfer Standard Correction*	
Transfer Standard	he true pressure is d'adjustments m neasurements: Reference barometer	iower than the ade? YES Transfer Standard	Difference from Reference	Transfer Standard Correction*	
Transfer Standard	he true pressure is d'adjustments m neasurements: Reference barometer	iower than the ade? YES Transfer Standard	Difference from Reference	Transfer Standard Correction*	
Transfer Standard	he true pressure is d'adjustments m neasurements: Reference barometer	iower than the ade? YES Transfer Standard	Difference from Reference	Transfer Standard Correction*	
Transfer Standard Post-calibration m	he true pressure is d'adjustments m neasurements: Reference barometer	iower than the ade? YES Transfer Standard	Difference from Reference (in. Hg)	Transfer Standard Correction* (in. Hg)	
Transfer Standard Post-calibration m	he true pressure is d'adjustments m neasurements: Reference barometer	iower than the ade? YES Transfer Standard	Difference from Reference (in. Hg)	Transfer Standard Correction*	
Transfer Standard	he true pressure is d adjustments m neasurements: Reference barometer (in. Hg)	iower than the ade? YES Transfer Standard (in, Hg)	Difference from Reference (in. Hg)	Transfer Standard Correction* (in. Hg)	
Transfer Standard Post-calibration m	he true pressure is d adjustments m neasurements: Reference barometer (in. Hg)	Iower than the ade? YES Transfer Standard (in. Hg) Chincok E	Difference from Reference (in. Hg) Date: 4-/3	Transfer Standard Correction* (in. Hg)	
Transfer Standard Post-calibration m	he true pressure is d adjustments m neasurements: Reference barometer (in. Hg)	Iower than the ade? YES Transfer Standard (in. Hg) Chinook El on of Inter-Mou	Difference from Reference (in. Hg)	Transfer Standard Correction* (in. Hg)	
Transfer Standard Post-calibration m	he true pressure is d adjustments m neasurements: Reference barometer (in. Hg)	Iower than the ade? YES Transfer Standard (in. Hg) Chinook El on of Inter-Mour 555 Absar	Difference from Reference (in. Hg) Date: 4-/3 ngineering ntain Laboratories, Inc	Transfer Standard Correction* (in. Hg)	
Transfer Standard Post-calibration m	he true pressure is d adjustments m neasurements: Reference barometer (in. Hg)	Iower than the ade? YES Transfer Standard (in. Hg) Chinook El on of Inter-Mour 555 Absar eridan, Wyom (307) 61	Difference from Reference (in. Hg) Date: 4-/3 Date: 4-/3 ngineoring ntain Laboratories, Incraka Street	Transfer Standard Correction* (in. Hg)	

.

ODSErvations: 1. All Sensors functioning Property 2. Wind Sensor tail Showing weard ReploEMENT Recommended 3. Ul Assistance from 220, Stight adjustment and to Precip. Selectsetson 12 1355 Audit Completed => All purmuckers Rised 2ery (Copred) = 0.00 w/m2 Reading #1 = 0.434 /0.865 H #2 = 0.432 /0.864 #3 = 0.431 0.864 Audit Sansor As Faud Zerrologopul = C.C. ~/m2 Humid: Fy: Hudit= 40.1% 1-10-06 (continued) Temp: Audit = 53.1 5-4750 : 53.6 Rending#1 = 0.419 Met TOWAY ON INC Solar Radiation Denson AS Found 1415 Leave Site 13560 1. Wind Speed Linearity = Passed Date on Excelsing) 2. Wind direction " = " Berometric Pressure : A volit = 25061" Hg = 650.49 metry 1-48:2/ Sensor = 369.2Mb = 652.0 mm Hg 10 % 01 3. Wind Speed Starting to rque = (AVC) 7 9/1001 Sighting Contras: 3450 Uniorrocked, Ded Chade True North Vone Orientation Rt. Bucket -57 77912 866 7102 = 84 7102 = 84 7105 = 85 7101 = 80 7102 = 80 7102 80 1205 Met Towar Offline 150 Arrive at Met Tower Corrected Compass = 0.00 6PS Cluck = 359-10 wind Steed/ Direction Trecipitation : 1-10-06

とんめ、 たいとないのの (の)

Project: Yerington/ARC AQ AM1 PM10 Site

Monitor: Tisch Environmental PM10 Hi-Vol Sampler Model # TE-6070D

Sampler Serial #	613	Та	Temp C	13.7	Orifice Serial #	w43
Orifice Serial #	1013	Та	Temp K	286.85	W43 slope (m)	0.97381
		Pa	Bp mm Hg	649.732	W43 int. (b)	-0.00137
Date: Janu	ary 9-10, 2006	Pa	Bp in Hg	25.58		

	Orifice	Qa (Orifice)	Chart	IC			
Point	Press. Drop (" H2O)	(1.02-1.24)	Response	Corrected	Linear Regression		
1	3.2	1.2220	37	24.6	Slope=	21.07347812	
2	3.0	1.1832	36	23.9	Intercept=	-1.1154	
3	2.7	1.1226	34	22.6	Corr. Coeff.=	0.9967	
4	2.6	1.1016	33	21.9	SFR=	1.2196	
5	2.4	1.0584	32	21.3	SSP=	37.0029	

Та

Ta Pa

Ра

Project: Yerington/ARC AQ AM1 PM10 DUP Site

Monitor: Tisch Environmental PM10 Hi-Vol Sampler Model # TE-6070D

Sampler Serial	#
Orifice Serial #	ŧ

616 1022

Date: January 9-10, 2006	

Temp C	12.9	Orifice Serial #	w43
Temp K	286.05	W43 slope (m)	0.97381
Bp mm Hg	649.732	W43 int. (b)	-0.00137
Bp in Hg	25.58		

	Orifice	Qa (Orifice)	Chart	IC		
Point	Press. Drop (" H2O)	(1.02-1.24)	Response	Corrected	Linear Regression	
1	2.2	1.0134	31	20.6	Slope=	26.83514709
2	2.4	1.0584	32	21.3	Intercept=	-6.8445
3	2.6	1.1016	34	22.6	Corr. Coeff.=	0.9947
4	2.9	1.1634	37	24.6	SFR=	8.0000
5	3.2	1.2220	39	25.9	SSP=	313.2336

Project: Yerington/ARC AQ AM1 TSP site

Monitor: Tisch Environmental TSP Hi-Vol Sampler Model # TE-5170D

Sampler Serial #		Та	Temp C	9.8	Orifice Serial #	w43
Orifice Serial #	1033	Та	Temp K	282.95	W43 slope (m)	0.97381
		Pa	BP mm Hg	649.732	W43 int. (b)	-0.00137
Date: Janua	ary 9-10, 2006	Pa	Bp in Hg	25.58		

	Orifice	Qa (Orifice)	Chart	IC			
Point	Press. Drop (" H2O)	(1.10-1.70)	Response	Corrected	Li	Linear Regression	
1	4	1.3660	39	25.9	Slope=	18.59464845	
2	4.2	1.3997	40	26.6	Intercept=	0.5018	
3	4.7	1.4806	42	27.9	Corr. Coeff.=	0.9992	
4	5.1	1.5423	44	29.2	SFR=	1.2031	
5	5.6	1.6161	46	30.6	SSP=	34.6592	

Project: Yerington/ARC AQ AM2 PM10 site

Monitor: Tisch Environmental PM10 Hi-Vol Sampler Model # TE-6070D

Sampler Serial # Orifice Serial #	<u>617</u> 1016	Ta Ta	Temp C Temp K	9.5 282.65	Orifice Serial # W43 slope (m)	w43 0.97381
		Pa	Bp mm Hg	649.732	W43 int. (b)	-0.00137
Date: Janua	ary 9-10, 2006	Pa	Bp in Hg	25.58		

	Orifice	Qa (Orifice)	Chart	IC		
Point	Press. Drop (" H2O)	(1.02-1.24)	Response	Corrected	Linear Regression	
1	3.1	1.1939	36	23.7	Slope=	23.14822554
2	3.0	1.1745	35	23.1	Intercept=	-4.0203
3	2.6	1.0935	32	21.1	Corr. Coeff.=	0.9966
4	2.4	1.0507	31	20.4	SFR=	1.2018
5	2.3	1.0286	30	19.8	SSP=	36.0824

Project: Yerington/ARC AQ AM2 TSP site

Monitor: Tisch Environmental TSP Hi-Vol Sampler Model # TE-5170D

Sampler Serial #	
Orifice Serial #	

Date: January 9-10, 2006

NA 1034

Та	
Та	
Ра	I
Ра	

Temp C	9.5	Orifice Serial #	w43
Temp K	282.65	W43 slope (m)	0.97381
BP mm Hg	649.732	W43 int. (b)	-0.00137
Bp in Hg	25.58		

	Orifice	Qa (Orifice)	Chart	IC			
Point	Press. Drop (" H2O)	(1.10-1.70)	Response	Corrected	Li	Linear Regression	
1	3.7	1.3042	38	25.1	Slope=	23.25564999	
2	4.3	1.4059	41	27.0	Intercept=	-5.3475	
3	4.9	1.5007	45	29.7	Corr. Coeff.=	0.9941	
4	5.2	1.5459	47	31.0	SFR=	1.2018	
5	5.6	1.6042	48	31.7	SSP=	34.2658	

Project: Yerington/ARC AQ AM3 PM10 site

Monitor: Tisch Environmental PM10 Hi-Vol Sampler Model # TE-6070D

Sampler Serial #	618	Та	Temp C	9.1	Orifice Serial #	_
Orifice Serial #	1018	Та	Temp K	282.25	W43 slope (m)	0.97381
		Pa	Bp mm Hg	653.034	W43 int. (b)	-0.00137
Date: Janu	ary 9-10, 2006	Pa	Bp in Hg	25.71		

	Orifice	Qa (Orifice)	Chart	IC			
Point	Press. Drop (" H2O)	(1.02-1.24)	Response	Corrected	Linear Regression		
1	3.3	1.2185	39	25.6	Slope=	20.0859134	
2	3.0	1.1707	37	24.3	Intercept=	1.0636	
3	2.7	1.1107	36	23.7	Corr. Coeff.=	0.9901	
4	2.5	1.0689	34	22.4	SFR=	1.1940	
5	2.3	1.0253	33	21.7	SSP=	38.0974	

Project: Yerington/ARC AQ AM3 TSP site

Monitor: Tisch Environmental TSP Hi-Vol Sampler Model # TE-5170D

Sampler Serial #	
Orifice Serial #	

Date: January 9-10, 2006

NA 1014

Та	Temp C
Та	Temp K
Ра	BP mm H
Ра	Bp in Hg

		_	
С	9.4	Orifice Serial #	w43
Κ	282.55	W43 slope (m)	0.97381
Hg	653.034	W43 int. (b)	-0.00137
Ha	25.71		

	Orifice	Qa (Orifice)	Chart	IC			
Point	Press. Drop (" H2O)	(1.10-1.70)	Response	Corrected	Li	Linear Regression	
1	2.8	1.1311	35	23.0	Slope=	19.72410619	
2	3.1	1.1901	37	24.3	Intercept=	0.7259	
3	3.7	1.3000	40	26.3	Corr. Coeff.=	0.9995	
4	4.1	1.3684	42	27.6	SFR=	1.1953	
5	5.1	1.5260	47	30.9	SSP=	36.9450	

Project: Yerington/ARC AQ AM4 PM10 site

Monitor: Tisch Environmental PM10 Hi-Vol Sampler Model # TE-6070D

Sampler Serial #	619	Та	Temp C	3.1	Orifice Serial #	w43
Orifice Serial #	1012	Та	Temp K	276.25	W43 slope (m)	0.97381
		Pa	Bp mm Hg	653.034	W43 int. (b)	-0.00137
Date: Janua	ary 9-10, 2006	Pa	Bp in Hg	25.71		

	Orifice	Qa (Orifice)	Chart	IC			
Point	Press. Drop (" H2O)	(1.02-1.24)	Response	Corrected	Linear Regression		
1	3.3	1.2147	39	25.4	Slope=	23.08031607	
2	3.1	1.1774	37	24.1	Intercept=	-2.8935	
3	2.8	1.1190	35	22.8	Corr. Coeff.=	0.9943	
4	2.6	1.0784	34	22.1	SFR=	1.1686	
5	2.4	1.0253	32	20.8	SSP=	37.0211	

Project: Yerington/ARC AQ AM4 TSP site

Monitor: Tisch Environmental TSP Hi-Vol Sampler Model # TE-5170D

Sampler Serial #	
Orifice Serial #	

Date: January 9-10, 2006

NA 1015

Temp C	3.1	Orifice Serial #	w43
Temp K	276.25	W43 slope (m)	0.97381
BP mm Hg	653.034	W43 int. (b)	-0.00137
Bp in Hg	25.71		

	Orifice	Qa (Orifice)	Chart	IC			
Point	Press. Drop (" H2O)	(1.10-1.70)	Response	Corrected	Li	Linear Regression	
1	2.9	1.1388	35	22.8	Slope=	21.46164197	
2	3.5	1.2509	39	25.4	Intercept=	-1.6413	
3	4.1	1.3538	42	27.3	Corr. Coeff.=	0.9990	
4	4.9	1.4799	46	29.9	SFR=	1.1686	
5	5.4	1.5535	49	31.9	SSP=	36.0380	

Та

Ta Pa

Ра

Project: Yerington/ARC AQ AM5 PM10 site

Monitor: Tisch Environmental PM10 Hi-Vol Sampler Model # TE-6070D

Sampler Serial #	614	Та	Temp C	7.7	Orifice Serial #	w43
Orifice Serial #	1019	Та	Temp K	280.85	W43 slope (m)	0.97381
		Pa	Bp mm Hg	653.034	W43 int. (b)	-0.00137
Date: Janu	ary 9-10, 2006	Pa	Bp in Hg	25.71		

	Orifice	Qa (Orifice)	Chart	IC		
Point	Press. Drop (" H2O)	(1.02-1.24)	Response	Corrected	Linear Regression	
1	2.3	1.0227	32	21.0	Slope=	20.20337557
2	2.6	1.0873	34	22.3	Intercept=	0.3414
3	2.8	1.1182	35	23.0	Corr. Coeff.=	0.9993
4	2.9	1.1482	36	23.6	SFR=	1.3279
5	3.1	1.1871	37	24.3	SSP=	41.4284

Project: Yerington/ARC AQ AM5 TSP site

Monitor: Tisch Environmental TSP Hi-Vol Sampler Model # TE-5170D

Sampler Serial #	
Orifice Serial #	

NA	
1017	

Temp C	7.7	Orifice Serial #	w43
Temp K	280.85	W43 slope (m)	0.97381
BP mm Hg	653.034	W43 int. (b)	-0.00137
Bp in Hg	25.71		

Date: January 9-10, 2006

	Orifice	Qa (Orifice)	Chart	IC		
Point	Press. Drop (" H2O)	(1.10-1.70)	Response	Corrected	Linear Regression	
1	3.1	1.1871	38	24.9	Slope=	19.50137328
2	3.5	1.2613	41	26.9	Intercept=	2.0185
3	3.9	1.3313	42.5	27.9	Corr. Coeff.=	0.9962
4	4.3	1.3979	45	29.5	SFR=	1.1881
5	5.3	1.5518	49	32.1	SSP=	38.4078

Ta Ta Pa

Ра

Project: Yerington/ARC AQ AM6 PM10 site

Monitor: Tisch Environmental PM10 Hi-Vol Sampler Model # TE-6070D

Sampler Serial #	615	Та	Temp C	9.8	Orifice Serial #	w43
Orifice Serial #	1020	Та	Temp K	282.95	W43 slope (m)	0.97381
		Pa	Bp mm Hg	654.812	W43 int. (b)	-0.00137
Date: Janua	ary 9-10, 2006	Pa	Bp in Hg	25.78		

	Orifice	Qa (Orifice)	Chart	IC		
Point	Press. Drop (" H2O)	(1.02-1.24)	Response	Corrected	Linear Regression	
1	2.4	1.0472	34	22.3	Slope=	23.19629628
2	2.6	1.0899	35	23.0	Intercept=	-2.0529
3	2.8	1.1309	37	24.3	Corr. Coeff.=	0.9930
4	3.0	1.1706	38	25.0	SFR=	1.1937
5	3.1	1.1899	39	25.6	SSP=	39.0004

Project: Yerington/ARC AQ AM6 TSP site

Monitor: Tisch Environmental TSP Hi-Vol Sampler Model # TE-5170D

Sampler Serial #	
Orifice Serial #	

Date: January 9-10, 2006

NA 1021

Temp C	9.8	Orifice Serial #	w43
Temp K	282.95	W43 slope (m)	0.97381
BP mm Hg	654.812	W43 int. (b)	-0.00137
Bp in Hg	25.78		

	Orifice	Qa (Orifice)	Chart	IC		
Point	Press. Drop (" H2O)	(1.10-1.70)	Response	Corrected	Linear Regression	
1	3.5	1.2643	38	25.0	Slope=	19.89048839
2	3.9	1.3345	40	26.3	Intercept=	-0.1468
3	4.2	1.3848	42	27.6	Corr. Coeff.=	0.9979
4	4.7	1.4648	44	28.9	SFR=	1.1937
5	4.9	1.4956	45	29.6	SSP=	35.8968

Та

Та

Ра

Ра