Measurement of the ttbar Cross Section Using Kinematics

Blessing- Aug. 07, 2003

RDE, Presenting for the OSU/Fermilab/Rutgers Group

Richard Hughes, Radu Marginean, Evelyn Thomson, Brian Winer The Ohio State University

Robin Erbacher, Rob Roser

Fermilab

John Conway

Rutgers University

• $\Delta \phi$ cut related questions:

-The ratio of electrons/muons is different for njet=1,2 vs 3,4.

- Is this caused by the $\Delta \phi$ cut?
 - •NO. The ratio is slightly modified by the $\Delta \phi$ cut since this cut removes more electrons than muons (more background in the electrons).

-The $\Delta \phi$ cut seems to remove more events than you would expect. Is this true?

•NO. Using the efficiency of the $\Delta \phi$ cut for signal (W's) and background, and the predicted amount of background in each jet multiplicity bin, we can predict how many events should pass the $\Delta \phi$ cut. Things are as expected.

Njet	Obs Muons	Pred Muons	Obs Elec	Pred Elec
1	4474	4469.2	6105	6026.7
2	704	635.1	913	944.0
3	80	92.1	153	162.2
4	22	23.7	53	52.8 ²

•The Jet Et scale systematic looks large. Split out effects.

- -To make sure we are doing this correctly, we have exchanged extensive emails with te jet corrections group (Anwar and Beate)
- -The dominant effects come from the Relative, Scale and Absolute corrections. True in both the 3 and the 4 jets samples.
- -These dominant effects all contribute about equally to the final results of approximately 30%.

•KS Test for goodness of fit looks flawed.

-It was flawed. We fixed this by using pseudo-experiments (PEs), following the suggestion of Igor Volobouev. We compared the KS distance observed in our data fit to that expected from PEs using the fitted mix of signal plus background. See tables later in talk. Conclusions reached previously still hold: fits look poor in W+1 jet, but look good in W+2 and W+3 jet cases.

•Fit questions:

- -Let the QCD float: Done, answer hardly changes.
- -Remove ttbar from signal fits: Done: KS goodness of fit indicates poorer fit without ttbar in both 3 and 4 jet cases.

Add a systematic for MET vs ISO

-Done. Used method for W->enu cross section.

Add a systematic for Q**2

Done. Used ALPGEN Mw**2 (instead of default Mw**2+Sum(Pt**2)).
•A large effect in the W+>3 jet bvin (14% systematic), much smaller in the W+>=4 jet bin (0.31%). Expected fraction of ttbar is approximately twice as large in >=4 jet sample.

Smear Jet Et's.

-Did not do this for lack of time. Remember that the comparisons of Ht, Et(jet 1,2,3), Met, etc look good in the W+2,3 jet bins with the default MC, and we include a substantial systematic for th Jet Et scale already. However, we will investigate this in the near future.

Changes Since Preblessing

List of improvements

Changes affecting fit results:

- Full final good run list used (added 2 pb⁻¹)
- Fix typo in curvature correction
- •Include all the EWK backgrounds in the shape for fit Cross Checks:
- •Use modified KS test to compare data to MC
- Correct MET v. Iso for W-like events, obtain normalization systematic
- Divide jet correction systematic into components
- Estimate the uncertainty due to Q² scale
- Estimate the shape uncertainty due to PDFs

We have a document detailing answers to questions raised during preblessing. Answers are also included throughout updated **CDF6206**

Measurement Approach

Measure top cross section using kinematic and event shape variables to discriminate ttbar from background

> Initially: use a single variable to fit data to W+jets, QCD, and ttbar. H_{τ} is our main discriminator but have examined others.

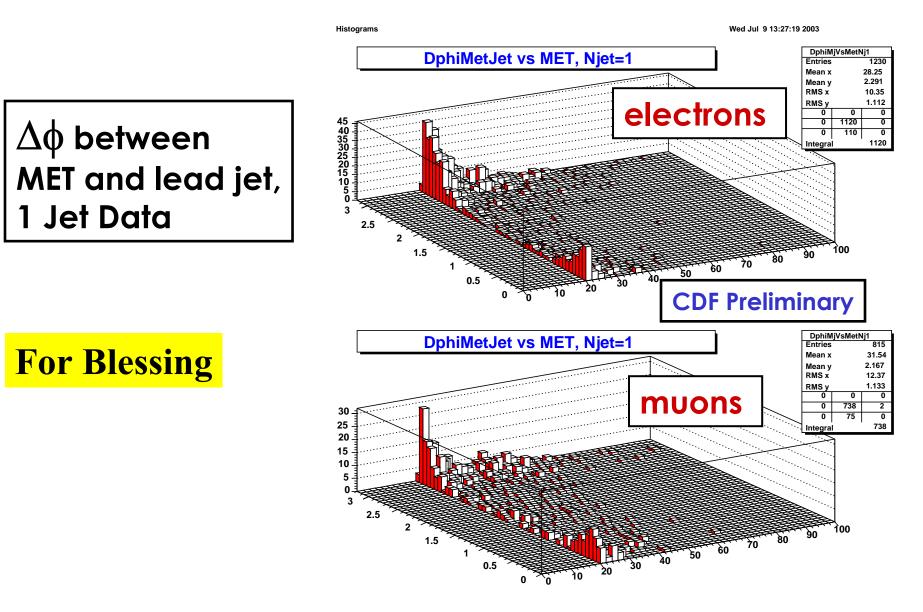
Eventually: More sophisticated method using multivariate techniques and neural networks.

Determine the tt fraction, then extract the top cross section

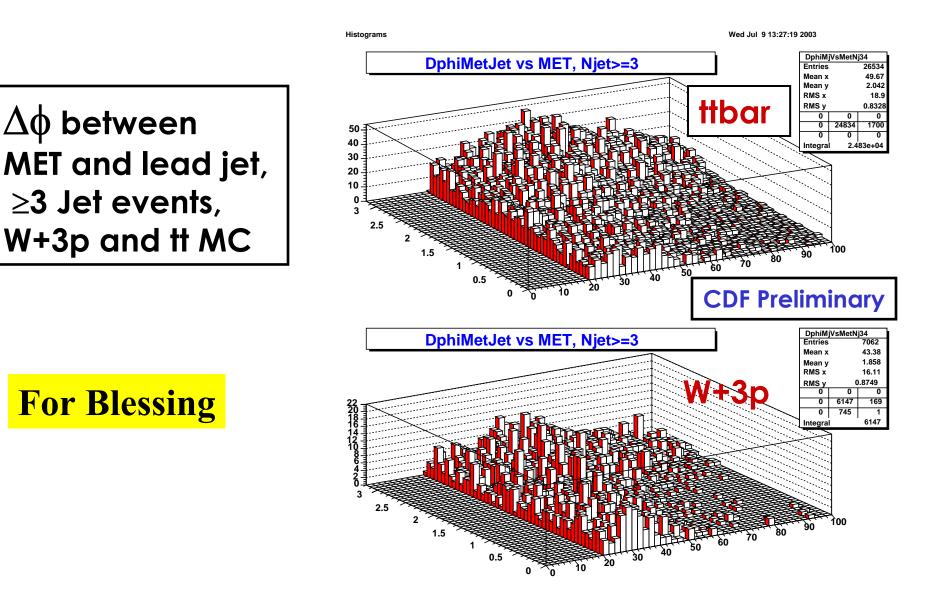
Key Analysis Components

- Determine QCD contribution using MET v. isolation
- Validate QCD model, evaluate W+Jets backgrounds
- Fit signal region for W+ \geq 3 Jet and W+ \geq 4 Jet events
- Determine systematic errors using pseudo experiments
- Extract the top cross section

Data and MC Samples


- Data: Standard lepton sample from Evelyn
- Backgrounds:
 - -W+Jets Monte Carlo: ALPGEN W+n parton
 - -QCD
 - •Non-isolated (I>0.2) electrons/muons
 - Aside from isolation, cuts the same (MET, lepton ID, N jets)
- •Top
 - -Pythia MC (175)
 - -Herwig MC (175): systematic

–Systematic studies use Pythia for ISR and top mass $(170,180 \text{GeV}/\text{c}^2)$ studies


Event Selection

- Require good run and CEM, CMUP, CMX trigger path
- Lepton ID requirements: Standard (CDF Note 6574)
- Require "N" reconstructed jets with:
 - Corrected $E_T > 15.0 \text{ GeV}$
 - | Detector η | < 2.0
- Require event MET >20.0 GeV (after corrections)
- \blacktriangleright If 20.0 < MET < 30.0 GeV, also require:
 - 0.5 < ∆\(\$\phi\$ (MET-Leading Jet) < 2.5
- Signal Samples: \geq 3 Jets and \geq 4 Jets
 - Will also investigate 3 (only) Jets sample

$\Delta \phi$ v. MET for non-isolated leptons

$\Delta \phi$ v. MET ttbar and W+jets MC

Sensitivity to $\Delta \phi$ Cut

Use PE's to determine the utility of the $\Delta \phi$ cut as well as the sensitivity to it.

- This cut reduces our background by ~factor of 2
- Does it help statistical precision?
- Does it help systematic?
 - We have two models for background: non-isolated leptons and conversions
 - Sample from one, and fit using the other to set the systematic.

Sensitivity to and Utility of $\Delta \phi$ Cut

\rightarrow PE's indicate this is an efficient cut choice \leftarrow

Sample	Observed Data Events (no trigger req.)	Expected ttbar events (7pb xsec)	Expected Precision on Fit fraction (stat only)	Relative shift of ttbar fraction
W+≥3, no ∆ ∳ c ut	391	71	28 ± 8 %	32%
W+≥3, with ∆∳ cut	346 (predicted)	67	28 ± 8 %	16%

Including the $\Delta \phi$ **cut in event selection...**

- Has no impact on the expected statistical precision
- Reduces the systematic effect due to poor background modeling by ~factor of 2.

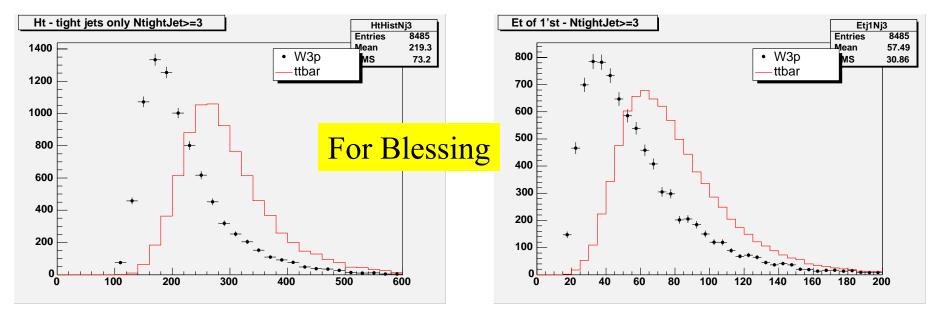
Observed/Expected Event Yield

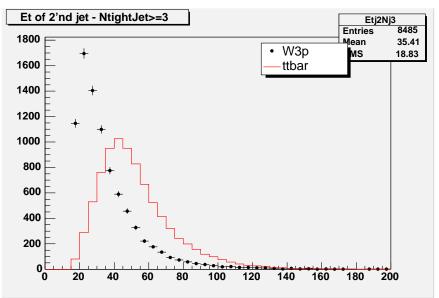
Jets	Data Electrons	Data Muons	Data Total	<i>tī</i> Fraction	<i>tī</i> Events
0	59655	44737	101663	0.2%	0.2
1	6105	4474	10359	4.0%	3.4
2	913	704	1600	18.5%	16.1
3	153	80	234	34.5%	29.7
4	39	18	57	32.0%	27.6
≥5	14	3	17	10.6%	9.1

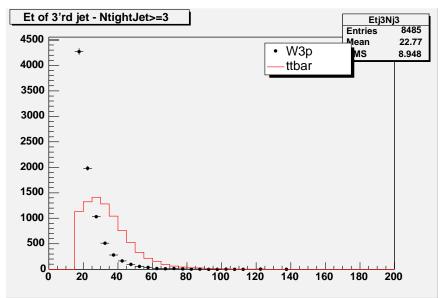
Expected QCD Background Fraction

W+"n" jets	Electron bkgnd	Muon bkgnd	Total bkgnd
1	3.8 ± 0.2%	2.9± 0.2%	3.4 ± 0.3%
2	6.1 ± 0.5 %	$2.0\pm0.2\%$	$4.3\pm0.5\%$
≥3	7.7 ± 1.4 %	3.1 ± 0.9%	6.3 ± 1.7%

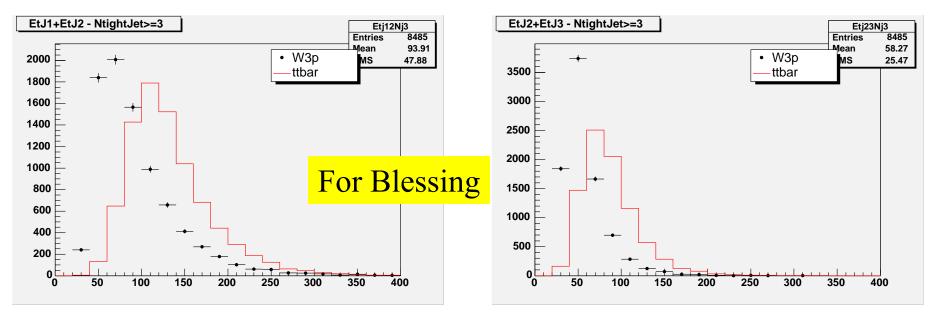
For Blessing

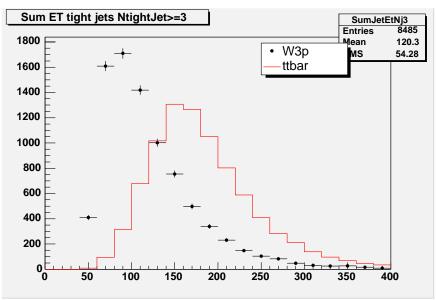

Determine QCD background normalization using MET vs Isolation

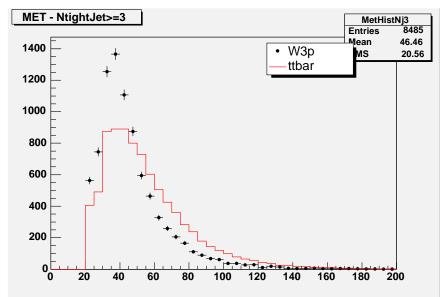

Discriminating Variables

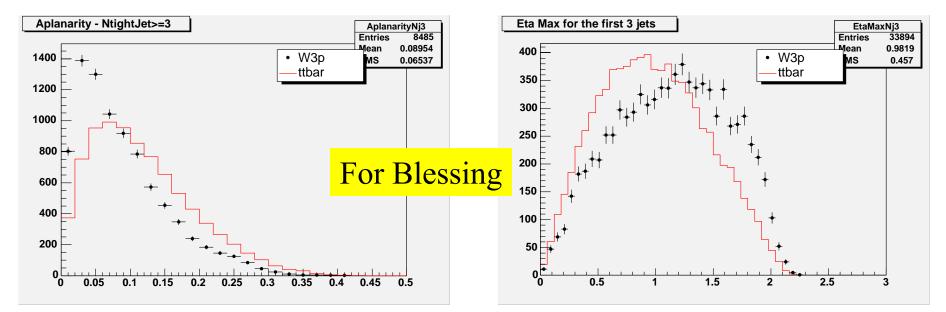

- Use a single input neural network to discriminate ttbar from W+jets.
- <u>Table</u>: % of correct classifications possible using each variable.
- E.g: For E_T of the 3rd leading jet, its possible to correctly classify 74.4% of a sample of W+jets and ttbar. For sphericity, only 60% can be correctly classified.
- Many variables were studied. Shown are just the best E_T based and shape-based variables.

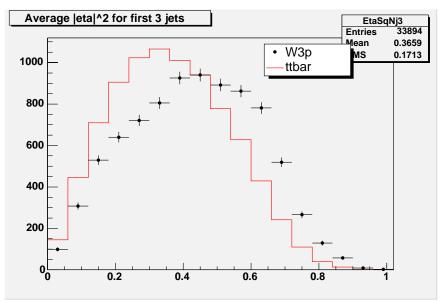
	HERWIG tt ALPGEN W+jets	PYTHIA tt ALPGEN W+jets
E _⊤ (jet 3)	74.4 ± 0.5	73.7 ± 0.5
H _T	73.9 ± 0.5	72.5 ± 0.5
E _T (jet 2 + jet 3)	73.9 ± 0.5	73.4 ± 0.5
E _T (jet 2)	73.7 ± 0.5	71.8 ± 0.5
min(m _{jj})	72.3 ± 0.6	71.0 ± 0.6
E _T (jet 1 + jet 2)	71.0 ± 0.6	71.0 ± 0.6
event inv. mass	70.8 ± 0.6	70.1 ± 0.6
E _T (jet 4)	69.4 ± 0.6	69.5 ± 0.6
E _T (jet 1)	67.7 ± 0.6	67.1 ± 0.6
sum dijet mass	66.6 ± 0.6	64.9 ± 0.6
$\Sigma E_z / \Sigma E_T$	63.3 ± 0.6	64.0 ± 0.6
aplanarity	59.2 ± 0.6	60.2 ± 0.6
min jet sep.	60.3 ± 0.6	60.6 ± 0.6
sphericity	60.0 ± 0.6	59.6 ± 0.6
missing E_{T}	57.7 ± 0.6	55.7 ± 0.6 16

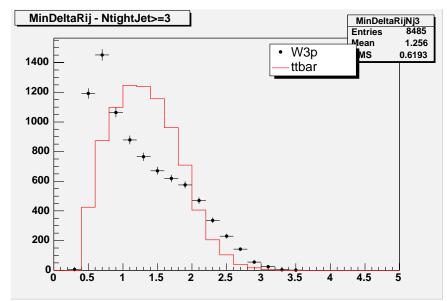

Kinematic Variables: ttbar v. W+3p MC

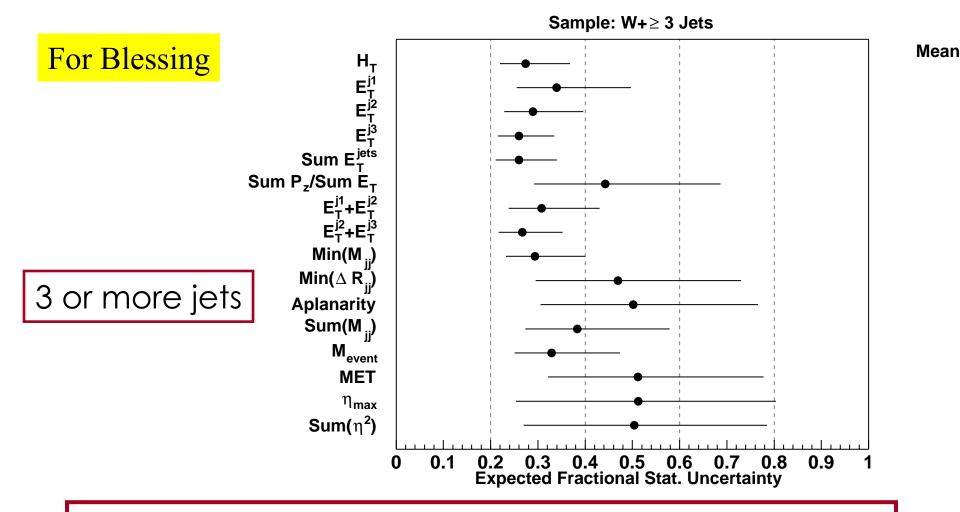


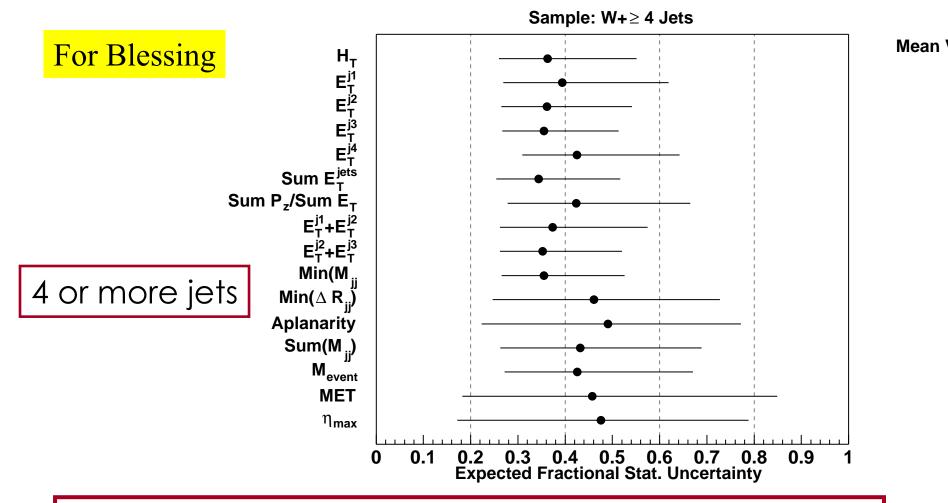



More Kinematics: ttbar v. W+3p MC






Event Shape Variables: ttbar v. W+3p MC



Sensitivity to Various Event Variables

Points are the mean returned uncertainties from fitting the PE's. Error bars represent the 1 sigma range of possible returned uncertainty from the fit.

Sensitivity to Various Event Variables

Points are the mean returned uncertainties from fitting the PE's. Error bars represent the 1 sigma range of possible returned uncertainty from the fit.

Validating the Background MC

<u>Main background</u>: W+Jets, modeled by ALPGEN W+n parton Monte Carlo.

→ Validate this MC in a topdepleted region: W+1,2 jet data.

<u>Upper plot</u>: observed W+jets data (red) along with a prediction for the amount of ttbar (blue), as a function of jet multiplicity.

Lower plot: The top/W ratio is about 1:1 in the 4 and 5 jet bins, but only about 12% in the W+3 jet bin.

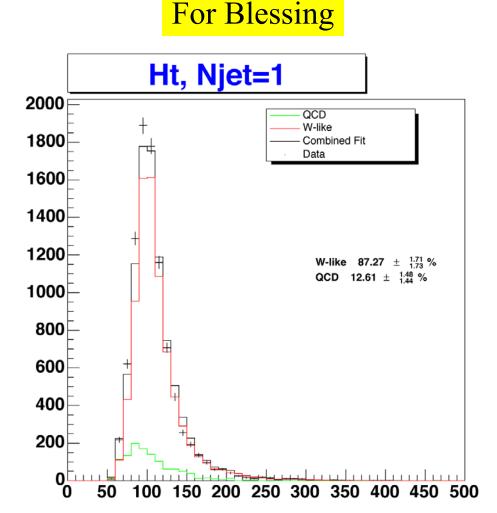
For Blessing

NietHist **Good W Njet Distribution** 0.130 10[°] 0.406 Underflo 10 Overflo 1.328e+ 10 10 10 1 Ratio ignal to Backgrou Entries 4 829 0.7 RMS 0.7112 Underflow 0.6 Overflov 1 109 0.5 0.4 0.3 0.2 0.1 10

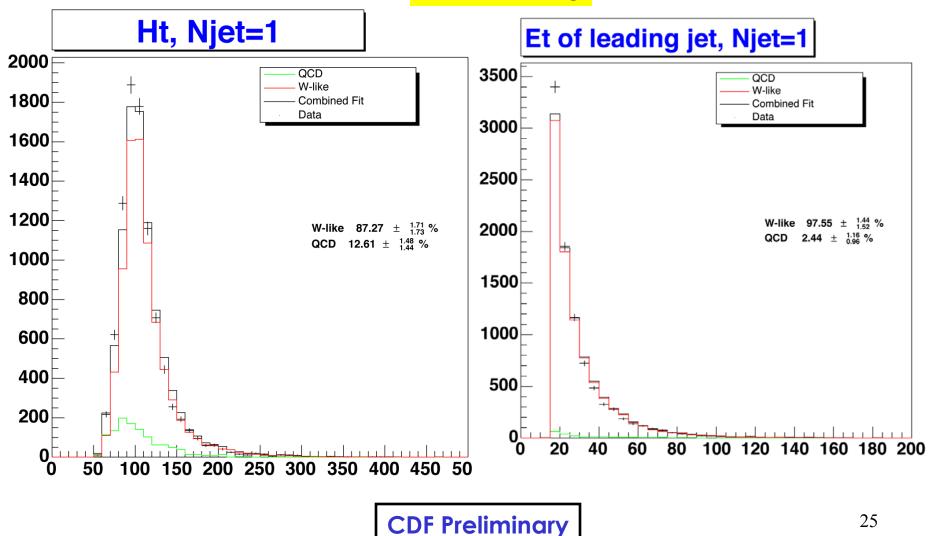
Testing the Model

Use the W+1, 2, and 3 jet data samples to compare to the Monte Carlo.

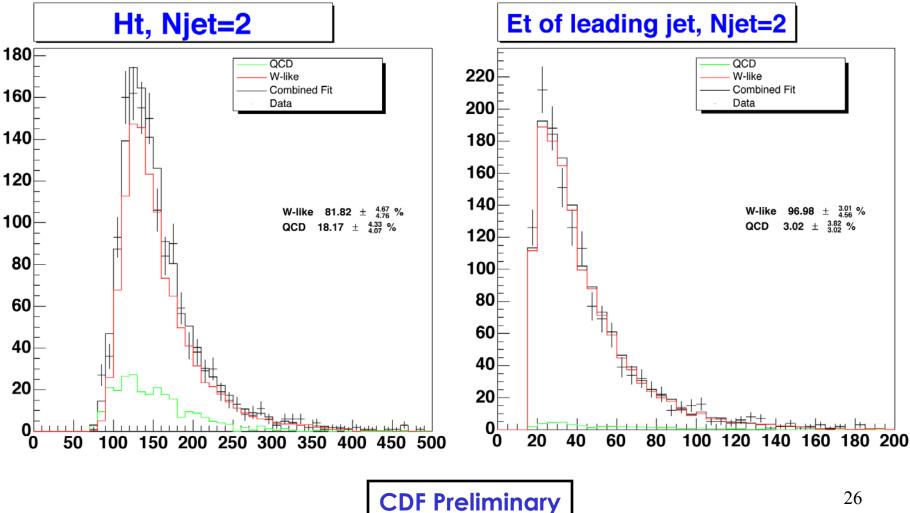
- \succ In the W+1 jet sample we fit using:
 - ALPGEN W+1 parton, plus non-isolated leptons
- In W+2 jet sample:
 - ALPGEN W+2 parton
- \geq In the W+3 jet sample, we fit using:
 - ALPGEN W+3 parton, Herwig ttbar, plus non-isolated leptons

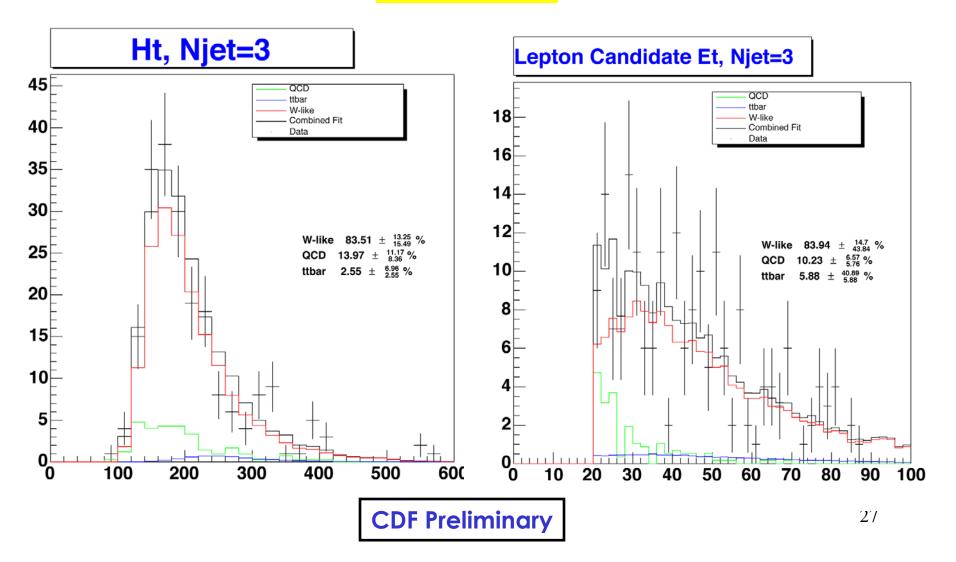

 \succ In the W+>3 jets and W+>4 jets fits, the $\Delta \phi$ cut is imposed.

Data/ MC Comparisons


• <u>Problem</u>: Examining the H_T distribution in the W+1 jet data: the fit undershoots H_T in the low end, and overshoots H_T at the high end.

How to quantify the difference?


- Kolmogorov-Smirnov statistic is biased in ROOT
- Modify procedure:
- Flatten KS distribution using integral distribution.


Distributions for 1 Jet Bin

Distributions for 2 Jet Bin

Distributions for 3 Jet Bin

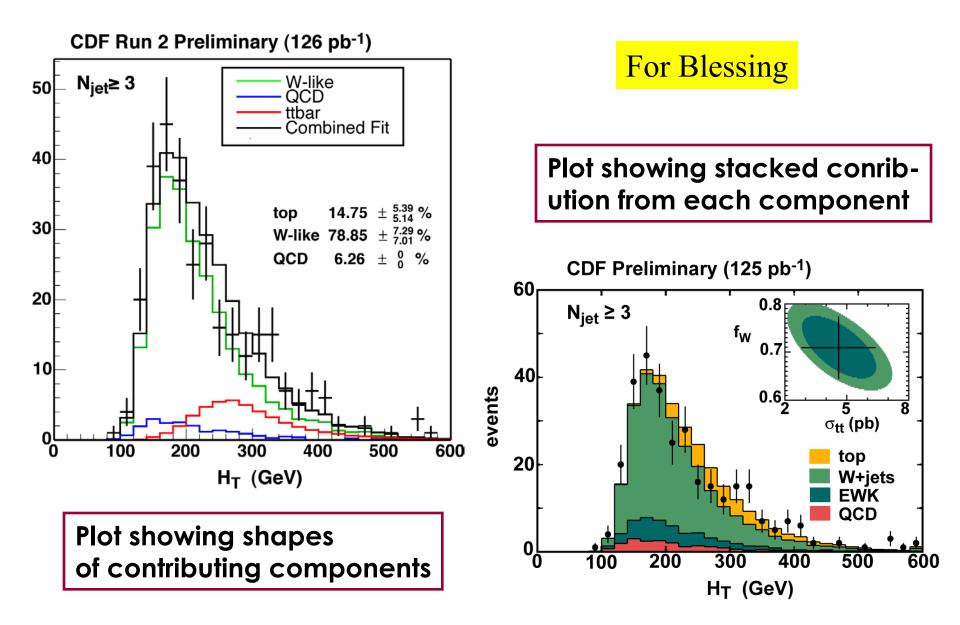
Comparison Results: 1,2,3 Jet Bins

Variable	1 Jet Bin	2 Jet Bin	3 Jet Bin
Ht	0%	42.4%	47.6%
LeptonEt	0%	65.8%	71.4%
MET	0%	24.0%	86.3%
Et Jet 1	11.4%	1 4 .1%	45 .1%
Et Jet 2	N/A	90.0 %	98.9%
Et Jet 3	N/A	N/A	74.5%

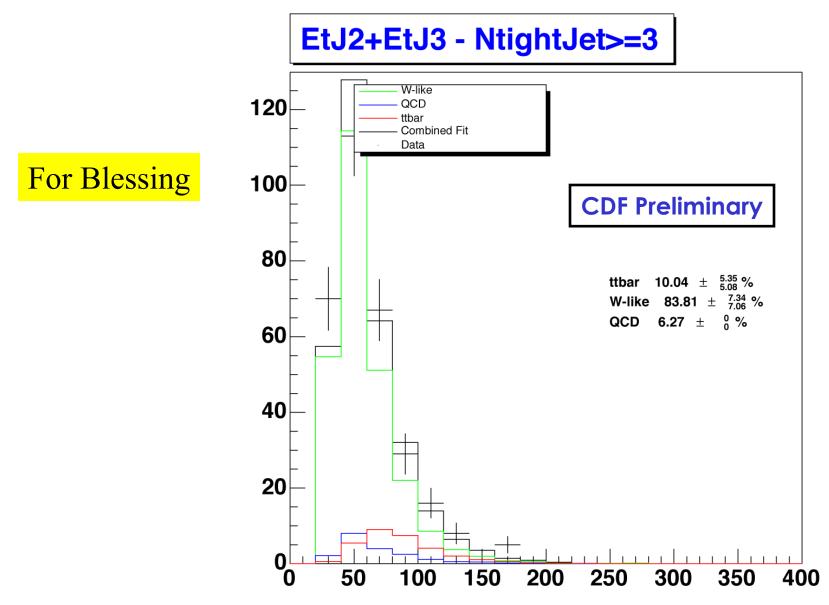
Results of the modified KS test for a subset of the variables in the W+1, W+2, and W+3 jet bins are shown above. "QCD" Background in these fits is the non-isolated lepton sample.

 <u>Conclusions</u>: While the KS tests shown at preblessing to attempt to quantify agreement between data and MC were skewed, conclusions remain the same:

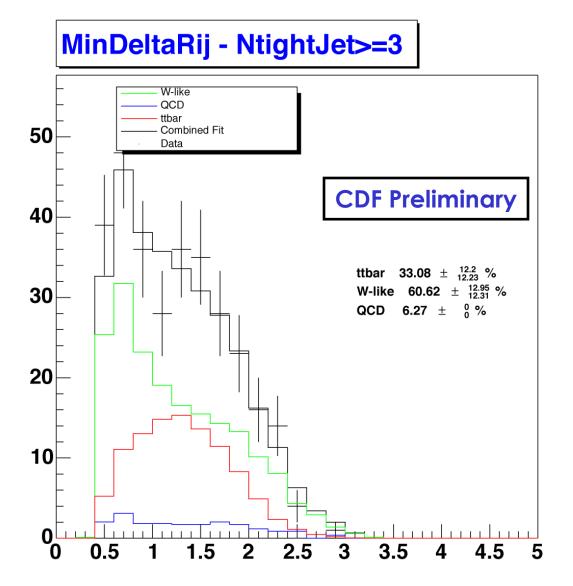
Although the fits look poor in the W+1 jet sample, in the W+2 and W+ 3 jet bins a mixture of W+np MC, ttbar MC, and non-isol leptons describe the data well.

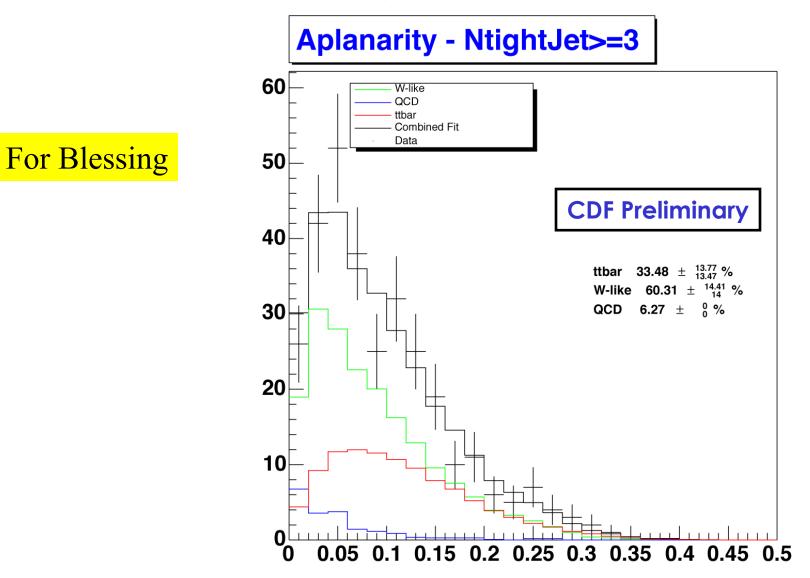

Fitting the Signal Region

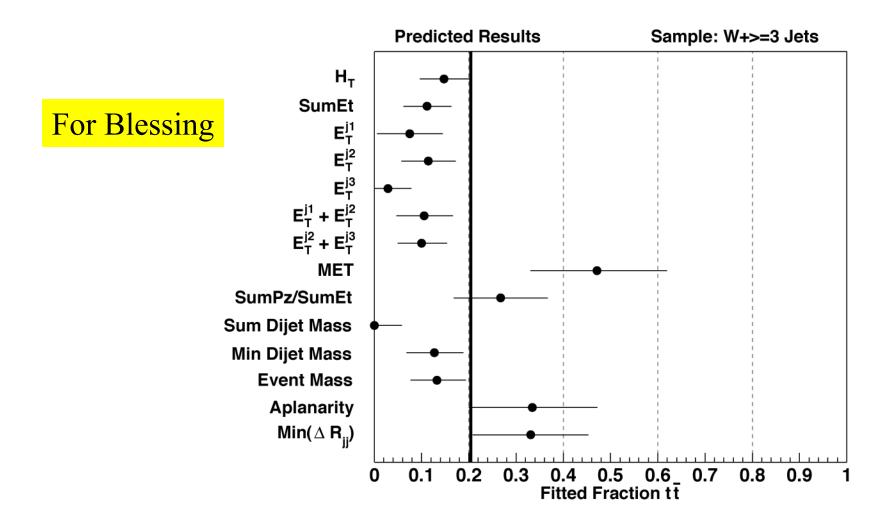
Now we fit in the W+ \geq 3 and W+ \geq 4 jet sample:

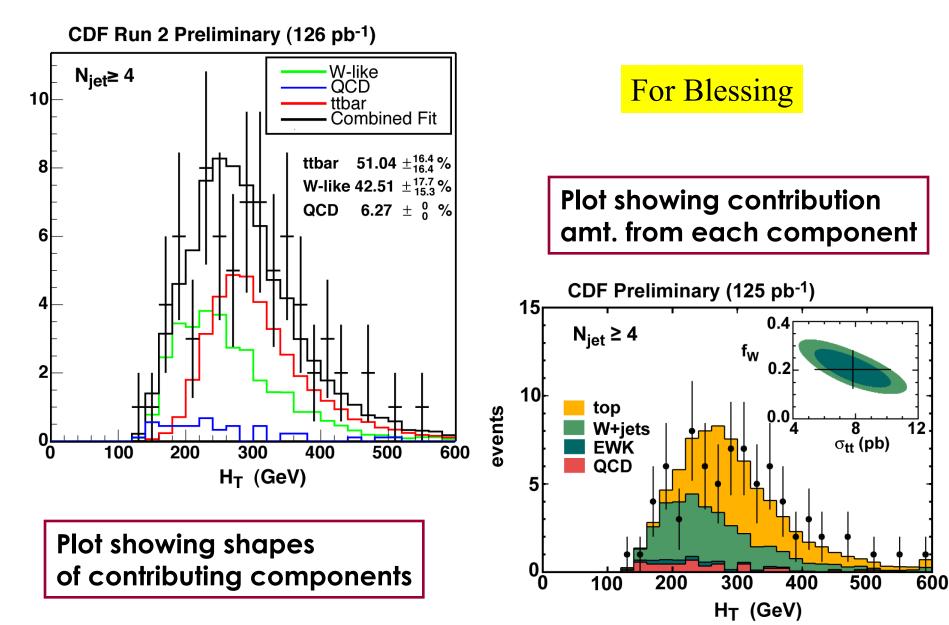

• The fit uses

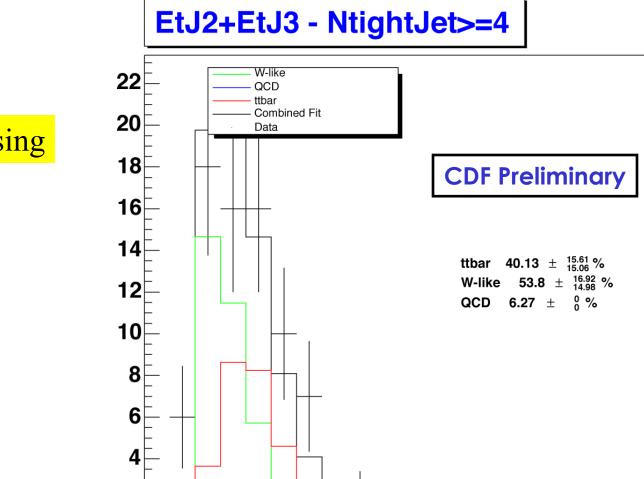
- Pythia ttbar 175 to model the top contribution (float)
- ALPGEN W+3p MC to model W+jets for the W+ \geq 3 jet sample (float)
- ALPGEN W+4p MC to model W+jets for the W+ \geq 4 jet sample (float)
- non-isolated leptons as the QCD background
- Fix QCD bkgnd to expectation from MET vs Iso (6.3%)
- Other backgrounds in fit: WW+1p, W $\rightarrow \tau v$ +2p, Z \rightarrow ee/µµ/ $\tau \tau$ +2p, WZ+0p, WIvbb+1p, single top.
 - These bkgnds add to ~11% and have similar shape to W+jets (at least for H_T).
 - We fix this shape within the W+3p shape
- Our primary variable is H_T, but we investigate the fit fraction stability for the other kinematic variables. ²⁹

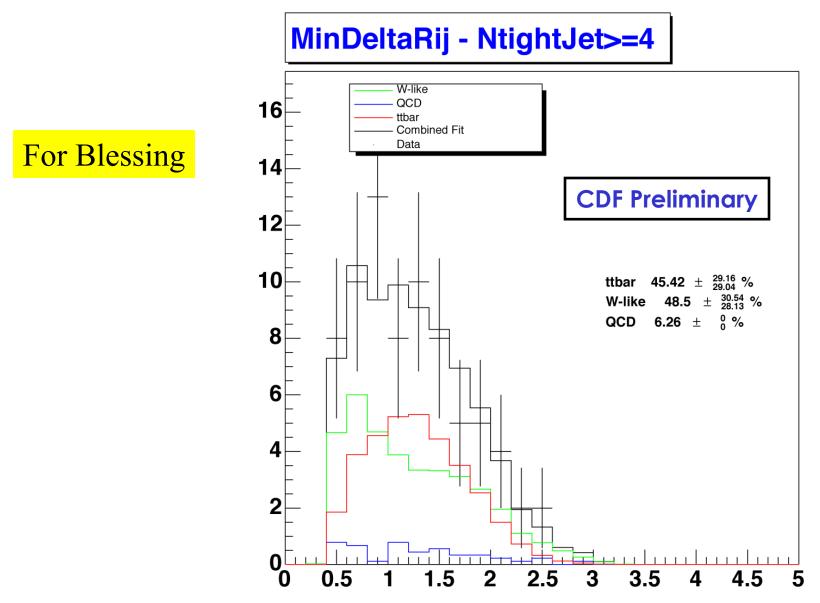

H_T Fit to Signal Region, ≥ 3 Jets

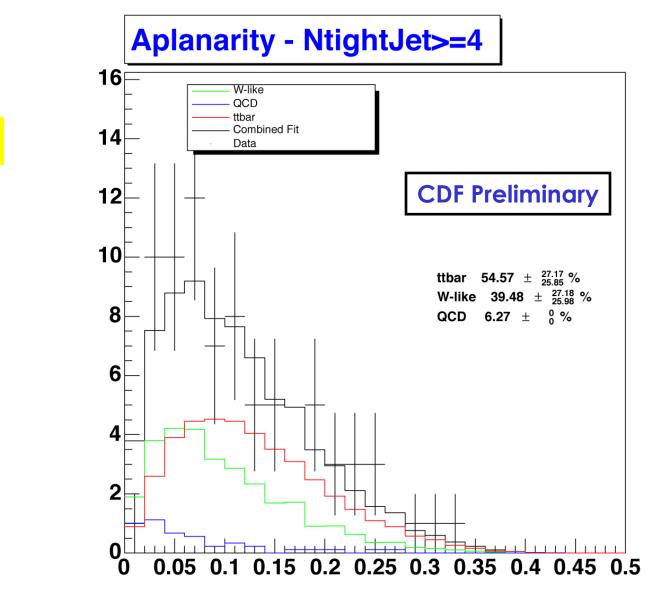

ET(2) + ET(3) Fit, ≥3 Jets


Min(DeltaR jj) Fit, ≥3 Jets

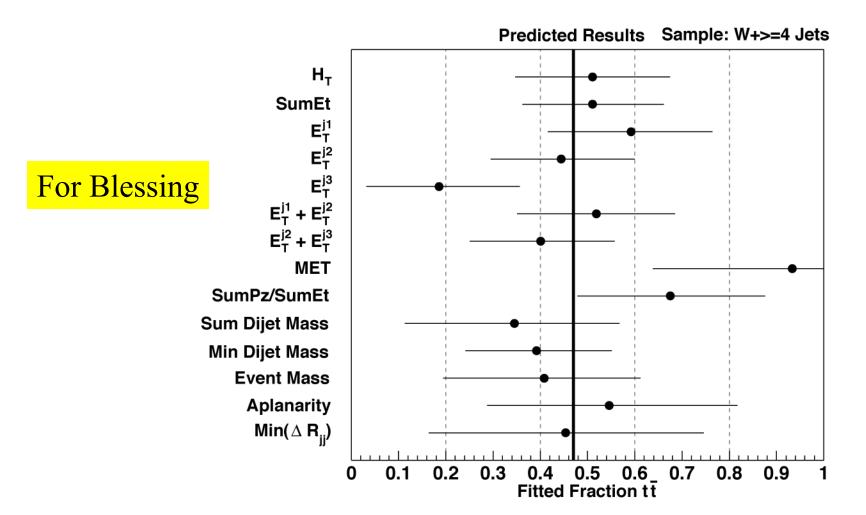

Aplanarity Fit, ≥3 Jets


Fit Results for the W+≥3 Jets Sample


H_T Fit to Signal Region, \geq 4 Jets


ET(2) + ET(3) Fit, ≥4 Jets

Min(DeltaR jj) Fit, ≥4 Jets

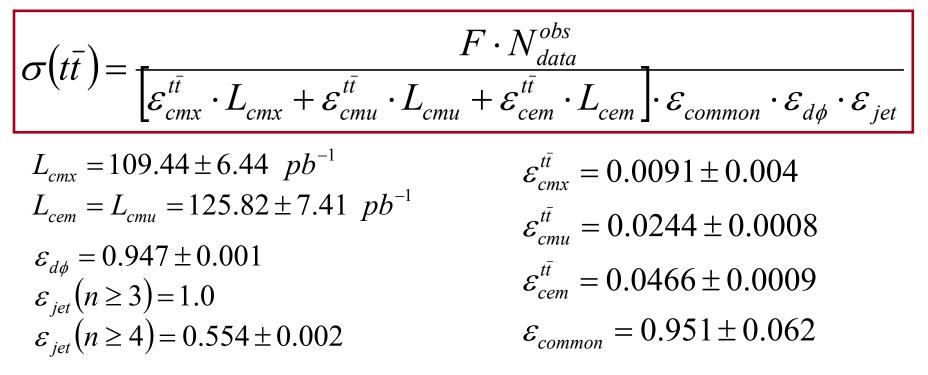


Aplanarity Fit, ≥4 Jets

For Blessing

Fit Results for the W+≥4 Jets Sample

Summary of Fit Fraction Results


Our final result for the cross section is the ttbar fraction taken from the H_T fits.

• fraction of ttbar in W+ \geq 3 Jets –Fraction = 0.148 \pm 0.053

• fraction of ttbar in W+>4 Jets –Fraction = 0.510 ± 0.164

CDF Preliminary

Determination of the Cross Section

For Blessing	Sample	Data Observed	Fraction	Cross Section
	W+≥3 Jets	308	0.148 ± 0.053	5.1 ± 1.8 pb
CDF Preliminary	W+≥4 Jets	75	0.510 ± 0.164	7.7 ± 2.4 pb

Studies of Systematic Effects

Systematics are studied to determine impact on:

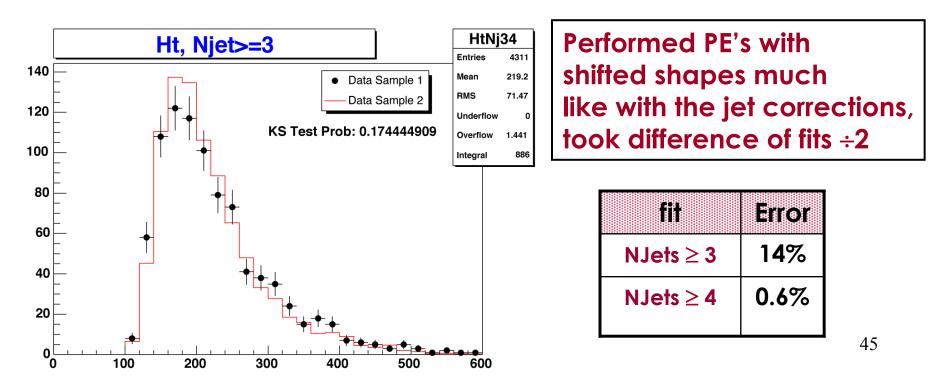
- Fit result due to shape difference in H_{T}
- Acceptance
- Systematics examined:
 - Jet Energy scale: method prescribed by Jet Corrections Group
 - Generator for ttbar: Determine using Pythia vs Herwig
 - Top Mass: Determine using Pythia (170-180 GeV/c²)
 - Q² for Background Model: AlpGen Q²= $M_w^2 v$. Q² = $M_w^2 + \Sigma P_T^2$ (Jets)
 - Lepton ID: From CDF6574
 - PDF's: From CDF6574 and from shape study
 - Background model: conversions vs non-isolated leptons
 - ISR: on/off using Pythia ttbar
- Method: use PE's

Jet Energy Scale Systematics

Data	Shape Error %	Acceptance Error %	Total Error %	
relative	0.090	0.009	0.099	Table for
cal stability	0.046	0.004	0.049	NJets \geq 3
energy scale	0.129	0.012	0.141	
MC	Shape Error %	Acceptance Error %	Total Error %	
Relative	0.105	0.016	0.121	
energy scale	0.033	0.017	0.181	
mult. Int.	0.00	0.00	0.00	
absolute	0.022	0.015	0.120	Result for
000	0.005	0.020	0.046	NJets \geq 4:
splash out	0.010	0.024	0.073	± 31.5%
Total	± 26.4%	± 4.5%	± 30.2%	43

QCD Background Model Systematic

<u>Normalization:</u> Use MET v. Iso. technique to estimate quantity of QCD fakes in our sample. Determine error: vary MET and isolation cuts independently. See a ~10% shift (see table in note). Re-fit using PE's and get a negligible shift in the fraction.

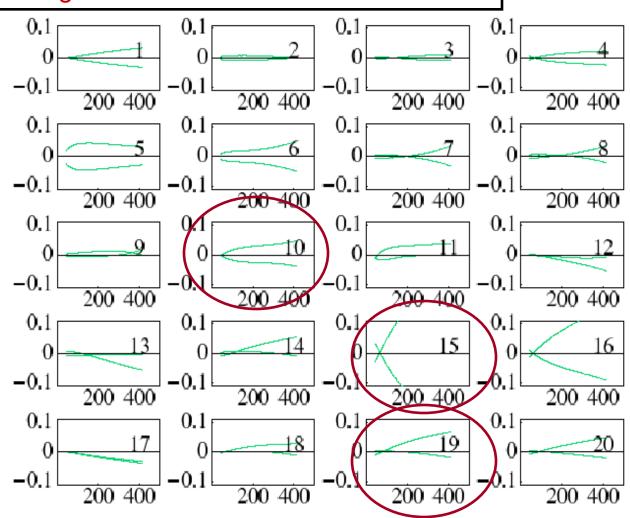

Normalization error	H _T	double	half	Error
obtained but doubling and halving our QCD	NJets \geq 3	2.0%	1.4%	1.7%
	NJets \geq 4	5.3%	1.4%	3.3%

<u>Shape:</u> Use conversion electron sample for alternate Ht shape. Generate PE's and re-fit data twice: with non-isolated lepton sample and with conversions. Take mean of difference of fits. Result: 16%

Systematic for Q² Scale

Almost all of the MC samples of X+n parton (jet) in the top group are AlpGen with a fairly hard Q^2 scale: $Q^2 = M_W^2 + \Sigma P_T^2$ (Jets)

We obtained a sample of AlpGen W+3p MC at $Q^2 = M_W^2$, and ran it through simulation/production


PDF Shape Systematic

CTEQ6 with NLO + HERWIG / PYTHIA with LO Eigenvector #15: gluon distribution functions dominate

Consider largest contributing Eigenvectors: 10, 15, 19

Create shifted Templates, refit Using PE's.

Systematic Error: Njets \geq 3: 3.3% Njets \geq 4: 4.3%

Systematic Effects W+≥3 Jets

Effect	Shape	Acceptance	Total
Energy Scale	28%	5.1%	30%
Generator	0.60%		0.6%
Top Mass	8.0%	5.0%	13%
Q ² Choice	14%		14%
PDF	3.3%	5.3% (from lepton ID)	8.6%
ISR (Pythia)	0.56%	0.78%	1.3%
Luminosity			5.9 %
Background model	16%	1.7% (normalization)	16%
Total			40.6%
	For Bl	essing	

Systematic Effects W+≥4 Jets

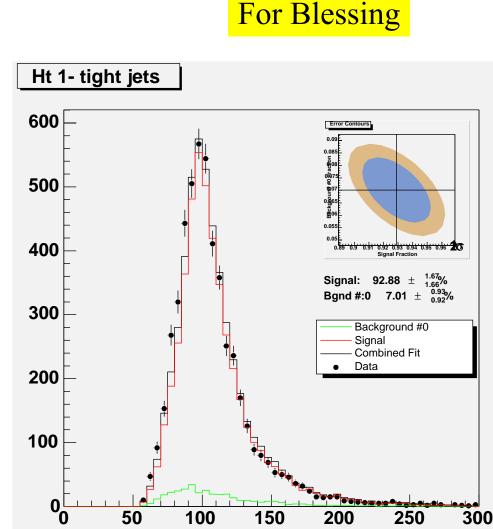
Effect	Shape	Acceptance	Total
Energy Scale	20.4%	13.0%	32%
Generator	0.60%		0.6%
Top Mass	8.0%	5.0%	13%
Q ² Scale	0.31%		0.3%
PDF	4.3%	5.3% (from lepton ID)	9.6%
ISR	0.56%	0.78%	1.3%
Luminosity			5.9 %
Background model	16%	3.3% (normalization)	16%
Total			39.5%
I	Fo1	Blessing	

Summary

We've measured the top cross section in the lepton + jets channel using $\rm H_{T}$.

Requiring 3 or more jets: σ (ttbar) = 5.1 ± 1.8 (stat) ± 2.1 (sys)

Requiring 4 or more jets: σ (ttbar) = 7.1 ± 2.4 (stat) ± 3.0 (sys)


Backup Slides

Data/ MC Comparisons

• <u>Problem</u>: Examining the H_T distribution in the W+1 jet data: the fit undershoots H_T in the low end, and overshoots H_T at the high end.

How to quantify the difference?

- Kolmogorov-Smirnov statistic flawed (biased?) in ROOT
- Modify procedure:
- Fit MC+QCD to data
- Obtain Kolmogorov distance 'D'
- Generate PE events according to fitted MC
- Refit random events
- Obtain Kolmogorov distance 'd' between random sample and fit
- Probability of data fit = fraction of time D < d

Acceptance

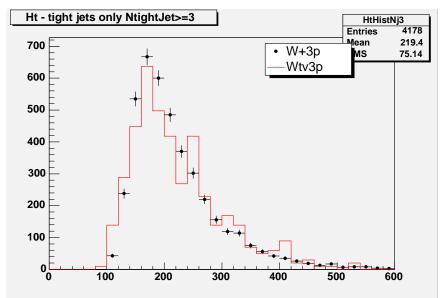
$$\sigma(t\bar{t}) = \frac{F \cdot N_{data}^{obs}}{\left[\varepsilon_{cmx}^{t\bar{t}} \cdot L_{cmx} + \varepsilon_{cmu}^{t\bar{t}} \cdot L_{cmu} + \varepsilon_{cm}^{t\bar{t}} \cdot L_{cem}\right] \cdot \varepsilon_{common} \cdot \varepsilon_{d\phi} \cdot \varepsilon_{jet}}$$

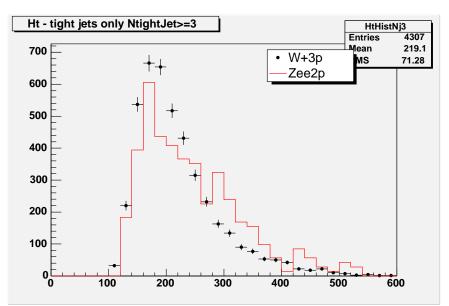
F: Fraction from kinematic fit N_{data}^{obs} : Number of events observedin W+ \geq 3 or \geq 4 jets

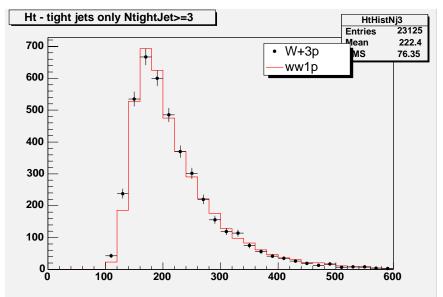
$$L_{cmx} = 109.44 \pm 6.44 \ pb^{-1}$$
$$L_{cem} = L_{cmu} = 125.82 \pm 7.41 \ pb^{-1}$$

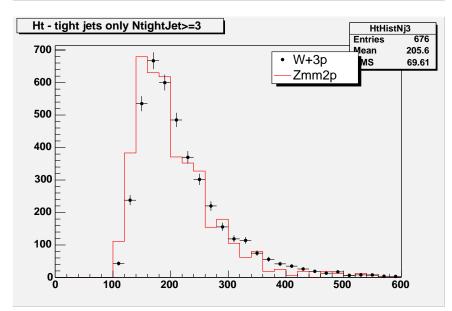
$$\begin{aligned} \varepsilon_{cmx}^{t\bar{t}} &= 0.0091 \pm 0.004 \\ \varepsilon_{cmu}^{t\bar{t}} &= 0.0244 \pm 0.0008 \\ \varepsilon_{cmu}^{t\bar{t}} &= 0.0466 \pm 0.0009 \\ \varepsilon_{cmmon} &= 0.951 \pm 0.062 \end{aligned}$$

$$\varepsilon_{d\phi} = 0.947 \pm 0.001$$
$$\varepsilon_{jet} (n \ge 3) = 1.0$$
$$\varepsilon_{jet} (n \ge 4) = 0.554 \pm 0.002$$

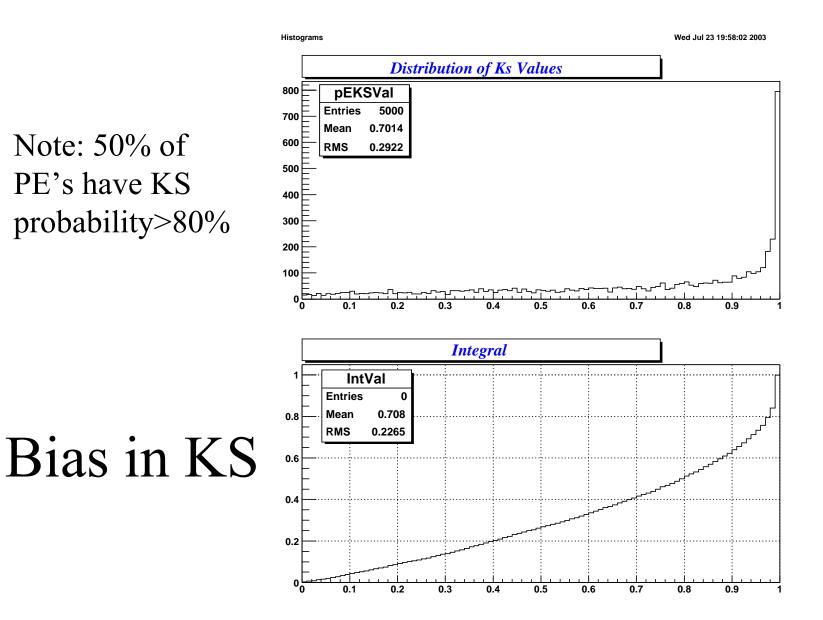

Expected QCD Background Fraction Update this!


For Blessing	W+"n" jets	Electron bkgnd	Muon bkgnd	Total bkgnd
No ∆¢ cut imposed	1	9.6 ± 0.3%	5.1 ± 0.2%	$7.6 \pm 0.4\%$
	2	$12.6\pm0.8\%$	4.0 ± 0.4%	8.7 ± 0.9%
Use MET vs Isolation to determine the	≥3	15.0 ± 1.9%	5.6 ± 1.2%	11.7± 2.2%
background				
Uaunziuunu				
normalization and effect of the $\Delta \phi$ cut	W+"n" jets	Electron bkgnd	Muon bkgnd	Total bkgnd
normalization and effect of the Δφ cut				-
normalization and	jets	bkgnd	bkgnd	bkgnd


Determination of Sensitivities


- Use pseudo-experiments (PE's) to determine expected precision on cross section:
 - Number of ttbar using acceptance, luminosity, theory σ (7pb)
 - Number of QCD from MET vs ISO
 - Number of W's: # observed events minus (expected ttbar + QCD)
 - Each of the above numbers correspond to mean of Poisson
 - Use Ht as the discriminating variable; sample from ttbar and AlpGen MC's, and conversion data sample.

H_T Shape Comparison, W+3p v. Smaller Backgrounds



QCD Background Findings(old)

Njets (muons)	MET v. Isol
1	0.111 ± 0.004
2	0.077 ± 0.005
3+4	0.070 ± 0.012
Njets (electrons)	MET v. Isol
1	0.186 ± 0.004
2	0.159 ± 0.006
3+4	0.196 ± 0.017

QCD higher for electrons as expected. Numbers still under study... muon 3-4 jet strange. Also studying shapes from low MET and high "isolation" region.

Bias in KS Probability Due to Fitting

